
 

 

Reward is Unnecessary 

Abstract 
In this article, we respond to the paper “Reward is Enough” by Silver et al. We hypothesize that pursuit of 

reward is not an optimal strategy to achieve human level A.I. We propose a simple definition of intelligence 

and contrast this “ideal” intelligence with other systems observed in humans, animals, and current A.I. In 

our formulation, the problem of intelligence can be simplified to that of a world model. This model learns 

the underlying joint probability distribution in the “world” it intends to model. We explore the advantages 

and limitations of this kind of model by idealizing it as a database search. We theorize that, in an idealized 

context, a world model matching our formulation acts both as a perfect general purpose data compression 

algorithm and is indistinguishable from an intelligent actor.  

Introduction
Solving intelligence is a highly complex problem, 

in part because it is nearly impossible to get any 

significant number of people to agree about what 

intelligence actually means. We eliminate this 

dilemma by choosing to ignore any kind of 

consensus instead defining it as “the ability to 

predict unknown information given known 

information”. To put it more put it more simply, 

we define intelligence as a model of the world. 

We provide this definition this to eliminate the 

possibility of writing an entire article about how 

to achieve general intelligence without ever 

explicitly defining intelligence[1]. We 

acknowledge that many readers may find this 

definition simplistic and incomplete. Throughout 

the rest of this article we will try to make a case 

about why these readers are wrong. We will do 

this by exploring the concept of an Ideal World 

Model which learns to model the probabilistic 

relationships which define the underlying 

structure of any non-random data.  

This type of model is not only theoretically 

capable of Artificial General Intelligence but can 

also act as an ideal general purpose data 

compression algorithm, these two problems being 

equivalent in this framework. Unfortunately, it 

suffers from the minor issue that due to its 

training complexity no one can train it. Nor will 

it become trainable at any point in the foreseeable 

future even as processing speed improves. It can, 

however, be approximated to a useful degree 

using models which can feasibly be trained. 

Approximations of this ideal model represent the 

most promising path toward human level A.I.  

Existing Sequence Models 

Approximate Ideal World 

Models 
Almost all data contains an underlying structure. 

This is to say that every piece of information in a 

specific sample is likely to affect the probability 

of every other piece. Given an image containing 

half of a cat, an average human will be able to 

predict that the other half of the image likely 

contains the other half of the cat. They will also 

be able to make reasonable predictions about the 

pose, fur color, number of appendages, and 

background information. This is because an 

average human has a reasonably accurate model 

of the world which allows them to extrapolate 

from incomplete information. This model 

happens to include information about cats, the 

environments which they are found in, and the 

visual appearance of both in three-dimensional 

space. This ability to model the world underpins 

all intelligent behavior from the formation of 

abstract concepts to problem solving.  

An Ideal World Model (IWM) is a theoretical 

type of model which represents an unholy attempt 

to combine the properties of a GAN and a masked 

language model. IWMs predict the relative 



 

 

likelihoods of different possible permutation of 

an arbitrary set of positions within a sample given 

the values of a different arbitrary set of positions. 

The goal is to directly model the joint probability 

distribution using a semi-supervised framework. 

This results in a model which can produce the 

most likely completion for any unknown part of a 

sample given any other part of that sample. 

For example, given an image with an arbitrary set 

of missing pixels, a perfect IWM would be able 

to predict the relative probabilities of every 

possible permutation of pixels in the missing set 

given any subset of the known pixels. The reason 

why this type of model is entirely theoretical and 

will stay that way is due to its training 

complexity. For a dataset with samples consisting 

of N tokens the IWM must learn to predict the 

probabilities of all subsets of a set of size N given 

all subsets of a set of size N. The naive training 

complexity is therefore 22𝑁per training example. 

This means that the number of permutations per 

training example exceeds one trillion when 

N=20.  

While a realistic attempt to train this kind of 

model would not necessarily need to explore all 

22𝑁perumtations, exploring a significant 

proportion of them would be necessary to achieve 

a useful model. Thus, the exact implementation 

details of this kind of model are not extremely 

important given that we aren’t actually 

attempting to train one. However, just because 

the model is untrainable doesn’t mean it’s 

useless, at least from conceptual standpoint.  

Successful existing transformer sequence models 

represent useful approximations IWMs. Encoder 

only Masked Language Models (MLMs) such as 

BERT[2] mask (and sometimes corrupt) a limited 

proportion of tokens during each training step and 

learn to predict their independent probability 

given the set of unmasked tokens. Decoder only 

models such as GPT-3[3] learn to model the 

relationship between the set of all previous tokens 

and the next token in the sequence. GPT-3’s 

training scheme results in N permutations per 

training example. BERT’s theoretical training 

complexity is much higher but its exclusive focus 

on permutations where a supermajority of tokens 

are unmasked allows BERT to avoid the most 

difficult cases. Prediction becomes progressively 

easier as more information is present. This allows 

BERT-like models to achieve useful results in 

specific tasks without ever exploring anywhere 

near all possible permutations of their training 

sequences. There is nothing theoretically 

stopping a masked language model from being 

used for GPT-like text generation. However, due 

to the lack of exploration of cases where most or 

nearly all tokens are masked, performance of 

MLMs on text generation tasks is usually terrible. 

In both the cases of GPT-like models and BERT-

like models the result is a useful, but limited, 

approximation of a full IWM. This 

approximation is capable of a certain subset of the 

tasks which fully trained and properly 

functioning IWM would be able to do. However, 

both types of models are also far more useful than 

an IWM because they can actually be trained in a 

non-theoretical context. The utility of exploring 

IWMs is not derived from the usefulness of a 

model which cannot be trained. It is derived from 

a better understanding of the what existing 

models are approximating and how these 

approximations can be improved. 

Ideal World Models Approximate 

a Database Search 
IWMs are, themselves, approximations of the 

“world” of data which they model. This world is 

the underlying joint probability distribution 

which defines the spatiotemporal structure of the 

data. We will define the world W as a multiset 

containing an infinite number of non-unique 

samples matching the distribution found in the 

world we are attempting to model.  

W represents a database of not only every sample 

which exists in the real world, but also every 

sample which could exist. With this infinite 

database in hand, we no longer even need a model 

to predict the probability of some set of positions 



 

 

given some other set of positions. We can just do 

a database search and count the results.  

For those who are unfamiliar with it, image 

inpainting is a sub-field of image generation. The 

goal of image inpainting is to fill in missing pixels 

in an incomplete image by inferring them from 

the non-missing pixels. It also provides an 

excellent explanatory example of why it is useful 

to consider this problem from the perspective of 

a database search on W.  

Given an image with missing patches of pixels, 

conducting a search of our infinite database W for 

all images which match the non-missing pixels 

will return an infinite number of images. 

However, these matching images will also 

contain every possible permutation of the 

unknown pixels. The number of matching images 

is infinite but the number of permutations is finite 

and some permutations are more common than 

others.  The distribution of images in W perfectly 

matches the underlying distribution of all 

possible images and the images in it may be 

duplicated an infinite number of times. This 

means that the most likely completion of an 

image given no prior information is the most 

common image in W. This also means that there 

exists a permutation within the images matching 

the known pixels which is most frequent and 

therefore is the most likely completion of the 

image. This completion of the image represents 

the theoretically optimal solution for this 

problem.  

IWMs approximate W by modeling the 

relationships between every subset of positions 

and every other subset of positions. A dataset 

with an infinite number of rows but a finite 

number of discrete features can be represented in 

finite storage by calculating the conditional 

probabilities of every feature given every other 

set of features and storing the calculated 

probabilities in a huge table. This works because 

the amount of variation present in the data is 

finite. This process records all variation found in 

the data which allows for lossless recreation of 

the original data. For this reason, perfectly 

training an IWM on an infinite dataset is 

essentially the same as memorizing the whole 

dataset by converting it to a compressed 

representation. Complete samples can be 

extracted from this compressed representation 

using partial samples as keys. Querying an IWM 

which perfectly models W and querying W 

directly are therefore equivalent when calculating 

conditional probability.  

For non-infinite datasets, generalization occurs 

because of this compression. Simpler 

representations are forced to model more 

relationships and memorize fewer. More compact 

representations of the data are likely to generalize 

better. However, poor generalization only 

becomes a problem for models which can store 

more variation than exists in the training data. 

The conceptual table of all possible relationships 

found in real world data is comically large. While 

the bias variance tradeoff technically still exists 

for this model type, too much variance is unlikely 

to ever be a problem when training models which 

approximate IWMs on any non-trivial datasets. 

This is likely why increasing parameter counts 

continues to improve performance in large 

sequence models[4]. 

Problem Solving Without Reward 
Current A.I. solutions to problem solving often 

make use of reinforcement learning. This is a 

reasonable choice. After all, it is vaguely 

equivalent to what is used by essentially every 

biological intelligence to encourage useful 

behavior and discourage harmful behavior. Given 

that human intelligence relies heavily on a reward 

system and that the goal of research into General 

A.I. is to achieve human level intelligence, it’s 

obvious why people attempt to emulate it.  

The main issue with this approach is that human 

intelligence is neither very general nor easily re-

creatable because results from two successive 

levels of very complex and poorly understood 

inductive bias. The first level involves the pre-

defined neurodevelopmental structure imposed 

by biology on human development. The second 

involves the complex system of rewards through 



 

 

which biology incentivizes and discourages 

specific behaviors. Both are opaque and 

incomprehensibly complicated after being shaped 

by millions of years of natural selection. They do 

not come with documentation.  

Biological systems favor this structure for 

intelligence because it is an efficient way to 

achieve Darwinian goals. Energy is generally not 

wasted processing information and acquiring 

skills which do not provide a fitness advantage 

for the organism. Performance in important areas 

is optimized, usually at the cost of performance 

in other areas. This is true for everything from 

insects to humans. The kinds of behavior our 

reward systems encourage and the types of skills 

our neurological structures allow us to acquire are 

shaped and limited by our biology. This is not the 

only way to achieve intelligent behavior. 

We will describe systems of intelligence which 

pursue some reward or specific goal as 

Motivated Intelligence (MI). In contrast, IWMs 

and models which approximate their behavior can 

be described as Unmotivated Intelligence (UI) 

because their learning is not inherently shaped by 

any specific goal or purpose.  UI systems are 

conceptually a much purer form of intelligence as 

they are not biased to focus on anything specific. 

Unfortunately, compared to MI systems they also 

require many orders of magnitude more compute 

to train before they can solve the same problems 

because of their lack of focus. The advantage of 

UI systems is that they are conceptually simple to 

create. Existing human level MI systems, also 

known as humans, require much less compute to 

train but only work because a successful model 

and reward structure has been pre-defined. This 

was done by evolution over millions of years. If 

this structure cannot be extracted from human 

biology directly, re-creating something 

equivalent through simulation would require 

much more compute than simply training a UI 

system. 

Problem solving in UI systems is conceptually 

very different from problem solving in a more 

conventional MI framework which humans are 

intrinsically familiar with. Instead of using 

reward to encourage specific behavior, we 

conceptualize problem solving as essentially 

equivalent to the previously mentioned problem 

of image inpainting.  

Consider the case of an image divided into three 

sections where the first and third section are 

present but the middle is missing. To fill in the 

missing section, an image inpainter must 

simultaneously consider both the left and right 

sections of the image. This is because the middle 

section must join the two together in a seamless 

way.   

Images are 2D but the same framework can be 

applied to data with any number of dimensions if 

it has an underlying spatiotemporal structure. The 

universe itself can be considered as a static 4D 

volume where future and past are no more 

different than up and down. Solving a problem 

can therefore be conceptualized as predicting the 

series of actions necessary to connect some initial 

state to a desired state within this volume. Future 

actions are simply unknown values to be 

predicted given that the state resulting from them 

must seamlessly connect the initial and desired 

states. This framework can be applied to any 

problem where a desired state can be defined 

using the data. 

Previous work which leverages this concept 

exists. The Decision Transformer[5] represents a 

GPT-like approximation of an IWM applied to 

tasks typically handled by reinforcement 

learning. It works by encoding the world state, 

action, and the difference between the desired 

score and the current score at each time step. 

Learning to generate sequences matching this 

formulation allows a score target to be set at 

inference time. The authors refer to this desired 

state and progress towards it as “reward” but this 

is not conceptually accurate and has nothing in 

common with reward in a conventional 

reinforcement learning context.  

Front loading the end goal is what allows GPT-

like models to fill in the missing information in-

between the initial and desired state. This is 



 

 

conceptually similar to image generation in 

DALL-E[6]. DALL-E models sequences 

consisting of both natural language text 

descriptions and the images which they are 

describing. The result is a model which generates 

images based on natural language descriptions. 

Similarly, desired states are not limited to exact 

environment states. High level natural language 

descriptions can be used to define them. 

Some minor caveats exist. Whereas in the image 

generation example the model is entirely in 

control of all information used to bridge the gap, 

when acting on an environment this is not 

necessarily true. Acting within a complex 

environment with incomplete information 

necessitates incorporating new information in 

real time. While the model would be perfectly 

capable of predicting a series of environmental 

states and actions which would seamlessly 

connect the initial and desired state, there is no 

guarantee that series of events would materialize 

in practice. This does not present a major problem 

but it does limit the number of actions which can 

be filled in simultaneously. As the future 

environment state is out of the model’s control 

and is likely not perfectly predictable, the model 

is usually limited to operating in an essentially 

autoregressive context to incorporate new 

information at each new time step.  

There is one critical limitation which must be 

understood when using this type of model to 

solve problems. To illustrate, consider the 

problem of chess. Playing chess by searching W 

is relatively straightforward. At each new move, 

we search W for a game matching all prior 

moves, where the opponent had an arbitrarily 

high ELO rating, and where our side was 

ultimately victorious. From these winning games, 

we select the most frequent next move. This move 

is the move which is most associated with victory 

when playing against opponents of the highest 

possible skill level for the game currently being 

played.  

The issue is that extremely high ELO players 

represent a tiny proportion of all chess players. 

Failing to include the ELO rating of the opponent 

would mean that games resulting from our query 

would be sampled from games against opponents 

of all skill levels. This means that in this case 

there is no guarantee that the move most 

associated with victory in this case is ideal or 

even good, only that it was good enough to win 

against the typical opponent.  

IWMs model their environments and make no 

distinctions between environmental and 

adversarial obstacles. Opponents and their 

behaviors are simply part of the environment to 

be predicted. In the absence of information about 

the opponent an IWM will initially assume the 

that the opponent is typical in every way. This 

may result in sub-optimal initial behavior which 

may be unrecoverable against a sufficiently 

skilled opponent. 

Ideal World Models Are Optimal 

Data Compression Algorithms 
IWMs have one final interesting property which, 

while not directly related to problem solving, is 

significant enough to discuss. They function as 

ideal data compression algorithms. Data 

compression algorithms attempt to reduce the 

number of bits necessary to represent 

information. They can be both lossy and lossless. 

Lossless data compression allows for exact re-

creation of the original data whereas lossy data 

compression attempts to preserve conceptually 

important information. The minimum amount of 

information necessary to represent any data is the 

minimum amount of information from which all 

other information in that data can be inferred.  

IWMs represent an optimal solution to lossless 

general purpose data compression while 

maintaining perfect perceptual quality in lossy 

compression. 

Consider the case of image compression. For the 

sake of explanation, we will use pixels even 

though it would technically be optimal to use 

individual bits. Querying W allows for retrieval 

of complete samples by using incomplete 

samples as queries. Thus, there exists a minimum 



 

 

subset of the pixels in any image which can be 

used to retrieve the full image. For this query, the 

most likely completion of the image is the 

original image itself. This set of pixels represents 

very close to the minimum amount of information 

which would be necessary to represent the image.  

The same process can also be used for lossy 

compression but to a much higher degree. As 

more and more pixels are removed the 

reconstructed image will deviate more and more 

from its ground truth. However, perceptual 

quality will not drop. Querying W with the 

known pixels will continue to return in infinite 

number of realistic completions, from which we 

select the most likely. Images reconstructed from 

even a tiny subset of the pixels will therefore be 

high quality and coherent even if their actual 

contents differs significantly from the original. In 

an optimal lossy context, the minimum amount of 

information which is necessary to represent data 

like images, video, and audio in form 

perceptually equivalent to the original is 

astoundingly small. 

Both schemes can be applied to any kind of 

information, including types for which lossy 

compression is not normally applicable. This 

includes text and even bit streams. This works in 

some cases because the reconstructed data will be 

coherent, even if it is not exactly correct. 

Discussion 
In this article, we explore IWMs and other types 

of world models which approximate them. 

Sufficiently powerful world models can solve 

arbitrarily difficult problems. The primary 

limitation to their capability is simply compute. 

The better they can model the world, the greater 

their problem-solving potential. The larger the 

model, the better it can model the world.  

It is unclear how many orders of magnitude 

model complexity will need to increase to 

achieve human level performance in relevant 

tasks. It is also unclear how model structure will 

continue to evolve to incorporate more types of 

data simultaneously. For text the O(𝑁2) 

complexity of vanilla transformers is acceptable 

but for other types of data this may not hold true. 

When incorporating multiple types of complex 

data such as video, audio, and possible actions a 

complexity of O(𝑁2) is usually non-viable. 

Current quantization methods which alleviate this 

problem by reducing the number of tokens are 

more of a Band-Aid than a long-term solution.  

Even the O(𝑁) complexity of proposed efficient 

transformers[7] may not be sufficient in the long 

run. It should be noted that to succeed more 

efficient models do not need to perform similarly 

to the original on a per-parameter bases, they only 

need to continue scaling as more parameters are 

added. 
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Appendix 

Q&A 
Q: How should I cite this paper? 

A: You shouldn’t 

Q: Do you have any proof for any of these 

claims? 

A: Nope 

Q: Are you absolutely sure about everything in 

this paper? 

A: Nope 

Q: Is this even an academic paper? 

A: No, this is basically a blog post but I don’t 

have a blog 

Q: What’s your favorite flavor of ice cream?  

A: Mint chocolate chip 

 

 

 


