
There and back again
Binary Analysis with
mcsema
Andrew Ruef



There and back again
Street Fighting
Binary Analysis with
mcsema
Andrew Ruef



Hi
• Now:

� PhD Programming Languages 
� Advised by Mike Hicks 
� Research at Trail of Bits

• Before:
� Startups
� Defense contractors 
� Big companies 



Introduction



Problem: binary programs



What if humans didn’t read it?
• We ask machines to do everything else

• Let’s have them read native instructions and analyze 
them just like they analyze other programs

• What new problems show up?

• What existing problems are magnified? 

• Does anything get easier?



What if humans didn’t read it?
• We ask machines to do everything else

• Let’s have them read native instructions and analyze 
them just like they analyze other programs

• What new problems show up?

• What existing problems are magnified? 

• Does anything get easier?
� Trick question, nothing ever gets easier



Native 
Instructions



What’s in machine code?



What’s in machine code?
• Statements that look like this

• The code that contains those statements itself 

• Some entry point



What’s in machine code?



What’s in machine code?

Not stack or heap, just “memory”



What instructions does this 
miss?
• Does your model include multiple threads?

� If no, then you miss xbegin / xcommit / xabort

• Does your model include devices and privilege levels? 
� If no, then you miss (some of) the behavior of iret and friends

• What about individual page permissions and virtual 
memory?
� Then you miss implicit exceptions due to page permissions 



Can we make instructions 
explicit?
• What if we used some pure, core language to represent 

transitions on states? 

• Spoiler alert – this is what everyone does 

• We’ll use LLVM for this language, for reasons I will 
defend later 



Compilers and 
other instruction 
sources



Provenance 
• What produces instructions? Compilers, right? 

� That’s a big assumption

• What rules do compilers have to play by?
� Their own The ABI

• What’s the gap between what compilers must do and 
what they frequently do?
� Significant



Binary or compiler output 
analysis?



… more simply



Don’t be these people 



Why should you care?
• Compromise is the essence of diplomacy having a 

working / scalable system

• You can’t handle all the weirdness that the system has 
to offer

• Know the gaps 

• Also know where systems will fail?



Breaking assumptions
• Undefined flags used in control decisions 

• Lots of control flow through memory 

• No stack / all data accesses through push and pop 



Motivating 
mcsema



mcsema
• Translate X86 into IR

• LLVM translation

• Function identification

• Stack translation 

• KLEE



Goal: take X86, put it into an IR
• Sub goals:

� Have collaborators 
� Produce executable from IR 
� Do some static analysis 

• What IR to use? 
� Use an existing one
� Make our own



What about VEX?
• Valgrind is a dynamic binary translator 

• DBTs have the same problems we do

• Valgrind represents the semantics of native programs as 
VEX

• VEX is nasty
� Small number of expressions and statements
� ~1600 values in the binop op enumerator 



Tradeoffs we’ll make
• Fewer fancy abstractions like memory 

� No assumptions about stack or heap 

• Some assumptions about code
� Immutable 

• An interconnected mass of pulsating maggots
components 

• Take native code and print it as LLVM



Why LLVM?
• Lots of thought went into the design of the IR

� If not LLVM, then we would reproduce this thought and 
surely get something wrong

• Lots of tools exist to work with this IR
� Symbolic executors, abstract interpreters, code generators, 

optimizers 

• The type system of the IR is already close to what the 
machine is
� No signed / unsigned types, integer bit vector machines 

• Existing LLVM expertise is transferrable 

• Some of these reasons are political, some are 
engineering 



Anatomy of a decoder
• Machine state is represented as an LLVM record type

� Registers are field members

• Translated instructions are sequences of LLVM 
instructions that modify the machine state

• Machine state is spilled to the stack on function entry, 
synced on function call and function return 



Flags
• EFLAGS is broken out as a sequence of 1-bit virtual 

registers in the machine state 

• Instructions set registers, now they also set flag 
registers 

• Lots of flag assignment code is dead by construction

• Conservative DCE removes “lots” of flag assignment 
code

• Undefined flags set to LLVM undefined value



Translation example

and ebx, 0x44444



Translation example
%79 = load i64* %RBX_val
%80 = trunc i64 %79 to i32

%81 = and i32 %80, 279620

%82 = lshr i32 %81, 31
%83 = trunc i32 %82 to i1
store i1 %83, i1* %SF_val
%84 = icmp eq i32 %81, 0
store i1 %84, i1* %ZF_val
%85 = trunc i32 %81 to i8
%86 = call i8 @llvm.ctpop.i8(i8 %85)
%87 = trunc i8 %86 to i1
%88 = xor i1 %87, true
store i1 %88, i1* %PF_val
store i1 false, i1* %OF_val
store i1 false, i1* %CF_val
store i1 undef, i1* %AF_val

%89 = zext i32 %81 to i64
store i64 %89, i64* %RBX_val



Function specification
• We only really need one function 

• The specification of the CFG also specifies the functions

• This is cheating 

• The further away you get from compiler output the less 
meaning “function” has 



Virtual Stacks
Before



After



Advantages / disadvantages
• Sound model of the stack

• No abstraction of variables 
� Kills optimizations, symbolic execution 

• Large running time cost 

• Fix: every variable identified and moved off of the 
virtual stack is space saved and maybe code optimized 



Tangent: Infer Functions? 
• Observation: compilers produce one activation record 

per function, and functions are generally related to data 
values stored in this activation record

• Hypothesis: compilers emit instructions such that 
instructions with code locality cluster with values on the 
stack with data locality

• This seems true for C and the C compilers we know 
about
� Is it true for all HLLs?
� Must it be true for all C compilers? 



Tangent: Infer Functions?



Platform specific special cases
• What about threads?

� New threads are basically the creation of a new machine 
state 

• What about exceptions? Like SEH? 
� Ugh



Enough to run KLEE on binaries



Abstraction 
recovery



Abstractions
• Control Flow Analysis

• Memory and the heap

• Type recovery



Control Flow Analysis
• Any errors during CFA corrupt all subsequent analyses 

• Overall: convert instruction stream into a control flow 
graph 

• In general, quite hard



Control Flow Analysis
• Some possibilities

� Use symbolic execution 
� INSIGHT 

� Use abstract interpretation and value set / value range 
analysis
� Jakstab, bindead, BAP

� Use lots of distinct traces and merge them 

• All with their advantages and disadvantages 



CFA in mcsema
• Control flow specified externally 

• Default: specify control flow of application using IDA, 
export to mcsema
� Advantages: empirically good results for compiler output 

analysis 
� Disadvantages: theoretically unfulfilling 

• In the future: some form of value range analysis on 
indirect branches 



Memory and the heap
• A sound abstraction: all of memory is a key / value store 

� aka a big flat array

• Some big downsides: optimizer doesn’t know that stack 
variables are variables

• Would like to be able to allow mscema to try and 
register allocate stack variables 



Memory and the heap
• Heap objects are manipulated via integer pointers and 

offsets to those pointers 

• Downside: analyses can’t do a semantics or type driven 
analysis of record uses
� Because there are no records to speak of! 

• This is edging us closer and closer towards…



Type Recovery
• Assign some type information to values in the (partially) 

recovered program 

• Assists human analysts understand the program

• Assists automated analyses to be more precise and 
perform better 
� Optimizations can know what variables are now
� Symbolic executors can know what regions of memory are 

disjoint and have different widths 



An advantage of LLVM
• The same type infrastructure used to represent the 

original program (*) is available to represent the 
recovered programs types! 

• Saves you from having to define your own type system 

* MANY LARGE CAVEATS 



Primitive types
• Partition the type of values into 

� Pointer vs not?
� Integer widths?



Typing a stack frame
• Some problems addressed by very recent work (Noonan 

et al PLDI16)
� What if a stack slot is re-used between a signed and unsigned 

type?
� What about polymorphic functions? 

• Some remain:
� How do you type a stack frame that contains an alloca? 
� How do you type malloc in general? 



Present status, 
future,conclusion



What translates now
• Modestly sized (1-40 KLOC) C/C++ programs for Linux 

and Windows

• Web servers

• CGC challenge binaries



Currently cooking
• A better variable specification scheme as input to 

mcsema

• A dependent type system for machine code

• Using C as a DSL to specify instruction semantics 



Wish list
• Implementation of a better control flow analysis scheme 

� Iterated refinements of recursive descent using value range 
analysis would be a start

• A better symbolic execution system for LLVM



Thanks!


