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Abstract

Heegner points were first defined by Bryan John Birch in the 1970s. Since their first
introduction, Heegner points have been used to partially prove famous conjectures such
as the Gauft Conjecture, Hilbert’s 12th problem, or the Birch and Swinnerton-Dyer con-
jecture. One can still see its importance in today’s literature with some generalizations,
such as Stark-Heegner points, or in its generalizations to plectic points. The definition
of Heegner points is a purely algebraic concept, however, using the isomorphism of
the modular curve with a concrete C-Riemann surface, one can prove that CM points
have an analytic analog, considering concrete periods of the modular form attached
to a given elliptic curve. In this document, we start exploring the generalization of
such correlation to p-adic CM points over Shimura curves and periods over a C,-rigid
analytic space. We will continue studying the paper by Bertolini, Darmon, and Green,
where they find periods over the setting of a product of two upper-half planes imposing
certain conditions on the primes involved. We will then generalize the results of this
paper to all possible behaviors of the primes associated with these two half-planes. We
will finish by generalizing the construction of similar periods on finite products of up-
per half-planes, and we will prove a generalization of the Heegner Hypothesis for these
periods.

Zusammenfassung

Heegner-Punkte wurden erstmals in den 1970er Jahren von Bryan John Birch definiert.
Seit ihrer Einfithrung wurden Heegner-Punkte verwendet, um berithmte Vermutungen
wie die Gauf-Vermutung, Hilberts 12. Problem oder die Birch und Swinnerton-Dyer
Vermutung teilweise zu beweisen. Ihre Bedeutung ist in der heutigen Literatur noch
in einigen Verallgemeinerungen, wie z. B. Stark-Heegner-Punkten, oder in ihren Ver-
allgemeinerungen auf Plectic Punkte erkennbar. Die Definition von Heegner-Punkten
ist ein rein algebraisches Konzept. Mithilfe des Isomorphismus der Modulkurve mit
einer konkreten C-Riemannsche Fléache kann jedoch gezeigt werden, dass CM Punkte
ein analytisches Analogon haben, wenn man konkrete Perioden der Modulform be-
trachtet, die einer gegebenen elliptischen Kurve zugeordnet sind. In diesem Dokument
beginnen wir mit der Untersuchung der Verallgemeinerung einer solchen Korrelation auf
p-adische Schwerpunktpunkte tiber Shimura Kurven und Perioden iiber einem C,-rigid-
analytischer Raum. Wir untersuchen weiterhin die Arbeit von Bertolini, Darmon und
Green, in der sie Perioden iiber dem Produkt zweier oberer Halbebenen finden, wobei
den beteiligten Primzahlen bestimmte Bedingungen auferlegt werden. Anschlieffend ve-
rallgemeinern wir die Ergebnisse dieser Arbeit auf alle moglichen Verhaltensweisen der
mit diesen beiden Halbebenen verbundenen Primzahlen. Abschliefsend verallgemeinern
wir die Konstruktion dhnlicher Perioden auf endlichen Produkten oberer Halbebenen
und beweisen eine Verallgemeinerung der Heegner-Hypothese fiir diese Perioden.



Uittreksel

Heegnerpunten werden voor het eerst gedefinicerd door Bryan John Birch in de jaren
70. Sinds zijn eerste introductie zijn Heegnerpunten gebruikt om beroemde vermoedens
zoals het vermoeden van Gaufs, Hilberts 12e probleem of het vermoeden van Birch en
Swinnerton-Dyer gedeeltelijk te bewijzen. Het belang ervan is nog steeds terug te zien
in de hedendaagse literatuur met enkele generalisaties, zoals Stark-Heegnerpunten, of in
de generalisaties ervan naar plectic punten. De definitie van Heegnerpunten is een puur
algebraisch concept, maar met behulp van de isomorfie van de modulaire kromme met
een concreet C-Riemann-oppervlak kan men bewijzen dat CM-punten een analytische
analoog hebben, rekening houdend met concrete periodes van de modulaire vorm die
verbonden zijn aan een gegeven elliptische kromme. In dit document verkennen we
de generalisatie van een dergelijke correlatie naar p-adische CM-punten over Shimura-
krommen en periodes over een Cp-rigide analytische ruimte. We zullen het artikel
van Bertolini, Darmon en Green verder bestuderen, waarin zij periodes vinden over de
setting van een product van twee bovenste halfvlakken die bepaalde voorwaarden stellen
aan de betrokken priemgetallen. Vervolgens zullen we de resultaten van dit artikel
generaliseren naar alle mogelijke gedragingen van de priemgetallen die geassocieerd zijn
met deze twee halfvlakken. We zullen afsluiten met de generalisatie van de constructie
van vergelijkbare periodes op eindige producten van bovenste halfvlakken, en we zullen
een generalisatie van de Heegner-hypothese voor deze periodes bewijzen.
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Introduction Carlos Caralps

1 Introduction

We are going to present an example that will underpin the main motivations and meth-
ods we are going to generalize in this document. Let £/Q be an elliptic curve of conduc-
tor N. Using the modularity theorem, we have the minimal complex parametrization

d: Xo(N)— E.
We shall recall that, using the moduli interpretation of the subspace Yy(V) of modular
curves Xo(/N), we obtain the following expression
Yo(N) = {(E, E') ell. curves over C : E — E' N-isog.} /~ C X,(N).

Given an order O of an imaginary quadratic field K/Q, we can use this last expression
to define CM points over the modular curve Xo(/N) attached to the order O

CM(0) := {(E, E') € Xo(N)|End(E) = End(E') = O}

We assume that O satisfies the Heegner Hypothesis, so the collection of CM points
attached to this order is non-empty, i.e. the ideal NO factors as NN cyclic ideals of
norm N. Consider the map

5 : Pic(O) — Xo(N)(C)

that sends a to the pair of elliptic curves (C/a,C/N 'a). We consider the map given
by the Artin reciprocity law

rec : Pic(O) — Gal(H/K),

where H is the ring class field associated to the order . The map rec plays an essential
role in the following result, which is one of the most important properties of CM points.

Theorem 1.1 (Complex Multiplication theorem). Given a point P € CM(Q), we have
that ®(P) € E(H). Furthermore, given a € Pic(O), we have the following equation

®(aP) = rec(a) '®(P).

It is important to remark that CM points can be identified by considering all the ¢
maps associated to all the possible orientations A of O i.e.

CM(0) = U on(Pic(0)).
N orientation of O

The definition of Heegner points we have just given is purely geometrical, which makes
the task of producing examples difficult. We are going to relate this definition to
concrete integral cycles, in order to do so, we have to start showing the relation between
CM points and the following type of embeddings.
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Introduction Carlos Caralps

Definition 1.2 (Optimal oriented embeddings). Given an order O C K, we say that
an embedding VU : K — M (Q) is optimal oriented if it satisfies the following conditions

(Optimal) The embedding is called optimal if it satisfies V(K) N My(N) = ¥(O), where
My(N) is the collection of 2 x 2 matrices with integer coefficients such that their third
entrance 1s divisible by N.

(Oriented) We consider an orientation of the Fichler order i.e. a subjective morphism
My(N) — Z/NZ. The embedding is said to be oriented (relative to an orientation N
of Mo(N)) if the following diagram commutes

O —2L— M,(N)

| !

O/N —= Z/NZ

If we consider the action generated by the embedding at K, there exists a unique fized

point Ty € K such that
To\ TV
\I/()\)(1> —/\<1).

We say that the embedding is oriented at infinity if ¢ belongs to H under a fixed
embedding K — C

Let Emb(O, My(N)) be the collection of optimal oriented embeddings of O to My(N).
This collection is equivalent to the Picard group of O as proven by BDG.

Lemma 1.3. The assignment ¥V — ag is a bijection between Emb(O, My(N)) and
Pic(O).

One should note that this bijection n allows us to define an action in Emb(O, My(N))
by the Picard group, which we will denote as ¥* for all ¥ € Emb(O, My(N)) and
a € Pic(O). We fix the common isomorphism j : H*/T'o(N) = Xo(NV). Let Ag be the
lattice generated by the periods of a Néron differential wg on E, and let

n:C/Ap — E(C)

be the Weierstraft uniformization associated to Ag. Up to the Manin constant (which
we assume is trivial here), the pull-back (® o j)*w, is equal to 2mif(t)dt where f is a
normalized weight 2 cusp form attached to E. Given an optimal oriented embedding
¥, we define the period
TV
Jy :—/ 2mif(t)dt.
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Introduction Carlos Caralps

Using the result in the Chapter VI.5 of [Sil09], we have that
2(0((r. ) =n [ (@ oiyee). (L01)

which proves that the class ay satisfies ®(d(ay)) = n(Jy). We have found an expression
of Heegner points using periods.

Theorem 1.4. For all ¥ € Emb(O, My(N)), the point n(Jy) belongs to E(H), and for
all b € Pic(0),

n(Jye) = rec(b)'n(Jy)

Proof. The statement is an immediate result of the equation 1.0.1 and the Shimura
reciprocity law. O

This theorem enables us with the tools to explicitly compute CM points over modular
curves. We are going to exemplify this phenomenon with the concrete setting where
N = 11. In this case, the associated modular curve has genus 1 (i.e. it is an elliptic
curve) and the vector space S5(I'9(11)) is generated by the unique normalized eigenform

f) =q]JQ-q¢")1 - g

Since Xo(11) is an algebraic curve of genus 1, the Shimura construction will be an
isomorphism and, therefore, we can identify Xy(11) with the following elliptic curve

Ef:y2+y:x3—x2—10x—20.

We consider the field K = Q(v/—7) and its maximal order O = Z [HT‘E} It is

easy to check that this order satisfies the Heegner Hypothesis i.e. that 11 is split in
0. Using the correspondence given by the Lemma 1.3, we get that there’s a unique
optimal oriented embedding

ve+an-of; §)+e(YT ),

where 7 = _QZ—EE is the number in H that satisfies the conditions given in the proof of
the lemma. We use SageMath to compute the approximation of the period associated
to Jy (up to the exponential 100)

Jy = —0.507683721711822 — 0.405629044516045¢.

We use the Weiestraft uniformization to get the associated approximated point in the
elliptic curve E(C)

(0.500000000000001 — 1.32287565553229:, —2.00000000000000 — 5.29150262212918i) .

8
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It is important to point out that the class number of O is one and, consequently, the
associated ring field is K itself. We use the LLL-algorithm and the Theorem 1.4 to find
the unique CM point with the approximation values that we have gotten

(1_7\/__7,—2—2\/—_7).

One should note that these computations, although they are slightly different, agree
with the results computed by Darmon in section 3.3 of [Dar04]. One should note that
the fact that X,(11) is an elliptic curve implies that the point we have found is actually
a CM point and not the image of one, which makes this case specially interesting.
Given an elliptic curve F/Q of conductor N = pNTN~, we set X to be the Shimura
variety associated to the decomposition (pN*t, N7). The definition of CM points can
be extended in general to points over Shimura curves using the moduli interpretations
of such curves i.e., given a closed algebraic field F' and a quadratic imaginary order O,
we can get the following definition of CM points

CM(0) :={(A,A") € X(F) : End(A) 2 End(A") =2 O}

where A and A’ are abelian varieties over F' together with a concrete embedding that will
be made explicit in the following sections. One should remark that the endomorphism
notion on this definition is in the setting of the concrete category of abelian varieties.
Over the Archimedean complex numbers, one can find equivalences similar to the ones
we have explicitly for modular curves. However, over Shimura curves it is also in-
teresting to consider the CM points over p-adic complex numbers. We consider the
quaternionic algebra B (split at the prime p) of discriminant N~ over Q and the Eich-
ler Z[1/pl-order of level N*. One can define a congruence subgroup using the natural
embedding ¢ : B — M>(Q,) as
= uRY)

where R{ are the units of R which have norm 1. The Riemann surface equivalence
will be given by the theory of p-adic uniformization, which will give us the following
isomorphism of surfaces

X(Cp)ng/F

where H,, is the p-adic upper half plane which is defined as P'(C,)\P'(Q,). Using
the modularity theorem together with the Jacquet-Langlands correspondence, we can
identify the elliptic curve E with a p-adic cusp form of weight 2 with respect to the
group I', which we will denote as f. Once can associate a multiplicative measure to
this cusp form, a choice of f should be made so that the definition of this measure does
not depend on a choice of an exponential function, which help us define the following
cycle for a given optimal oriented embedding W

= b @G [ 2 B

9
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where 7y is the associated fixed point of the action W(K*) in H,. One should note
that, in order to define this period, we will need to extend the notion of semi-indefinite
integral, which is a non-trivial concept here since the surface 7, /I" has no cusps and,
consequently, we have no notion of infinity.

Let O C K be a Z[1/p]-order of conductor prime to N, we assume the following Heegner
hypothesis

e all the primes dividing N~ are inert in K,
e all the primes dividing N* are split in K,
e pisinert in K.

This hypothesis assure us of the existence of an optimal oriented embedding ¥ with
respect to the order O and, consequently, the period Jy can be considered. We denote
H as the ring class field of K associated to the fixed order ©. We consider o, the
Frobenius element of a prime p over p.

In this document, we will see that such a period, which can be naturally identified with
a point in E(C,), is related to CM points through the complex parametrization existing
between X and E, and that therefore, such periods will satisfy the following property.

Theorem 1.5. For any ¥ € Emb(O, R), the point n,(Jy) is a Heegner point in E(H).
Furthermore n,(Iy) is the Heegner point n,(Jy) — woyn,(Jw) and for all a € Pic(O),
we have

Np(Jwe) = rec(a) "', (Jy).

A natural question that arises at this point is the following: Could we generally find
analytic periods over other settings than a single upper half plane that are related to
CM points?

The general answer to this question still remains open, however, the paper of Bertolini-
Darmon-Green [BDGO7| gives a satisfactory answer for a concrete product of two p-adic
upper-half planes.

We consider an elliptic curve E/Q of conductor N = pg NN~ with all the factors prime
pairwise, p, ¢ both prime numbers, and N~ with an odd number of prime divisors. Let
B/Q a quaternion algebra (split at p and ¢) of conductor N~ and an Eichler Z[1/pql-
order of level N~. Using the embedding ¢ : B — M>(Q,) x M>(Q,) associated to the
algebra B, we define the congruence subgroup

= u(Ry),

where R; are the units of R which have norm 1. One can generalize the concept of
Cusp forms of weight 2 to the setting of 7, x H,, where 7, is the Bruhat-Tits tree of
the prime p. We will prove the following isomorphism of cusp forms

So((Tp x Hy) /T) = 557" (Ho/Ty),

10
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where I', is the product projection of I' to M3(Q,). This isomorphism allows us to
extend the cusp form f associated to the elliptic curve E to the cusp forms over the
setting (7, x H,)/T". Similarly to the last case, we can define a measure associated
to this cusp form, which at the same time allows us to consider the following double

integral
T2 v2
oL e
T1 U1

where vy, vy are vertices of the tree 7 and 11, 75 are points on the upper half plane .
One can give a prove the Fubini theorem to this setting by proving that there exists a
cusp form f# € Sy((H, x T,)/T) (we are just exchanging the roles of the primes p and
q) such that the following equation si satisfied

T2 v2 v2 T2
][ / W = / ][ Wy#
1 Ju v J7

where the second integral is defined as a product of multiplicative integrals through the
different edges of the Bruhat-Tits tree with joining the vertices v; and vy

/][wf#_ H]{M )2—7'1 f‘(Z)'

€:V1 —V2

Following the motivation raised by this last definition, one can define the semi-indefinite

double integral of w4 as
[ fe= T f e

€:V1 —V2

We consider a Z[1/pq]-order quadratic imaginary order O C K of conductor prime to
N. We will assume the following generalized Heegner Hypothesis

e all the primes dividing N~ are inert in K,
e all the primes dividing N* are split in K,
e pis inert in K,

e ¢ split in K.

These hypothesis assure us of the existence of an optimal oriented embedding ¥ with
respect to the order @. We consider the fixed point 7y of the action induced ¥(K ™) in
the upper half plane H, and we define the period

Yve v %
J\pl—/ ][ waCp/q%gE(Cp)

11
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where 7y is a generator of O through the embedding ¥. In the paper [BDGO07| the
authors prove that these periods can be related to CM points with respect to the
maximal Z[1/p]-order Oy inside O. Let H, be the ring class field associated to the
order Oy and o4 the element of the Galois group Gal(H,/K) corresponding to a prime
q over q. We define H as the subgroup of H, which is fixed by 03.

Theorem 1.6 (Bertolini, Darmon, Green). The point n,(Jw) is a global point in E(H)
on which the involution o, acts via wy. In concrete, n,(ly) is Np(Jv) — wWpopnp(Jw).
Moreover, for all a € Pict(O) the periods satisfy

Np(Jwa) = reC(ﬂ)_lnp(Jw)-

The result is, firstly, shocking because we have started from a purely analytic definition
and we have been able to prove that such periods have an algebraic equivalence. In this
thesis, we will study for which behaviours of p and ¢ the results of Bertolini-Darmon-
Green can be extended, and we will generalize their results to periods defined over
finite products of upper half-planes. We will finish this document proving the following
generalization of the Heegner Hypothesis.

Theorem 1.7 (Generalization of Heegner Hypothesis). Let q1, ..., ¢, be a non-repetitive
collection of primes strictly dividing N which are not p and consider the ring T :=
Z[1/pqr - - - qn). Given an T-order O and an optimal oriented embedding associated to
O, we consider the values n,(Jy) associated to the period Jy constructed on the rigid
analytic space

Hp X Hgy X -+ X Hg,

following the theory developed by Bertolini, Darmon, and Green. These values sat-
1sfy the main theorem of complex multiplication if and only if K satisfies the Heegner
Hypothesis. In other words, the underlying Shimura curve Xy+ ,n- satisfies

all primes dividing N are split in K,

all primes dividing pN~— are inert in K.

Furthermore, the values 1n(Jy) will be trivial in all the instances where the strict in-
equality
tkz(O*) < n

18 satisfied i.e. at least one of the primes q, ..., q, s inert in K.

2 Preliminary notions

In this section, we will introduce the base concepts that will be used throughout the
thesis and their corresponding basic results.

12
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2.1 Elliptic Curves

We aim to introduce the theory related to elliptic curves. The author assumes that
the reader might have experience with the basic concepts in this field. In light of this,
we will make a small introduction to elliptic curves and then review more carefully the
more advance concepts that will be used in this document, especially the ones related
to p-adic reduction.

Definition 2.1 (Elliptic Curve). An elliptic curve (E,O) over a field K is a smooth
projective curve E of genus 1 over K and a point O € E.

Following [Sil09, IIT §3], all elliptic curves can be expressed as cubic equations over P?
with one point at oo (that base point). Therefore, elliptic curves can be defined with
the following equation

Y2Z 4+ a XY Z +asYZ* = X? + ayX*Z + ay X Z* + ag Z°,

with a1, ...,a¢ € K and the distinguish point is O = [0 : 1 : 0]. Given an elliptic curve
E/K, we can define a group operation: Given two points P, () € E, we consider the
third point R in the intersection of the line PQ and E. We repeat the same process by
considering T the intersection of E and the line RO. We denote the sum P @® Q as the
point T'.

Proposition 2.2. The operation defined before for the points of a given elliptic curve
E/K satisfies the group axioms.

Proof. One can prove this proposition using the explicit equations given in [Sil09, p. 53|;
however, the reader might be interested in the more geometrical proof given in [Ful89|.

[]

We will explicitly mention the two main results for elliptic curves over the rationals.
This first theorem describes the set of rational points for arbitrary elliptic curves.

Theorem 2.3 (Mordell-Weil). Given an elliptic curve E/Q, the set of rational points
of this elliptic curve s finitely generated i.e.

E(@) = E(@)tors X ZT7

where E(Q)ors is the set of points with finite order (also known as torsion points) and
r s defined as the algebraic rank of E.

Proof. The proof can be found in [Sil09, p. VIII]. The author also recommends the
more didactic proof given in [Masl8, pp. 32-35|, where the underlying computational
ideas of this theorem are made explicit. O

13
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The second important result in this setting describes the possibilities of rational torsion
points of all elliptic curves.

Theorem 2.4 (Mazur Theorem). Given an elliptic curve E/Q, its group of torsion
points will be of one of the following types

Z/nZ. 1<n <10,

E ors g
@: {Z/an X Z/2Z 1<n<A.

Proof. The proof of this theorem can be found in [Maz77| and [Maz78§]. O

The elliptic curves over C can be represented by the points in a complex torus i.e., for
every F/C there exists a two dimensional complex lattice wiZ + woZ = A C C (where
wy and wy are R-linearly independent) such that

E(C) = C/A.

The reciprocity of this theorem is also true i.e. given a lattice A C C with the properties
given before, then the complex torus C/A represents an elliptic curve over C.
Moreover, as commonly done, we define isogenies between elliptic curves as morphisms
between the group of points and the associated point of the first elliptic curve is sent
to the one of the second.

Given an elliptic curve E/Q and a prime p € N, we can consider the reduction of the
points of the elliptic curve E to an elliptic curve E/ IF,. The following classifies elliptic
curves by their behavior on their reduction over F,

e [ has good reduction if E is non-singular.

F has additive reduction if E has a cusp

F has split multiplicative reduction if E has a node and the tangent lines at such
node are in [,

e [ has nonsplit multiplicative reduction if E has a node and the tangent lines at
such node are not in [F),

For the scope of this document, we will need to use the conductor of a given elliptic
curve over the rational numbers Q. This concept can be generalized to different base
fields, but this will not be needed in our case. The conductor of an elliptic curve E/Q

is defined as
N = prp(E)’
plA

where

£(E) = 1 E has multiplicative reduction at p.
P ' 2 F has additive reduction at p.

14
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Given a prime p of good reduction over E, we define the value a, as
a, :=p+1—N,,
where N, is the number of points in E(F,). We can extend this definition to primes of
bad reduction as
0 additive reduction,
a, =141 split multiplicative reduction,
—1 mnon-split multiplicative reduction.

After considering these integers, we can define the L-function of F as the following
infinite Euler product

s o\ -1 o1
LEs)=]Q=ap+p>) [](Q—aw™)" .
pIN PN
We shall remark that this product converges for all S € C such that R(S) > 3/2. The
following theorem gives us the common extension of the L-functions for the whole C.
Theorem 2.5. The function L(E,s) extends to the entire function on C
A(E, s) = (2n)*T(S)N*2L(E, 5),

where T is the common I'-function. Furthermore, the function A satisfies the following
functional equation

A(E,s) = £A(E,2 — s).
Proof. This Theorem for elliptic curves defined over Q follows from the Modularity

theorem and a similar result for modular forms. Both results will be made explicit in
the following pages. O

We aim to generalize the result over C to the setting of non-Archimedean fields. Let
be an elliptic curve defined over QQ, with p a prime natural number.

Proposition 2.6 (p-adic uniformization). Given an elliptic curve E/Q,, of which comes
from an elliptic curve over Q which has multiplicative reduction over p, there exists an
element qr € Z, such that there exists a p-adic uniformization

Mp - Czo/qZ — E(C,),

Let K be a number field and E an elliptic curve over K. We consider the collection of
places of K and we denote them as Si. We define the height over the abelian variety
E(K), for a given point P € E(K)\{O}, as

1

h(P) = mv;:j([l(v . Qv] maX{_lOg |Px|v>0}7

where ||, is one of the norms associated to v and P, is the first coordinate of the point
P. We need to introduce a well-known norm regarding abelian varieties.

15
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Definition 2.7 (Néron-Tate height). Given a logarithm height h associated to a sym-
metric invertible sheaf on an abelian variety, we can define the canonical Néron-Tate

height as

h(P) = lim h(”ZP ),

n—oo n

One should check that this definition satisfies the properties of heights. We denote h
as the Néron-Tate height associated to the height h defined before. With this height,
we can define the inner product for two given points P, Q) € E(K)

(P,Q) = h(P + Q) — h(P) — h(Q).

We will leave it to the reader to check the properties of inner products in the space of
points of a given elliptic curve.

2.2 Modular forms

Similarly to the last subsection, we would like to focus on non-trivial notions related to
modular forms, especially to the construction of the Jacobian associated to Sy(I") for a
modular subgroup I' < SLy(Z) and the L-functions associated to modular forms.
Given a number a natural number N € N, we define the principal congruence subgroup
of eleven N as

T(N) = {7 €SLy(Z) : 7= ((1) (1)) (mod N)} < SL(Z).

In general, a congruence subgroup is a a subgroup I' < SILy(Z) such that I" satisfies
['(N) <T for some number N > 0. The most famous examples of congruence groups,
which will be essential in this thesis, are

o) = {y€58(2) + 7= (§ 7)) (moam}.
T (N) = {’yESLQ(Z) Ly = ((1) ’1‘) (mod N)}.

We define the cusps of a given congruence subgroup I' as the [-orbits in P!(Q) i.e. the
quotient
T\P'(Q).

One should view these points as those that will be on the boundary of the compactifi-
cation of the space H/T". After discussing these two concepts, we can give the definition
of modular forms with respect to a given congruence subgroup.

16
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Definition 2.8 (Modular Forms). Given a congruence subgroup I' < SLo(Z) and an
integer k, a modular form of weight k is an holomorphic function f : H — C which is
holomorphic at all the cusps of I' and satisfies

f(y2) = (cy + d)¥j(2) for all v = (Z Z) cr.

We will denote the C-vector space of modular forms of weight k as M (T).

We will be especially interested in the concrete subgroup of My (I") of functions that
vanish at the infinity cusp. The modular forms that have such behavior will be called
cusp forms, and we will denote the C-vector space of cusp forms of weight k of I' as
Si(T).

Latter in this document, we will use the j function, which is defined using Eisenstein

modular forms
1728(240E4)3

7 (240E,)? = (504E,)*
If the reader is interested in reading a definition of Eisenstein series, the author rec-
ommends the fourth chapter of [DS05]. One should notice that j is not a modular
form, since it has a pole at the infinity cusp, however, it satisfies the modular equation
Jj(vz) = j(z) for every v € SLy(Z).
Given a modular form f € My(T'1(V)) for given integers k, N, we define the operator
associated to a matrix a € GLy(Q) of positive determinant as

To= Y. Mf(fyz) with v = (Z 2)

k
hlerwar & T d)

We will leave it to the reader to check that this definition does not depend on the choice
of the representatives of the quotient. We define the Diamond operator for an integer
de (Z/NZ)* as

<d> [ =1.f,
where a € T'o(N) with its lower right entry equal to d. Given a prime number p, we
can also define the Hecke operator associated to this prime as

1
0 p
We can extend the definition of Hecke operators to any integer n € N by establishing
T1 = id and for n > 1 as follows

Ty =T, Ty — " {p) Ty for p prime and r > 2,
T, = H Thyer for n = H PP,
p prime p prime

17
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One should observe that given n,m € N such that ged(n, m) = 1 the following relation
will be satisfied
Tom = T, T

using the definition of these two operators we can give the definition of the Hecke
algebra over the congruent subgroup I'1 ().

Definition 2.9 (Hecke algebra). The Hecke algebra, which we denote as T, is a sub-
algebra of Endc (M (I (N))) generated by the diamon operators (d), for d € (Z/NZ)*,
and the Hecke operator T,, with p prime.

The Hecke algebra is a commutative algebra, and it is possible to get explicit formulas
for the actions of the operators in T. To get such formulas and all the associated proofs
to these concepts, we recommend reading the fifth chapter of [DS05].

Definition 2.10 (Eigenform). A modular form f € M(T'1(N)) is an eigenform if it is
an etgenvector for all the elements of T i.e. it is an eigenvector for T,,, with p prime,
and (d), with d € (Z/NZ)*. Furthermore, we will say that an eigenform is normalized
if its first non-constant coefficient in its Fourier expansion at infinity is 1.

We consider an eigenform f € M (I';(N)) with Fourier expansion at the infinity cusp
f(z) = Zan(f)qn, with ¢ = exp (2miz) .
neN

If we denote )\, the associated eigenvalue of T),, we have the following equation
an(f) = Aay(f) for all n > 0.

In concrete terms, this shows that the coefficients of normalized eigenforms will be the
eigenvalues of 7T, (with respect to f).

We will finish this subsection by defining the L function associated to a modular form
in My(I'y(N)) and the common basic results around this concept.

Definition 2.11 (Partial L-function of a modular form). Given a modular form f €
Si(T'1(N)) with Fourier expansion at the cusp oo given as

() = 3 an(f)" with g = exp (27;”) |

neN

We define the partial L-function associated to the modular form f as

L(f,s) =Y an(f)n"*

n>1

which converges for all s € C such that R(s) big enough.

18
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Given an eigenform f € S(I'1(IV)), we denote as a, and x(d) the respective eigenvalues
of the hecke operator 7}, and the Diemanon operator (d). Using this notation, we have
the following prime product expression of the partial L function L(f,s)

L(f.s)= ] (1= ap™ + x(p)p"'>*) for R(s) big enough.

p prime

If we define the normalized eigenform f*(z) = f(—Z), one can check that there exists a
complex number 7, satisfying

where wy is called the Atkin-Lehner operator and it’s defined as

wy = T, with o = <](\)[ _01).

We define the completed L-function attached to an eigenform f € S(I';(N)) as
['(s)
A(f,s) = N*/P—=L
(f? S) (27T)S (f? S)’
where I'(—) is the common Gamma function. The following theorem proves the common

properties of completed L-functions.

Theorem 2.12. Let f be a normalized eigenform of Sk(I'1(N)) and denote f* as the
dual eigenform as defined before. The following two conditions will hold

The function A(f,s) can be continued to a monomorphic function on C with at most
poles at s = 0,k. Furthermore, if f is a cusp form then the function A(f,s) is holo-
morphic on all C.

The completed L functions of f and f* are related by the functional equation
A(f, k= s) =i s NTF2A(f*) ).

Proof. One can find the results summarized in this statement by checking subsection
5.9. of [DS05]. O

In particular, this theorem proves the existence of a meromorphic extension of the
partial L-function associated to a modular form f.

The relation between L-functions associated to elliptic curves and modular forms will
be given in the subsection about the modularity theorem; however, we should introduce
the notion of a modular elliptic curve. Given an elliptic curve E/Q of conductor N, we
say that it is modular if there exists a cusp form f € So(T'o(/N)) such that

L(f,s) = L(E,s).

The following proposition will reduce the equation of L-functions given in the last
definition to something more manageable.
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Proposition 2.13. Given an elliptic curve E/Q of conductor N, E is modular if there
exists f € So(T'o(N)) such that the following equation is satisfied

#EF,) =p+1—ap(f)
for all prime p of good reduction.

Proof. This result can be immediately deduced using the prime product of both the L
function attached to the elliptic curve and the one attached to the modular curves. [

The reader might be questioning how the concept of modular forms can be generalized
to a p-adic setting, similarly to what we did with elliptic curves in the last subsection.
This generalization is far from an easy process, and it will be a central stone in this
thesis. We will learn how to extend the definition of modular forms to non-Archimedean
settings in section 4 after getting a clear picture of the p-adic upper half plane.

2.3 Construction of Shimura Curves

In this subsection, we will give the construction of Shimura curves associated to a pair
(N, N7), with N~ square-free, following Chapter 3 of [Pet89|. Let B be the quaternion
algebra over QQ split at infinity of discriminant N~ and R Eichler order of B of level
NT.
Let Z = H#OO Zs be the profinete competition of Z and Q = 7® Q the ring of finite
adeles. We define the adélization of the quaternion algebra and Eichler order as
B=B®Qand R=R®QC B.
If the number of prime divisors of N~ is even, we define the associated Shimura curve
to the pair (N*, N7) as o
XN"",N— = BX\Y X BX/RX,
where Y is the genus zero curve canonically associated to the algebra B. The definition
in this setting is mostly simple, however, when we try to extend such a definition to the
case where N~ requires the solution of a moduli problem. We can define the following
category attached to the quaternion algebra and the Eichler order R fixed before
(N*+, N")-Ab.Surf./R 1= Ob:(A, ) where A is an Ab. Surf:./R and ¢ : R — En'dT(A)
Ar: Maps between Ab. Surf. which preserve embbedings

Using this category, we can define a moduli problem represented by the following func-
tor, which goes from the category of Q-Algebras to the category of sets

F:Q-Alg — Set
R~ {(A,A") € (NT,N")-Ab.Surf.|3A — A"}/ =

The following result assure us of the Scheme representation of this functor, which will
immediately give us the definition of Shimura curves.
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Theorem 2.14. The functor F is coarsely represented by a regular, connected, two-
dimensional scheme X y+ n— smooth over Spee Z[1/N]. Furthermore, if N~ # 1, then
X n+ n- is proper over Z[1/N].

We define the Shimura curve associated to the data (N*, N7) as the moduli space
Xn+ n- which represents the moduli problem we have just defined. When N~ =1 i.e.
B = M5(Q), the solution to the moduli problem, which we will denote as Yy(V), is
non-compact. One should point out that in this case, the moduli problem parametrizes
elliptic curves, more specifically, for any closed algebraic field F//Q, we have the follow-
ing expression

Yo(N)(F) ={(E,E") ell. cur./F|3E — E' of deg N}/ = .

We denote Xo(N) as the compactification of the curve Yy(N). The following theorem
proves an isomorphism of the C-points of the modular curve and a compact Riemann
surface.

Proposition 2.15. There exists an isomorphism of Riemann surfaces over the field of
complex numbers C

Xo(N)(©) = H /1),
where H* := H UPHQ).
Proof. We will start proving the identification for Yy(/N). We define the map

H/To(N) — Yo (N)(C)
T+ (C/(r,1),C/(1,1/N)).

We consider the natural isogeny ¢ : C/ (r,1) — C/ (7, 1/N), which sends each element
to its class (this is well defined because (7,1) C (7,1/N)). It is clear that ker p = Z/NZ,
consequently, the map is well defined.

We have injectivity in this map because if we were to have two elements 7,7 € H
generating the same class of isomorphic C-elliptic curves, then there must exists v €
[o(N) such that 7 = ~y7’. Surjection comes from the fact that all classes of isomorphic
C-elliptic curves can be represented by a torus of the form C/ (7, 1).

This proves that the map defined before is an isomorphism of Riemann surfaces, con-
sidering compactifications, we get the isomorphism that we wanted. O

One can give a similar result for the C-points of the Shimura curves we have defined. We
consider the embedding associated to the quaternion algebra B, which exists because
B is split at infinity,

L: B — M(R).

We define the congruent subgroup of SLy(R) as I'y+ y— := ¢(R). This subgroup will
give us the following identification of the complex points of the Shimura curves we have
defined before.
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Proposition 2.16. The complex points of a given Shimura curve Xy+ n- can be iden-
tified with a Riemann surface using the congruent subgroup I'y+ n- defined before

XN+,N—(C> = H/FN“',N— .

Proof. This theorem is proven by using the moduli interpretation of Shimura curves
and a similar approach to the modular curves one. O]

However interesting this result might be, this thesis will use the focus of the C, points
of Shimura curves (for some prime p|N~). There exists an analogous result that re-
lates these points to a rigid analytic surface defined over p-adics. Such a relation is
called p-adic uniformization, and it will be explained in detail when we introduce non-
Archimedean CM points.

2.4 p-adic modular forms over Modular curves

The motivation for the definition of p-adic modular forms can be given using the moduli
problems we have just stated. In this section, we will present in detail the underlying
construction of p-adic modular forms using the Katz approach for Modular curves,
following the paper [How?22].

We will start by giving a slightly different definition of the moduli problem of modular
curves by allowing arbitrary level structures.

Definition 2.17 (Level K elliptic moduli problem). Given K C GL2(Ay) a closed
subgroup, we define the moduli problem

Yi - Q-Alg — Set
R {(E,K)}/ ~

where the tuples satisfy

(i) E/R elliptic curve
(it) K C Isom((Ay)* Vi, (E)) a K-torsor

(111) the relation is defined up to quasi-isogenies of elliptic curves that preserve the associated
torsors IC.

Note that when we choose K' = I'g(N), the moduli problem we have just defined
coincides with the classical moduli problem defined in the previous section. Moreover,
when the subgroup is K = {e}, we will drop K from our notation.

We also have that the topological constant sheaf Ngr,a,)(K) acts on the functor Y.

Furthermore, given two closed subgroups K; < K5, we can define the following map
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between the associated functors
YKl — YK2,
(B, K1) = (E, K - Ks).
We are also interested in defining a similar functor where we disregard the information
at the p-coordinate.

Definition 2.18 (Integral level K? elliptic moduli problem). Given a closed subgroup
KP C GLy(Ay), we define the moduli problem

D v : Lp)-Alg — Set
R {(B, K}/ ~
satisifying
(1) E/R elliptic curve
(ii) K7 C Isom((A")?, Vi

(111) the relation ~ is defined up to prime-to-p quasi-isogenies of elliptic curves which pre-
serve the associated torsors KCP.

(E)) a KP-torsor

Similarly to the previous case, the topological constant sheaf N (KP) acts on the

GLa(AP))

functor Qx». Furthermore, given two groups K7 < K., we can define a map of the
associated functors

Drr = Dk,
(B, KY) — (E,KY - K3).
As in the last case, when the group is K? = {e}, we will drop K? from the notation.
The following lemma gives us a relation between these two types of functors.

Lemma 2.19. Given a closed subgroup K? < GLQ(ASP)), there exists an isomorphism

@pr(@ 1> YGLz(Zp)Kp
induced by the assignment
(E,K?) = (B, Isom(Z2,T,(E)) x KP).

From now on, we will assume that the groups K (respectively K?) are sufficiently small,
this is, if they stabilize a Z-lattice £ C A7 (a Z(°)lattice £ C (Agfp))Q) and, for some
n >3 (ged(n,p) = 1), it lies in the kernel of them map GL(L) — GL(L/nL).

One should note that this property is closed under inclusion and conjugation of GLy(Af)
(respectively GLs (Agcp )), which justifies the denomination of such properties.

The following result will assure us of the scheme representation of the two functors we
have defined.
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Proposition 2.20. Given a sufficiently small closed subgroup K C GLo(Ayf) (respec-

tively KP C GLQ(Agcp))), the functor Yi (Ykr) is represented by an affine scheme

over SpecQ (SpecZ,) ), and there exists an Nap,a,)(K)-equivaraint (NGLNA%,))(KP)_

equivaraint) isomorphism given by the natural map

Y — lim Y (QJKP — lim @Kp') .

KCK'CGL2(Af) compact open KPCKP'CGLy (A;P)) compact open

From now on, we will refer to the representations of the functors with the same notation
as their respective functors. For any K C GLy(Aj) (respectively K C GL, (AS}’ )))
we denote as X (Xg») the smooth compactification of Yx (Yx»). Moreover, the
cusps of the modular curves will be the elements on the boundary X\ Yy (respectively

Xr\Ykr).

After introducing the setting we are going to work with in this section, we are in a
position to give the algebraic definition of modular forms. For a sufficiently small
closed subgroup K C GL(Ay), we denote as E /Yy the universal elliptic curve and w
the line bundle associated to the universal elliptic curve.

As it is mentioned in our reference paper [How22, p. 262|, we can extend the definition
of w to the whole X by allowing sections with holomorphic ¢-expansions at each cusp.

Definition 2.21 (Modular Forms). Given a level K C GLo(Af) and a weight k, we
define the space of modular forms of weight k and level K as the sections

My = H*(Xg,w").
Given a prime p, one might be tempted to define modular forms over [, as the sections
M]f[;p = HO(‘%KI” wk>7

however, this definition turns out not to be the desired definition.

In general, the Hasse invariant is defined as a section constructed Zariski locally. Given
a pair (E/R,«a), where R is an F,-algebra E/R an elliptic curve and a € w is a non-
vanishing invariant differential, we assign an element Ha(E/R, «) € R satisfying

Ha(E/R,ac) = a~?Y Ha(E/R, a) for all a € A*,

and which is functorial in based change and isomorphism. For our setting, we consider
the invariant differential d, dual to the element o and we define

OF := 0,0+ 00,.

One should note that this object is also an invariant differential and, therefore, it is a
multiple of d,. We define the value Ha(E/R, «) as the element that satisfies

0P = Ha(E/R, a)0,.
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One can check that such a definition satisfies the desired properties of the Hase invariant.
One can apply this construction to the universal elliptic curve over 2g,. Doing some
computations on the Tate curve, one can show that the g-expansions of the elements in
the Hasse invariant are equal to 1 in each cusp, and, consequently, we can extend
GLQ(A(I)))
Ha € Mp_l’pr

In order to define the modular forms over F, and @, we need to show that the compact-
ified modular curve Xg» decomposes exactly into two loci. We consider the following
two matrices

0 p p 0
bss = <1 O> and by.q = (0 1) € My(Z,).

We consider the p-divisible groups X,/F, and X,./F, associated to the covariant
Dieudonné Zg—modules where the Frobenious acts by bss and b,,4, respectively. We
know, from the theory of classification of p-divisible groups, that all p-divisible groups
of one-dimensional height-two over an algebraically closed field is isomorphic or quasi-
isogenous to exactly Xo.q = 1, X Q,/Z, or Xg,.

In concrete terms, given a closed algebraic field k/F,, such a result applies to the
groups E[p>] for any elliptic curve E/k. Therefore, we define the ordinary locus of
Y rrr, (respectively supersingular locus) to be the ones whose points are ordinary
(supersingular) i.e. the elliptic curves representing such points have groups FE[p>] are
isomorphic or quasi-isogenous to X,.q4 (X,s). One can show that the supersingular
locus is closed i.e. the ordinary locus is open, and that the modular curve Qx»r, can
decompose as a strict union of these two loci

@KP,FP = QJ??P,IFP U @%g,wp-

Local computations show us that the supersingular locus 97, 5 is in fact the vanishing
locus of the Ha. This fact justifies considering cusps as ordinary elements i.e.

Wor, = Vidvr, = V(Ha) and X35 = Xkow, \ X r, = Vv g, U (Xko e, \ Do, )-

After describing these two loci of the compactified modular curve Xg», we are in a
position to define the moduli problem which will give rise to the modular forms over
F,.

Definition 2.22 (y,-Igusa moduli problem). Given a closed subgroup K? C GLQ(A;Z)));
we define the moduli problem

1933, Fp-Alg — Set
R {(E, ¢, KP)}/ ~

where the triplets satisfy
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(1) E/R is an elliptic curve

(i) K? C Isom((AY)2, T

o (E)) a KP-torsor
7

(iii) @, : 1, = Elp] an isomorphism
(iv) The relation ~ is defined by prime-to-p quasi-isogenies which leave invariant the level
K? and the ismorphism .

One should note that the condition of the isomorphism implies that the compactification
of the moduli space attached to this problem, which we will denote as g%’f”;p, is a finite
étale (Z/pZ)* cover of X9d

X0d 1 g%ﬁ}’;p.
The definition of mod p modular forms will follow a similar approach to the ones defined

over Q, but over the étale cover [ gZ;d’c.

Definition 2.23 (Modular forms over F,). The space of modular forms over F, is

defined as the section of the moduli space ]gzzd’c

Mz, = H(Ig7%,0).

Hp

One should note that the line bundle w actually trivializes in the ordinary part of
the compactified modular curve, which explains why we do consider the sections with
respect to the generic sheaf O.

As we mentioned before, the general sections of the compactified modular curve My,
are not the mod p modular forms that we desire; however, there exists a relation between
these spaces and the space My, we have just defined.

Lemma 2.24. Evaluation along the (o, ')*(dt/t) induces a (Z/pZ)* XGLQ(A;p))-equivariant

1somorphism of rings
(@ Mk,IFp> /(Ha — 1) = MIE‘p

k>0
where (Z/pZ)* acts on the space Mg, by the character z — z*.

One should note that this isomorphism is telling us that the modular forms in Mg, are
the classes of modular forms in M}z, which are equal on the supersingular locus of X.
In order to define the modular forms over Q,, we will consider a formal limit of Igusa-
moduli problems.

Definition 2.25 (Katz-Igusa mouli problem). Given a closed subgroup K? C GLQ(A;p)),
we define the moduli problem

1 g%g’(@m : Nilg, — Set
R {(E,¢p, K"}/ ~
where the triplets satisfy
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(1) E/R is an elliptic curve

(1i) KP C ]som((Ascp))Z,TA(p)(E)) a KP-torsor

(iii) @y : G = E an isomorphism

(iv) The relation ~ is given by prime-to-p quasi-isogenies that preserve the level KP and
isomorphisms .
As we mentioned before, this should be regarded as a limit of moduli problems in the

following section, where arrows are given by forgetful functors

ord,c ord,c ord,c

ord ord,c . s
X%p <—1ng“ (—]gK,,H2<—~--<—h£nIng#pn ]ngGm

As before, we will drop the notation when K? is trivial. The space of p-adic modular
forms is also defined as sections of the space I g‘”ﬂdC

Definition 2.26 (p-adic modular forms). The space of p-adic modular forms is defined
as unitary Z) x GLy(A (p)) representation on the Q,-Banach space

Vo, = Vz,[1/p] where Vz, = HO(Ig%"*, 0).

One can check that if we consider a general sufficiently small closed subgroup KP?, the
space of sections associated to such a group is equal to the invariant space of Vz,

ord,c
Vgpp = HO(Ing’Gm, 0).

Using the trivialization of w in / gm"d by (@, ')*(dt/t), allows us to evaluate modular
forms to elements in Vg, and get the followmg result.

Lemma 2.27. The evaluation on (¢, ")*(dt/t) induces a Z x GLy(A )) equivariant

imjection
P MGL2 B s Vg, .
k>0

If we rewrite Vg, = V7 /(p), by comparison of moduli problems, we can show that the

invariants V :p Z” represents the sections of the space [ g‘”d ¢. Using all the previous

lemmas, we get the following diagram that summarizes all the maps we have mentioned

7 CL2(0) .
Do Mg, " < Diso H°(%z,,w") > Do Mir,
i \ 2 1+pr
VQP A VZP 7 VFP < V]Fp
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Given a sufficiently small compact open group K? and a collection of cusps ¢, ..., ¢,,, with
one cusp in each connected component of Xqr,z,)k»,0,, We can consider the following
map defined by the g-expansion map

m

GL Z
Mg ™ H ql][1/p].

One should point out that this approach to the definition of modular forms agrees with
a generalization of the definition of Serre, which defines the space of p-adic modular
forms as the completion of the span of the images for all k.

The construction we have exposed in this subchapter takes the modular curve as its
underlying moduli problem. The p-adic modular forms we are going to use in this
document will be defined by taking a Shimura curve as the associated moduli problem.
This construction, together with the theory of p-adic uniformization exposed in [BC91],
will justify the analytic definition of modular forms that we will give in chapter 4.

2.5 Modularity Theorem

In this subsection, we aim to study the correspondence between elliptic curves over Q of
conductor N and newforms of weight 2 associated to I'g(N). The following result proves
that for every newform, we can associate an elliptic curve with the same L-function.

Theorem 2.28 (Eichler-Shimura reciprocity). Given a normlaized eigenform f €
So(To(N)) such that a,(f) are integers, then there exists an elliptic curve E¢/Q such
that

L(f,s) = L(Ey,s).

Proof. We will follow the explicit Eichler-Shimura construction given in [DDT07]|. We
consider the correspondent subjective algebra homomorphism Ay : Tg — K associated
to f, where K is the field generated by the coefficients of the Fourier expansion of f.
We define the ideal I := ker(Af) N Tz and we consider the image I;Jr that this ideal
will produce in Jr through the induced action. Using this ideal, we can define the
following abelian variety over Q

Af = JF/IfJF.

Observe that Ay only depends on f and the endomorphism from Ty /If, which is iso-
morphic to an order in K;. We define V; as the subspace of V' = S5(I")¥ where the A;
acts through the map ;. Moreover, de denote 7; as the orthogonal projection of V' to
V¢ with respect to the Petersson scalar product.

We consider the set [f] of eigenforms whose Fourier coefficients are Galois conjugates
to the coefficients of f. We have that the number of cusps forms in [f] is equal to the
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degree Ky : Q]. We define
Vin =PV, and = .
9€lf]

Note that the map 7y is the orthogonal projection of V' to Vjs. From Lemma 1.46.
in [DDTO7, p. 45|, we have that the abelian variety Ay is isomorphic over C to the
complex torus Vi /7s(A) where the map

i VIA = Vig /7 (A)

is the natural projection form Jpr to A;. In concrete, we have that A, is an abelian
variety of dimension d = [K; : Q], however, since we are assuming that the coefficients
of f are integers, we have d = q i.e. Ay is an elliptic curve.

We have left to prove that this elliptic curve and the modular form have the same
associated L-function. We shall point out that the conductor of the abelian variety Ay
is N, for more details, please read [DDTO07, p. 47|.

Therefore, we consider the setting of primes that have good reduction on A;. One
should observe that since Jr has good reduction at primes not dividing N, we have
that Ay also has good reduction at such primes. Given a prime of good reduction p, we
define Ny, as the number of points on A; over the finite field IF,. We define the Tate
module 7;(Ay) of the abelian variety A

Ti(Ag) = lim(Ap)["],

where the inverse limit is taken over the multiplication of ¢ maps. From Weil’s theory
[Weid8], we have that the element Ny, is given by the equation

Ny, = det(1 — F),

where F is the Frobenius endomorphism associated to the ¢-adic Tate module T;(Ay).
From Theorem 1.41. [DDTO7, p. 42|, we have

det(1 — F') = Normg, o(Af(1 — ap(f) + (p) p))-

If we use both of the last equations, we get the following expression for Ny,

Nyp = Normg o(Af(1 = ap(f) + (p) p))-

In concrete, if we define the local Hasse-Weil L-function of Ay over F, as

L(A;/F,,s) = det(1 — Fp~%)~".
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Using this definition and the results relation the numbers Ny,, we have that the L-
function of A/F, satisfies

L(A;/F,,s) HL

where the product is taken over all the embeddings o : Ky — C. Since f has integer
Fourier coefficients and is a modular form over I'y(N), we have the following relation

#EF,) =p+1—ap(f).

This last equation immediately implies that the following L-functions associated to the
elliptic curve Ay and f will be equal

L(Ayf,s) = L(f,s).
]

We shall point out that the elliptic curve Ay defined in the proof is normally called a
strong modular elliptic curve associated to the cusp form f and, from now onwards, it
will be denoted as E.

The immediate question that comes to mind after seeing this last result is if there exists
a correspondence in the other direction i.e. if given an elliptic curve E/Q, there exists a
newform such that their L-functions are the same. The modularity theorem essentially
gives this result.

Theorem 2.29 (Modularity Theorem). Given an elliptic curve E/Q of conductor N,
there exist f € So(I'o(N)) such that

L(E,s) = L(f,s),
and the elliptic curve E is isomorphic to the strong modular elliptic curve Ey.

As a historical remark, this result was first proven by Wiles for semistable elliptic curves
in [Wil95] and [TW95|, giving de facto a proof of Fermat’s last theorem. This result
was generalized for elliptic curves that are semistable under reduction by 3 and 5 by
Conrad, Diamond, and Taylor, in [Dia96] and [CDT99|. Finally, the general result was
given by Breuil, Conrad, and Diamond in [Bre+01].

A useful result of the modularity theorem proves that the elliptic curves of conductor
N can be parametrized over the complex numbers C by the modular curve X, (N).

Corollary 2.30. Given an elliptic curve E/Q of conductor N, there exists a complex
parametrization of curves
d: Xo(N)— E.
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Proof. We define as f € S3(I'g(IV)) the newform associated to E, given by the modu-
larity theorem. The modular curve Xy(N) can be embedded in its Jacobian Jy(N) by
sending each point to (P) — (ico). If we compose this map with the natural projection
Jo(N) — Ey given by the Eichler-Shimura construction, we get the following modular
parametrization

(I)f : XO(N) — Ef.

Joining this map with an isogeny £y — E, we get the desire complex parametrization

O : Xo(N)(C) 2 By(C) — B(C).

]

This correspondence can be generalized to Shimura curves. Let E/Q be an elliptic
curve of conductor N = N*N~ with (NT, N7) =1 and N~ a square-free integer with
an odd number of prime divisors. Given an eigenform f € Sy(I'y+ y-) having integer
a,(f), we can associate an elliptic curve, similarly to the modular curve case

Theorem 2.31 (Eichler-Shimura construction). Given a new form f € So(I'y+ n-),
there exists an elliptic By over Q such that

L(f,s) = L(Ey,s).

Proof. Let T be the algebra generated by the Hecke operators T,, with (n, N) = 1.
These operators can be seen as algebraic correspondences of the Shimura curve Xy+ n-
and, therefore, give us the endomorphisms of the Jacobian Jy+ n- of the Shimura curve.
The eigenform f defines the following homomorphism

IbeT—)Z

that sends T, to a,(f). We denote as I the kernel of the function ¢;. The multiplicity
result (expand) allows us to define the following elliptic curve over Q

Ef = JN+,N—/]f-

Proving an analogous result of the Eichler-Shimura congruence for the correspondence
T, on X3, y- gives us the desired equation of L-functions (expand)

L(Es,s)=L(E,s).
[l

We aim to give a similar result to the one proportionate by the Modularity theorem,
in order to do so, we will announce the following correspondence between newforms in
['o(N) and newforms in I'y+ y- given by the Jacquet-Langlands correspondence.
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Theorem 2.32 (Jacquet-Langlands Correspondance). Given a newform f € So(I'o(N)),
there exists a newform g € So(I'n+ y-) such that

L(f,5) = L(g,s)-

Observe that this result, together with the modularity theorem, gives us the inverse cor-
respondence between modular elliptic curves and newforms in Sy(I' v+ y-), generalizing
this correspondence for Shimura varieties. Similarly to the modular case, a complex
parametrization can be proven for this setting

Corollary 2.33. Given an elliptic curve E/Q of conductor N = NTN~ (satisfying the
hypothesis described before), there exists a complex parametrization of curves

®: Div)(Xy+ n-) = E.

Proof. This corollary is proven following the same method as the one of Corollary
2.30. ]

3 Archimedean construction of Heegner points

After studying the modularity theorem for both modular curves and Shimura curves,
we are in a position to define CM points for these two settings and their fundamental
properties.

3.1 CM points

Let E/Q be an elliptic curve of conductor N. The modularity theorem assures us of
the existence of a complex parametrization

®: Xo(N) > E.

Let K/Q be a quadratic imaginary field and O an order. We use the moduli interpre-
tation of the modular curve to define the CM points associated to the order O

CM(O) = {(E, E') € Xo(N)(C) | End(E) = End(E') = O} .

One should observe that the points that we have just describe are pairs of elliptic curves
which have Complex Multiplication with respect to the same quadratic imaginary order,
hence, the name given for these points. A priori, it seems to be difficult to find points on
the modular curve such that their image through ® has algebraic coordinates. However,
the following theorem gives a nice result regarding the image of CM points.

Theorem 3.1. Let O be a quadratic imaginary order of K and H/K the ring class
field associated to O. For all P € CM(O), we have ®(P) € E(H).
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Proof. This statement is essentially proven by showing that elliptic curves defined over
C with complex multiplication with respect to O are extensions of elliptic curves defined
over H. Then one uses the fact that the map ® is an algebraic map of curves defined
over Q to conclude the proof. O

The group Pic(O) induces an action in CM(Q) by multiplying the associated lattices of
the two elliptic curves of a given point by a representative of the fractional ideal class
chosen. Let H be the ring class field associated to O, we denote as

rec : Pic(O) — Gal(H/K)

the Artin reciprocity law (it is an isomorphism). This induced action gives us the
following property of CM points.

Theorem 3.2 (Shimura reciprocity law). Let P € CM(O) and a € Pic(O), we have
the following equation

®(aP) = rec(a) '®(P).

Proof. The proof follows from the constructions of canonical models given by Shimura
in [Shi63]. O

The joint results of the last two theorems are commonly referred to as the theorem of
complex multiplication. One can also explicitly a characterization of CM points with
respect to an order O by imposing some conditions on the behavior of the primes that
divide N with respect to the extension K.

Theorem 3.3 (Heegner Hypothesis). Let O be an order of a quadratic imaginary field
K of conductor prime to N. The set of CM points associated to O if and only if the
ideal NO can decompose as a product NN of cyclic ideals of norm N.

Proof. If CM(O) # @, then the order can be realized as a subring of My(V). Then we
can define a ring homomorphism O — Z/NZ. We define the ideal

N :=ker(O — Z/NZ).

Since the discriminant is coprime to the conductor, we have that NO = NN and the
ideal NV has norm N. This proves the first implication.

If the decomposition hypothesis of NO is satisfied, we can define the following map
using the moduli interpretation of Y5(N) C Xo(NV)

d : Pic(O) — Xo(N)(C)
ar (C/a,C/Nta)
It is easy to check that such map is well defined and that the points in Im(6) are CM

points. This immediately shows that CM(O) # @ because Pic(O) # &, which proves
the other implication. O
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The reader might have found such a hypothesis in the literature described as the im-
position that all the primes dividing /N are split in K. It is simple to prove that this
hypothesis is equivalent to the one we described here.

One should also point out that the different § functions for all possible orientations of
the order O will give us all the possible CM points associated to this order i.e.

CM(0) = U on(Pic(0)).
N orientation of O

As we have seen before Xo(N)(C) is normally identified with the Riemann surface
H*/To(N). This identification allows us to give another equivalent definition of CM
points. For any given point 7 € H/I'g(N) (similarly to the moduli case, we do not
consider the compactification part), we define the order associated to 7 as

0. =ty e 1 =r1u{ (g o)}
With this last concept, the definition of CM points is reduced to the following set
CM(O) = {r e H/To(N) | O, = 0O}.
The equivalence is fairly easy to prove using the isomorphism Xy(N)(C) = H*/To(N)

specified before; the details will be left to the reader.

3.2 Heegner Systems

We are also interested in considering Heegner points as a system attached to an elliptic
curve E over Q and a quadratic imaginary field K. We consider an elliptic curve
E/Q with conductor N and we assume it satisfies the Heegner Hypothesis for a given
quadratic imaginary field K. We will follow the third chapter of [Dar(04].

Given an integer n prime to N, we denote as O, the order of K of conductor n.
Furthermore, we consider the associated ring class field H,, associated to this order.

Definition 3.4 (Heegner point of conductor n). A point P € E(H,) is a Heegner point
of conductor n if there exists a CM point P € CM(O,,) such that

o(P) = P,
We will denote the collection of Heegner points of conductor n as HP(n) C E(H,,).

Given an integer n, the Heegner points associated to this conductor satisfy the following
norm-compatibilities.
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Proposition 3.5. Given a prime { prime to N, for all the points P,, € HP(nl) then
there exists a points P, € HP(n) and, when { divides n, the point P,,, € HP(N/()
such that

aP, if £4n is inert in K|
ag—ox—oy )P, if £ =A\{nis split in K,
Trp,, i, (Pae) = (a0 =03 = 037) . 5 * b
(ag — o)) P, if £ = A\? is ramified in K,
aan — Pn/g if ¢ | n.
Proof. The proof can be found in [Dar04, p. 35]. O

We will say that a map 7 € Gal(H/Q) is a reflection with respect to K if its restriction
to the field K is not the identity map. One should observe that all the reflections are
of order 2 and that two reflection will always be related by multiplication of an element
in Gal(H/K). The following proposition will describe the behavior of the points in
HP(n) under the action of reflections.

Proposition 3.6. Given a reflection T € Gal(H/Q) there exists a 0 € Gal(H/K) such
that
TP, = —sign(F,Q)oP, (mod E(H )ios)-

Proof. The proof can be found in [Gro84]. O

After describing the behaviour of Heegner points of conductor n with respect to the
trace and reflections, we are on a position to give the definition of Heegner Systems.

Definition 3.7 (Heegner System). Given an elliptic curve E and a quadratic imaginary
field K/Q, we define Heegner systems as a collection

(Pane [ HP(n),

(n,N)=1
which will satisfy the norm compatibilities and the reflection behaviour described before.

Given a Heegner System, we will say that it is non-trivial if one of the associated points
P, is non-torsion. The following theorem assures us of the existence of one non-trivial
Heegner system for the setting we are interested in, within the scope of this document.

Theorem 3.8. If the field K satisfies the Heegner Hypothesis with respect to the elliptic
curve E, then there exists a non-trivial Heegner System attached to E and K.

Before proving this theorem, we shall state a proof a lemma about the torsion group of
E over the ring class field H.

Lemma 3.9. The torsion subgroup E(H,) is finite.
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Proof. All the primes inert at K are either completely split or ramified in all the ring
class fields. This implies that given a prime p, the residue field of H,, at such a prime is
the field F,. We have that the prime-to-p torsion in E(H) inject to E(F,2), therefore
the full p torsion points inject to the group FE (FP%) eFE (Fpg), where p; and py are primes
inert in K. O

After proving this lemma, we are ready to give the proof of the theorem, following the
proof given by Darmon.

Proof of Theorem 3.13. Let CM(n) be the collection of CM points associated to the
order of conductor n. The Heegner condition assure us that the image through the
modular parametrization of such a set is dense in H. This fact implies that the image
in £(C) is infinite. The statement of the lemma rules out the possibility that all the
points in this image are torsion. 0

This last theorem will give us a proof for a concrete case of the following conjecture,
which expects to have non-trivial Heegner systems associated to elliptic curves with
associated sign —1.

Conjecture 3.10. Let E be an elliptic curve E defined over a number field F' and let
K be a quadratic extension of F'. We define the sign attached to the elliptic curve E
over K as the sign of the functional equation of the completed L-function associated to
E. If the sign is -1, then there is a non-trivial Heegner system attached to (E, K).

This conjecture is still remains unproven; however, as we have mentioned before, if we
assume that K is a quadratic imaginary field satisfying the Heegner hypothesis, one
can construct a non-trivial Heegner system using the modularity Theorem, given, de
facto proof for these cases.

3.3 Periods and Heegner points

After defining CM points in this purely algebraic way, it is interesting to prove the rela-
tion between this classical definition and some period integrals. To fulfill this approach,
we shall start defining optimal oriented embeddings

Definition 3.11 (Optimal oriented embeddings). Given an order O C K, we say that
an embedding VU : K — M (Q) is optimal oriented if it satisfies the following conditions

(Optimal) The embedding is called optimal if it satisfies W(K) N My(N) = ¥(O).

(Oriented) We consider an orientation of the Fichler order i.e. a subjective morphism
My(N) — Z/NZ. The embedding is said to be oriented (relative to an orientation N
of Mo(N)) if the following diagram commutes
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O —2— My(N)

| !

O/N —=— Z/NZ

If we consider the action generated by the embedding at K, there exists a unique fized

point Tg € K such that
T\ Ty
‘I’W(l) _/\<1>.

We say that the embedding is oriented at infinity if ¢ belongs to H under a fized
embedding K — C

Using this last property, we can define an invertible fractional ideal associated to an
optimal oriented embedding ¥ as ay := Z + 7yZ, where 7y is the fixed point of .
From now onwards, we will fix an order O C K satisfying the Heegner Hypothesis i.e.
there exists a principal ideal N such that NO = AMN. This assumption allows us to
prove the following bijection.

Lemma 3.12. There exists a bijection between Pic(O) and End(O, My(N)) induced by
the assignment ¥ — ay.

Proof. Given a € Pic(Q), the class a has a representative of the form (7, 1) with 7, € H
such that
N7 (7a, 1) = (7, 1/N). (3.3.1)

The element 7, is determined by the class a up to the action of I'y(N). We define the
optimal embedding ¥, : K < M,(Q) associated to a by imposing

wi(r) = (M7 TN,

The class of the embedding ¥, in Emb(O, My(N)) depends only on the choice of the
class a and not on the representative of such class. If we fix the orientation map

My(N) = Z/NZ.

abH_
c d a

where = denotes the natural projection map Z — Z/NZ. The condition 3.3.1 implies
that the diagram

O —2 5 My(N)

| !

O/N —=— Z/NZ.
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is commutative and, consequently, the embedding W, is oriented. Furthermore, the
fixed point of the embedding ¥, is 7, which, as we imposed before, is in H. This shows
that W, is an optimal oriented embedding.

We shall check that the assignment a +— ¥, induces a map which is the inverse of the
map V¥ +— ay. The following composition

(¥ = ay) o (a— W¥,) = idgna(o,Mo(N))

is clearly the identity map. On the other hand, since, given a € Pic(O), the point 7, is
the fixed point of ¥,, we have

(a—=¥y) o (V= ag) = idpico)-
]

The bijection given by the lemma enables us with an action induced by left multiplica-
tion in Pic(O) in End(O, My(N)) which will be denoted as W* for ¥ an optimal oriented
embedding and a a class of Pic(O).

We fix a Néron differential wgp on E, and we denote A the lattice generated by the
periods of such differential. We denote as

n:C/A = E(C)

the Weierstralt uniformization associated to the lattice A. Let f be the normalized
weight 2 cusp form associated to E given by the Modularity Theorem. From Chapter
VL5 of [Sil09], we have the following result.

Proposition 3.13. Up to a non-zero rational constant, defined as the Mannin constant,
which is expected to be £1, we have that (P o j)*wg is equal to 2mif(t)dt.

Furthermore, in that same paper, the following result is obtained

o(0((7.1) = [ (@o ).

Given an optimal oriented embedding ¥ € Emb(O, My(N)) we define the following
period using the function f

Jy = /T\p 2mif(t)dt.

;00
The following theorem relates these periods to the CM points associated to the different
elements of Pic(O) represented by a concrete orientation.

Theorem 3.14. For all optimal oriented embedding ¥V € Emb(O, My(N)) and a €
Pic(O), the following equation will be satisfied

1(Jge) = rec(a)”'n(Jy).
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Proof. Fixing the orientation N, we can also fix the map 0 : Pic(O) — Xo(N) described
before, which will induces the equation

0(0((7.1) = [ (@o ).

proven before. This equation shows that the points 7(Jy) and n(Jg«) are images of
CM points in Xo(N) identified by the map §. Therefore, the theorem is an immediate
result of the Shimura reciprocity law (Theorem 3.2). O

3.4 Heegner points over Shimura curves

Until this moment, we have assumed that the primes dividing the conductor of the
elliptic curve behaved in the most convenient manner; however, this is rarely the case.
As we have done before, we consider an elliptic curve with conductor N and a quadratic
imaginary field K/Q where all the primes dividing N are not ramified.

We define the pair (N, N7) as the decomposition N = NTN~ where all the primes
dividing Nt are split in K (i.e. all the primes dividing N~ are split in K. We consider
the Shimura curve X+ y- associated to this pair, and we define CM points attached
to an order O C K over this curve using the moduli interpretation, as we did in the
modular curve case

CM(0) = {(A, A') € Xy+.x-(C) : End(A) = End(4') = O}.

Where the endomorphisms are taken on the sense of the category defined at the con-
struction of Shimura curves given in the section of preliminary notions. Similarly to
the case first presented in this subsection, we do have a characterization of the CM over
Shimura curves

Proposition 3.15. The collection of CM points in Xy+ n- with respect an order O C
K is non-empty if and only if all the primes dividing N* are split in K and all the
primes dividing N~ are split in K.

Proof. The proof is essentially a generalization of the one given in the modular curve
one, using the lattice form of abelian surfaces over C. m

Observe that this Characterization assure us that if we fix a quadratic imaginary field,
as we have done at the beginning of this section, there is a unique possible datum we
can choose in order to have a Shimura curve that has Heegner points.

Following the construction of the Shimura curve Xy+ y- we consider a quaternion
algebra B over Q of discriminant N~ and an Eichler order R of level N* in B. Since
the quaternion algebra is split at infinity, we can define an embedding ¢ : B — M5(Q)
and the congruence subgroup

= u(RY),
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where R are the units of norm 1 in R. As we have shown at the preliminary notions,
we can identify the complex points of the Shimura curve with a Riemann surface

Xn+n-(C)=H 1.

Observe that this surface is already compact and, therefore, we lose the notion of
cusps i.e. the cup forms we will consider will not have a Fourier expression in general.
Similarly to the modular curve case, we can give an equivalent definition using this
isomorphism by defining the order associated to an element 7 € H/T" as

O, ={y€ R : norm(y) =0 and ¢(y)r = 7} U {0}.

With these orders, one can show that CM points can be identified in the Riemann
surface as the collection

CM(O)={reH/p . 0,20}

We use the modularity theorem to identify a cusp form fp € Sy(To(V)) related to
the elliptic curve we have fixed at the beginning of this section. Furthermore, we use
the Jacquet-Langlands correspondence to fix a cusp form f € Sy(I") which satisfies the
following equation of L-functions

L(f,s) = L(fr,s) = L(E,s).

The essential difficulty we will face when we try to reproduce the period approach for
this setting is that we do not have cusps in Xt := H/T" i.e. we do not have the notion of
infinity. In consequence, we shall find an alternative definition of semi-defined integral
for this setting. One should note that the integral we have defined before of the function
f yields a rigid analytic uniformization of the elliptic curve by the Riemann surface Xr.
If we extend by linearity, we get a map Div’(Xr) — C, which descends to a map

PiCO (XF) — (C,

(12) — (1) — 2mif(t)dt,
(m2)—(71)

where Pic’(Xt) is the jacobian associated to Xp. We chose a correspondence § € T
which induces a map Div(Xt) — Div’(Xt). Using this map, we redefine the integral

we are considering
T2
/ 2mif(t)dt := / 2mif(t)dt.
1 0((2)—(71))

We can extend the definition of this integral defined over Div?(Xt) to the whole variety
Pic(Xr) as

(1) — /T 2mif(t)dt = /0( )27m'f(t)dt.
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One should see this integral as the extension of the semi-indefinite integral over the
Riemann surface Xr. In this sense, the integral satisfies the common semi-indefinite
relation of integrals

/ P orif(t)dt — ( / omi f(t)dt) ( / Yo f(t)dt) .

We will face a similar problem for the non-Archimedean CM points, which we will solve
with a similar approach. Given a quadratic imaginary field K/Q and an order O C K,
we introduce the notion of optimal oriented embeddings for this setting.

Definition 3.16 (Optimal oriented embedding). An embedding V : K — B is consid-
ered optimal oriented if it satisfies the following properties

(Optimal) The embedding is optimal with respect to R and O if V(0O) = V(K) N R,

(Oriented) Fizing orientation maps O,R — (Z/NTZ) x []; y- Fiz, we say that the
embedding is oriented if the following dz’agmm commutes

\ l

Z/N*Z) Hl\N* 2

The induced action of K though the embedding 1V has a unique fixed point ¢ € K. We
say that the embedding is oriented at infinity if this point belongs to the upper half-plane
under a fixed embedding K — C.

One can prove that such optimal oriented embeddings exist under the assumption of
the Heegner Hypothesis for the Shimura curve X+ n-.

Proposition 3.17. There exists an optimal oriented embedding ¥ : K — B with respect
to O and R if the Heegner Hypothesis is satisfied by K.

Proof. The proof follows from the theory shown in [Voi21]. O

Similarly to the last case, given an optimal oriented embedding ¥ we can define a period

using the function f as
Ty
Ju ::/ 2mif(t)dt

The reader should recall that in order to relate these periods with Heegner points we
shall fix a Néron differential (with its associated lattice A) and consider the associated
Weierstraft uniformization

n:C/n = E(C).
Let H be the ring class field associated to the order O. The following theorem gives us
the analogous result to the one we proved for modular curves
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Theorem 3.18. Given an optimal oriented embedding V¥, we have that n(Jy) € E(H).
Furthermore, given any element a € Pic(O) the following equation will be satisfied

n(Jue) = rec(a) 'n(Jy).

Proof. The proof follows from the main theorem of complex multiplication and realizing
that the values n(Jy) are the images of the CM points associated to each ¢ through
the map given by the modularity theorem. O]

3.5 Famous solutions given by Heegner points

To underpin the importance of Heegner’s points in modern Algebraic Number The-
ory, and our motivation to study them, we will describe three famous problems where
Heegner points have provided a partial solution.

Hilbert’s 12 problem

The Kronecker-Weber theorem gives us an explicit characterization of the maximal
abelian extension of Q
Q* = J Q).
neN
One might ask a similar question for a different based field K/Q. The characterization
in this case is given by narrow class fields

() ()

where K, are the narrow class fields of conductor n. However, finding explicit generators
of the narrow class fields is a difficult problem, which is normally referred to as explicit
class field theory.

The construction of algebraic generators has only worked out for quadratic imaginary
fields K using the theory of complex multiplication and Heegner points. One can
identify a concrete Heegner point by a quadratic order O inside K and a class [a] €
Pic(O). Using this notation, we define the following

j(a) € Q*,

using the common map j : Xo(1) — P!(C). We shall start proving that these integers
are indeed algebraic integers.

Proposition 3.19. Given a class a € Pic(O), one has that j(a) is an algebraic number.
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Proof. Given a a € Pic(O), we fix j = j(a) and E an elliptic curve representing the
isomorphism class associated to a (through the natural map Pic(9O) — X,(1)). This
elliptic curve is isomorphic over C to a curve with the following equation

36 1

17t T 1S

This last elliptic curve is defined over Q(j). If j is transcendental, the field Q(j) has
a subfield which admits infinitely many different homomorphism to C. This, when
considering the different images of Pic(O) implies that there are infinitely many non-
isomorphic elliptic curves with complex multiplication O. However, this contradicts the
finitness of Pic(O). O

y2+xy:x3+

The characterization of the field generated by the numbers associated to a given order
O, gives us a solution for Hilbert’s 12th problem for quadratic imaginary extension.
One has that the action induced by Pic(O) on the modular curve Xy(1) commutes with
the action of G = Gal(K/K). If we fix an elliptic curve E of Complex Multiplication
O, one has the existence of the following homomorphism

n: Gk — Pic(O) such that E° = n(o) * E for all 0 € G.

Observe that the definition of this map does not depend on the base elliptic curve
because of the commutativity of the Pic(O). Using this map, we have that the different
j(a) for a € Pic(O) will generate the field H := K™ The following theorem gives a
partial solution to Hilbert’s 12th problem.

Theorem 3.20 (Hilbert 12 problem for quadratic imaginary extensions). The integers
j(a) associated to CM points generate the ring class fields of the same conductor.

Proof. In order to prove this theorem, we will prove that H = Hp, where Hp is the
ring class field associated to 0. We fix an elliptic curve F associated to an element
a € Pic(O) and we define the set of primes 3 of O satisfying the following conditions

p is unramified in H/K,
The curve F has good reduction at all the primes above p,

The norm of the prime p does not divide the element j(a) — j(b) for all a, b € Pic(O)
such that a # b,

The norm of p is a rational prime.

The set of primes X has Dirichlet density one. Using the Cebotarev density theorem,
we have that the corresponding Frobenius elements will generate the group Gal(H/K).
Given a prime p € X, we denote as o, the Frobenius element associated to such prime.
We fix a prime p over p and we denote as E the reduction of the elliptic curve E at p.
We point out the next two following observations, which are proven in detail in Exercise
7 of [Dar04, p. 42].
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There is a unique inseparable isogeny of degree p (up to automorphism) from E given
by the Fromenious morphism B
Frob:E — E"

where E” is the elliptic curve obtained from applying the common Frobenius map to
the coefficients of F and the map Frob sends the points (z,y) to (P, y?).

The elliptic curve E/E[p] is defined over H and the natural projection
E — E/Elp]

is a purely iseparable morphism modulo p.

One deduces from this two facts that F/E[p] is congruent to o,(F) = E” module p.
Since all the elliptic curve representing the different element of Pic(O) are different
modulo p, we have that 1(o,,) = [p]. This property will be satisfied by a set of primes of
K of density one; consequently, this will be satisfied for all primes which are unramified
in H. This immediately proves that H = Hp. O]

Observe that this result gives us a solution to Hilbert’s 12th problem for quadratic
imaginary fields. This is the only partial solution known for the time being, however,
the Stark conjecture [Sta80| and the Charollois-Darmon conjecture [CDO08| are predicted
to give solutions for other extensions.

Birch and Swinnerton-Dyer Conjecture

The most famous problem, where advances have been made using Heegner points, is
the Birch and Swinnerton-Dyer (BSD) Conjecture. Given an elliptic curve F/C, from
the Mordell-Weil Theorem, we have that there exists » € N and a finite group G such
that

EQ=Gx17Z".

We define the rank of the elliptic curve E as the exponent r of this last equation. Fur-
thermore, we can define the analytic rank of the elliptic curve considering the associated
L-function attached to F

rank,(E) = ord,— L(E, s).

The BSD conjecture proposes a relation between those two definitions of ranks attached
to elliptic curves and, in its more strong statement, proposes an equation for the first
coefficient of the Taylor expansion of the L-function attached to E. We will give the
statement presented by Darmon in [Dar04].

Conjecture 3.21 (Birch and Swinnerton-Dyer). Given an elliptic curve E/Q, the
following statements conjecture a relation between the analytic and algebraic ranks of
E in order of increasing strength
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L(E,s) # 0 if and only if #E(Q) < oc.

The analytic and algebraic ranks associated to E are equal
rank(FE) = rank,(F).

Let Ry the regulator of the elliptic curve, c, the local terms defined in the elliptic curves
section and W(E/Q) the Shafarevich-Tate group. We have the following expression for
the first non-zero coefficient of the Taylor expansion of L(E,s) at s =1

L(E
hm% =w(B/QRs [[]e | e

s—1 (3 IS
p

The conjecture has not been generally proven but using Heegner points, the statement
can be proven for analytic ranks 0 and 1. Now we aim to give a sketch of such a proof
in these two cases.

We consider an elliptic curve E/Q of conductor N and a quadratic imaginary field K
satisfying the Heegner Hypothesis. We define as { P, },, the Heegner system in F arising
from the points in HP(n). We define the point

PK = TI'H/K(P1) € E(K)

as the trace of a Heegner point P; of conductor one defined over the Hilbert class
field H of K. Furthermore, if we consider the ring class field H,, of conductor n and
X : Gal(H,,/K) — C* a primitive character of H,,, we define the general point

P, = > X(o)P]€E(H,)®C.
o€Gal(H, /K)

We shall give the statement of the most famous result relating the Heegner systems and
special values of L-functions associated to elliptic curves over the field K and its twists
by characters of ring class fields of conductor n.

Theorem 3.22 (Gross-Zagier formula). Given a character x : Gal(H,/K) — C*,
there exists a relation between the values of the L-function of E and its first derivative
with inner products of the points described before

(Pk,Pg)=L'(E,1),
(Py Py Y =L(E,x,1).

We should point out that these equations are up to a non-zero fudge factor that can be
done explicitly; however, the explicit construction of such a factor plays no role in the
partial solution of the BSD conjecture that we aim to prove.
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One should remark that this theorem immediately proves that Pj; is non-zero if and
only if the function L'(FE, x, s) does not vanish at s = 1.

It is relatively easy to find lower bound on the rank of the Mordell-Weil group of an
elliptic curve E over a quadratic imaginary field K if we assume that there exists a
Heegner system attached to E, however, the following theorem also gives us an upper
bound on the size of the Mordell-Weil group F(K') and the Shafarevich-Tate group of
E over the field K.

Theorem 3.23 (Kolyvagin). Given an elliptic curve E over a number field K/Q and a
Heegner system { P, },, if the point Pk is non-torsion, then the following two statements
are true

The rank of the elliptic curve E is one and Py generates a finite-index subgroup of
E(K),

The Shafarevich-Tate group associated to the elliptic curve E is finite.

Proof. The proof of this theorem is built with the theory found in the tenth chapter of
[Dar04]. O

Using these two last theorems, we can give a proof of the BSD conjecture (for the three
statements given before) in the case where the analytic ranks are zero or one.

Theorem 3.24 (Gross-Zagier, Kolyvagin). If the elliptic curve E has analytic ranks
zero or one, then the Birch and Swinnerton-Dyer conjecture is satisfied.

Proof. We want to start proving the existence of a quadratic Dirichlet character x
satisfying the following properties

x(¢) =1 for all ¢|N,

L(E,x,1) #0.

We will prove this case in the two possible signs of the functional equation of the L
function L(F,s). If the sign is -1, the work of Waldspurger in [Wal85| assures us the
existence of such a character in this case.

On the other hand, if the sign attached to the elliptic curve F is 1, then using the results

from [BFH90] and [MMM91], we can guarantee the existence of a character satisfying
the properties and that

L'(E,x,1) #0.

After proving the existence of the Dirichlet character x satisfying the properties enu-
merated before, we consider the quadratic imaginary field K associated to the character
x. This field, by definition, will satisfy the following two properties

The field K satisfies the Heegner Hypothsis with respect to the elliptic curve E,
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The order of L(E/K,s) at s =1 is one and, consequently, L'(E/K, 1) # 0.

We consider the Heegner System { P, },, arising from the CM points on Xy(/N) attached
to the field K. The Gross-Zagier formula and the second property of K imply that this
Heegner System is non-trivial and Py is of non-torsion. Using the Kolyvagin Theorem,
we have the following two properties

The Modell-Weil group E(K) has rank one and the quotient E(K)/ (Pg) is finite,
The group II(E/K) is finite.

From Proposition 3.6, we can deduce that Px € E(Q) if and only if the sign of the
elliptic curve E is -1. From this last property, one can prove the statement of BSD2
i.e. the following equation is satisfied in our setting

ords—y L(E, s) = rank(E).
We can also deduce that III(F/Q) is finite since the map induced by restriction
HI(E/Q) — TI(E/K)

has a finite kernel. The finiteness of III(£/Q) immediately proves BSD3, the strongest
statement given as part of the Birch and Swinnerton-Dyer Conjecture. O

As we have mentioned before, this proof is valid for the three statements of the BSD
conjecture that we have given; in fact, it proves one of the implications of BSDI.
However, it should be pointed out that the other implication of BSD1 remains unproven
at the time of writing of this document.

After going through the sketch of this partial proof, a question might have arisen: does
there exist a similar relation between the size of the Morder-Weil group and the special
values of the L function L(E, x, s) for a given character x : Gal(K) — C*? The twisted
Birch and Swinnerton-Dyer conjecture tries to give a solution to this question.

Conjecture 3.25 (Twisted Birch and Swinnerton-Dyer). Let K/Q be a finite Galois
extension and x a character. Then there exists the following relation

ordsey L(E, x,s) = (x, E(K) ® C) .

One can easily generalize the partial solution of the classical BSD conjecture for when
the L function L(FE, x,s) has order one at s = 1. On the other hand, the method can
not be generalized for the case L(E,x,1) # 0. To prove the conjecture in this last
setting, one has to use the methods developed by Bertolini and Darmon in the paper

[BDO7].
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The partial solution to the BSD conjecture also immediately gives a partial solution to
another, less-known conjecture: The Watkins conjecture. Let £//Q be a modular elliptic
curve. From the modularity theorem, there exists a minimal complex parametrization

®: Xo(N) > E,

where the minimal notion is defined by taking the parametrization of a minimal degree.
This minimal degree is commonly defined as the modular degree, and we will denote it
as deg(P).

In 2002, Marc Watkins computed the modular degree of some elliptic curves and con-
jectured the following relation between the modular degree of those curves and their
algebraic rank [Wat02].

Conjecture 3.26 (Watkins'02). Let E/Q be an elliptic curve, r = rank(E) its algebraic
rank, and ® : Xo(N) — E the minimal complex parametrization given by the modularity
theorem. There exists the following relation between the analytic rank and the modular
degree of the elliptic curve

2"| deg(®).

In general, this conjecture has not been proven; however, it is relatively easy to give a
partial solution for analytics ranks 0 and 1.

Theorem 3.27. The Watkins conjecture is satisfied for r =0, 1.

Proof. We use the partial solution of the Birch and Swinnerton-Dyer Conjecture in the
two cases that we consider, we have r = rank,(F). For the case when r = 0, the
statement becomes trivial thanks to this last relation.

For r = 1, since rank,(F) = 1, we can deduce that the sign associated to the L-function
of E will be -1. We consider the following commutative diagram

Xi(N) —— E

o A

Xo(N)

Since the sign of the L-function is -1, we have that the deg(wy) = 2, which from the
commutative diagram, proves that 2|deg(¥). This result proves the conjecture for
analytic rank 1. O

Furthermore, an easy computation shows us that all the Elliptic Curves of analytic rank
bigger than 1 indexed in the LMFBD satisfy this conjecture.

The author will like to thank Professor Jan Vonk for proposing a small one-week project
to learn about this conjecture in his first year at Universiteit Leiden (Nederland).
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4 Non-Archimedean construction of Heegner points

In this section, we will generalize the period construction of Heegner points described
over the Modular curve to the setting of Shimura curves. Before moving to the concrete
generalization of the periods, we shall introduce the general structure we will use.
Let E/Q be an elliptic curve with conductor N = pN*N~, with all the factors prime
pairwise, p prime and N~ is squarefree and has an odd number of prime divisors.
From the work of Cerednik-Drinfeld and Jacquet-Langlands, there exists a complex
parametrization of curves

P : Div'(Xpn+ n-) = E
where X, y+ y- is the Shimura curve. Let B be the definite quaternion algebra over
Q of discriminant N~ and R the Eichler Z[1/p]-order of B of level N*. We fix an
embedding

L B — My(Q,).

We denote as Ry the collection of units that have norm 1 and we define the following
subgroup
[i=o(Ry) € SLa(Qy),

which will be essential for the rest of the section.

4.1 Algebraic definition of CM points

Given an elliptic curve E/Q of conductor N, as we have stated in the preliminary
notions there exists an analog of the modular theorem for Shimura curves i.e. there
exists a minimal modular parametrization of curves

D : XN+,N* — E(C),

where NTN~ is a decomposition of N with (N*,N7) = 1 and N~ square-free with
an odd number of divisors. Let O be an order in a quadratic imaginary field K/Q.
Similarly to the case over the modular curve, we can define CM points using the moduli
expression over the field C

CM(O) = {(A, A") € Xy+.x-(C) | End(A) = End(4') = O},

we shall point out that the endomorphisms we use in this definition are the ones of the
category of abelian surfaces together with embeddings Op — Endc(A), defined in the
preliminary notions.

If we restrict to orders with conductor coprime to N, we can give sufficient conditions
for the existance of heegner points associated to this order.

Proposition 4.1 (Heegner Hypothesis). Given an order O C K of conductor prime
to N. The collection of CM points is non-empty if and only if the following conditions
are satisfied
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(1) All the primes dividing N~ are inert in K,
(i1) All primes dividing NT are split in K.

Proof. 1f we assume that the set of CM points is non-empty for a given order O, we
can view K as a subfield of B, this immediately proves that all the primes dividing N~
are inert in K. Furthermore, we can view O as a subring of R, which gives us a chain
of homomorphisms

0= (Z/N+z) x [[Fi =2 /N+z

(N~

where the second map is the natural projection. Since we have also assumed that the
conductor of O is prime to N, this last map shows us that all the primes dividing N
are split in K.
On the other hand, if we assume the Hypothesis given before, we can define an analogous
map to the one defined in the Heegner Hypothesis over the Modular curve

0: PIC(O) — XN+,N* (C)

This immediately proves that the set of CM points in this case is non-empty because
Pic(O) # @. O

As it was shown in the preliminary notions, there exists an isomorphism of Riemann
surfaces

n: H/I‘NJr’N, 1) XN+7N7((C).

This helps us redefine CM points using modules. Given an element 7 € H / T+ n-

we define the associated order to 7 as
O, := {a € R such that norm(y) =1 and «(y)(7) =7} U{0}.

We can redefine the CM points associated to an order O C K as
CM(0O) := {T = ”H/FN+ . such that O, = 0} .

The theory of complex multiplication over Modular curves can be generalized to the
setting of Shimura curves. We can see this idea underpinned in the following theorem,
which is proven in a similar way to the case of Modular curves.

Theorem 4.2 (Complex Multiplication for Shimura curves). Given an order O C K
of conductor prime to N, we denote as H the ring class field associated to O. We have
the following inclusion

®(Div’(CM(0))) C E(H).
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4.2 Construction of p-adic upper half-plane

In this section, we are going to construct Drinfeld’s p-adic upper half-plane using the
Bruhat-Tits tree of PGL2(Q,). The upper p-adic upper half plane is a rigid analytic
variety over the field Q, (can be generalized to any p-adic field K but this process
goes out of the scope of this document). We will follow the construction given in
[DTO07]. Before explicating this construction, we shall introduce the Bruhat-Tits tree
of PGL2(Q,).

Definition 4.3 (Bruhat-Tits tree). Given a prime p, we define the equivalence relation
between two lattices L and L' of rank 2 over QIZ, by multiplication of elements of Q,
i.e. they are related if there exists an o € Q, such that L = oL'. The Bruhat-Tits tree
15 a graph whose vertices are the equivalence classes of lattices and the oriented edges
are defined if the associated lattices of the vertices satisfy that their associated finite
quotient L/L' has order p.

From now onwards, given a prime p, we will denote the Bruhat-Tits tree for the prime
p as T,. The following result gives us a clear picture of the structure of these trees.

Proposition 4.4. Given a prime p, the Bruhat-Tits tree T, is an homogeneous tree of
degree p + 1

Proof. We shall start proving that given a vertex v, with associated lattice L, there are
only p+ 1 adjacent vertices. Any other lattice L’ satisfying the adjacent condition with
respect to L will be in bijection with a subgroup of L/pL. Since there are only p + 1
subgroups in this quotient, we have proven that v has only p 4+ 1 adjacent vertices.
We have left to prove that there are no closed loops in the graph 7,. We assume there
exists a loop represented by the lattices

prL—>Ld—>"'—>L1—>L,

where r and d are integers. For every ¢ € {1,...,d}, we have that L; 1/L;; is not
cyclic and consequently, we have L;.; = pL; 1. This fact, since there are no loops of 2
vertices, contradicts the minimality of the loop; therefore, 7, has no loops. n

We will denote the set of vertices of the tree 7, as V(7,). This set corresponds bijectively
to the set of homothety classes of Zj-latices of rank 21 Q2. The vertices v,v" € V(7,) are
adjacent if and only if their correspondence lattices L and L', respectively, satisfy that
the finite quotient L/L’ has order p. We fix our base vertex v° as the one corresponding
to the standard lattice Z%. The group PGL2(Q,) induces a natural left-action on the
lattices that represent the elements 7,, which at the same time induces a left-action on
the vertices. Given a matrix ¢ € PGLy(Q,) the map g — gv° induces the following
isomorphism

PGL,(Q,)/ PGLsy(Z,) = V(T;).
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Given two adjacent vertices v,v" € V(7T,), we consider the oriented edge E = (v,v’).
We denote as £(7,) the collection of oriented edges. Moreover, we can define two maps

s(e) = v and t(e) =o' for e = (v,0'),

which identify the origin and the target vertices of each edge, respectively. Furthermore,
given an edge e = (v,?v’), we define the opposite edge as € = (v/,v). We fix the base
oriented edge e° as the edge which has s(e®) = v° and its stabilizer in PGL2(Q))
is the group I'¢(pZ,) of upper triangular matrices matrices in PGL2(Q,) modulo p.
Similarly the the vertices, given g € PGL2(Q,) the map g — ge® induces the following
isomorphism

PGL(Q,)/To(pZy) = E(T,)-
We consider the reduction map modulo the maximal ideal of the ring of integers of C,
red : P'(C,) — P'(F,).

The aim now is to relate the p-adic upper half-plane, which is a rigid analytic variety
over Q, where GLy(Q,) induces an action, with the Bruhat-Tits tree that we have just
defined. In concrete, we are interested in the C,-values of such a variety, which are

Hy = P! (CP)\]P)I (Qp).
We define the following subset associated to the base vertex v° of 7T,
Ayo :={z € P}(C,) | red ¢ P'(F,)}.

Given any vertex v € V(7,) there exists g € PGL2(Q,) such that v = gv°. Using this
matrix we extend the definition of this last set to the arbitrary vertex v as A, := gA..
These sets are called connected affinoid domains in #H, and are subsets of the projective
space P*(C,) where we excise p+1 disjoint open disks. Similarly, we define the following
set associated to the base edge e° of 7,

Wieo := {2 € PY(C)) | 1 < |2|, < p} C H,.

Given an edge e € £(7,), there also exists a matrix g € PGL2(Q,) such that e = ge®. As
we did for vertices, we extend the definition of the last set for any edge e as W[ = gW)eo[.
These sets are called oriented wide open annulus attached to the edge e, with orientation
corresponding to the disk

D, = {Z € Pl(cp) | |g_lz|p > p} C ]P)l((cp)-

Given an oriented edge e = (v,v") € &£(T,), we define the standard affinoid subset
attached to the edge e as the set

A[e] = A, U VVM UA,.
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These affinoids subsets allow us to give a covering of the p-adic upper half plane H,
where their intersections are reflected in the incidence relations of the tree 7,. Taking
this act under consideration, we can define the reduction map

M, — V(T,) UE(T,), (4.2.1)

that sends z € H, to v if 2 € A, and to e if 2 € W),|. The importance of this map is
underpinned by the fact that we can find open compact covers of the p-adic upper half
plane by considering the preimage of the edges, which have a fixed origin vertex. We
will identify such a process with an exemplification for the case p = 2.

4.3 Katz approach to p-adic modular forms

In this subsection, we will justify the definition of p-adic modular forms given two sec-
tions forward, more algebraically, using the Katz definition of modular forms following
the paper [How22|. In essence, one mimics the process we have established for modular
curves, but for Shimura curves. The singularity of this case is that we will not have
cusps (at least in the cases we are interested).

We start defining the Shimura curve for a given quaternion algebra D /Q of discriminant
N—.

Definition 4.5. Given a K C D(Ay), we define the following moduli problem
X]I\%N, : Q-Alg — Set
R {(A,K)}/ ~
satisfying

A is an abelian surface over R.
K C Isom((Af)*, T, (A)) a K-torsor.

The relation ~ 1is defined by isogenies that preserve the torsors.

We will denote as X%, ,_ the solution of this moduli problem, and we will drop K
when the group is trivial. One should note that the Shimura curve defined before is
a special case of this general definition, but it will not be the case K = {e}. Given a
prime p|N~, we define the level p Shimura curve.

Definition 4.6. Given a K? C D(Agcp)), we define the following moduli problem

%ﬁiw, : Z(p)-Alg — Set
R {(A,K")}/ ~

satisfying
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A is an abelian surface over R.

Kr C Isom((AScp))Q, T, (A)) a KP-torsor.
7

The relation ~ is defined up to prime-to-p quasi-isogenies which preserve the associated
torsor.

As before, we will denote the solution of this moduli problem with the same notation,
and we will drop K? from our notation when the group is trivial.

In the case of abelian surfaces, their p-divisible groups will be classified in more than 2
groups. Nevertheless, we still have a notion of ordinary group and therefore of ordinary
locus of our Shimura curve of level p (following a similar construction to the one of
modular curves). We denote the ordinary locus of the level p modular curve as %gi%‘i_
and the associates ordinary p-divisble group as X,.q = ;Lg X (Q,/Z,)?*. Once we have
defined this notion, we are in a position to generalize the Igusa moduli problem to this

setting.

Definition 4.7 (Igusa moduli problem). Given a K? C D(Agcp)), we define the Igusa
moduli problem as the functor

I gﬁi%‘f - Fp-Alg — Set
R {A K", ¢p}/ ~
satisfying
A is an abelian surface over R

K? C Lsom((A')?, T, 4y (A)) a KP-torsor.
f

(iii) ©p : pp X ft, = Alp] an isomorphism.

(iv) The relation ~ is defined by prime-to-p quasi-isogenies which preserve both the torsor

and the isomorphism.

Similarly to the modular curve case, this moduli problem is an étale (Z/pZ)*-cover of
%f,i ~—- At this point, one can define the I, modular forms as sections associated to
this moduli problem. The construction is quite similar to the exposition given at the
preliminary notions, so we will go directly to the p-adic modular forms, which is the
main aim of this chapter.

Definition 4.8 (Katz-Igusa moduli problem). Given K? C D(Agcp), we define the Katz-
Igusa moduli problem as the functor

Igh™or? . Nily, — Set

N+ ,N= Gm
R {(AKP,0p)}/ ~

satisfying
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(1) A is an abelian surface over R.

(11) KP C Isom((AScp))Q,TA@)(A)) a KP-torsor.
7

(i) @, G % G,y = A an isomorphism.

(iv) The relation ~ is defined by prime-to-p quasi-isogenies which preserve both the torsor
and the isomorphism.

One should, intuitively, view this last moduli problem as the limit, taken through the
powers of p, of the Igusa moduli problem defined previously. Let O denote the generic
sheaf

Definition 4.9 (p-adic modular forms on Shimura Curves). The ring of p-adic modular
forms over Shimura curves is defined as
L L 0 KP ord
Vo, := Vg, [1/p] where V5 = H (IgN+,N—,<Gm’ 0).

One can check that similar properties to the ones seen at the preliminary notions are
satisfied in this setting. However, in order to construct explicit expressions for CM
points defined over the C, points of a Shimura curve, we will need a more analytic
definition of modular forms. The following subchapter will show us that the C,-points

of Shimura curves are related to a rigid analytic space and that our definition of modular
forms can be translated to a purely analytic definition in such a space.

4.4 Cerendik-Drinfeld theory of p-adic uniformization

The definition we have given of CM points it is a purely algebraic definition since it
identifies points in the moduli interpretation of certain Shimura curves. In order to
give explicit expressions, we need to associate a certain rigid analytic space to the C,
points of our Shimura curve.

Let B be a quaternion algebra over Q of discriminant N~ split at p (observe we are
removing p from the original quaternion algebra) and R be an Eichler Z[1/p]-order of
level N* in B. Furthermore, we define the congruence subgroup ¢(R;‘) where Ry are
the element of R with norm one and ¢ is the embedding

L B — My(Q,).

The following theorem relates the C, points of a certain Shimura curve with the quotient
H,/T.

Theorem 4.10 (Cerednik, Drienfled). There exist an isomorphism of curves over C,
of the form
Xn+pn-(Cp) =H,/T.
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The prove of this theorem goes far beyond the scope of this thesis; however we are
interested in pointing out a detail of the theory of Cerednik and Drienfeld. They were
able to prove that the limit of Igusa towers we have shown before coincides with a
certain limit of the p-adic upper half-plane. Therefore, the algebraic definition of p-adic
cusp form we have given before has an analytical analogous definition using certain
limits on H,.

More broadly, the theory of p-adic uniformization gives us the ability to give an explicit
definition of CM points over C, using the isomorphism given before

XpN+ N- (Cp) = HP/F.

Similarly to the CM points over C, we can give an equivalent definition using modules.
Given an element 7 € H,/T", we define the module attached to 7 as

O, = {7 € R such that «(y)7 =7} U{0}.

After defining this type of module, we can check that the set of CM points is identified
under the map 7 as

CM(0O) = {7 € H,/T such that O, = O}.

4.5 p-adic cusp forms and p-adic integration

Once we have studied the construction of the p-adic upper half-plane and the Bruhat-
Tits tree, we are in a position to define rigid analytic functions, p-adic measures, and
line integrals associated to that measure.

Definition 4.11 (Rigid analytic function). A function f : H, — C, is said to be rigid
analytic if, for each edge e € E(T,), the restriction of f to the affinoid Ay is a uniform
limit of rational functions on P*(C,) having poles outside of Ap.

Recall the definition of the modular subgroup I' that we have given at the beginning of
this section using the quaternion algebra. We define the group of p-adic modular forms
of weight 2 as

So(T) := {f rigid analytic modular form of weight 2}.

Given an oriented edge e € £(7,) and a rigid analytic differential form f(z)dz which an
attached sequence of rational functions (f;) converging uniformly to f on Ay, we can
define the p-adic annular residue of f at e as

rese(f(z)dz) = lim Z resy(fi(z)dz).
I D,

The work of P. Schneider and J. Teitelbaum assures us that this concept is well-defined
and that the limit expressed on the right-hand side only depends on the edge e and the
function f.
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Definition 4.12 (Harmonic cocycle). A function k : E(T,) — C, is a harmonic cocycle
on T if it satisfies

(i) k(e) = —k(e) for all e € E(T,),
(i) D (e)=0 £(€) = 0 for all v € V(T,).

We aim to prove a bijection between the set So(I') and the collection of Harmonic
cocycles T'-invariant, which will be denoted as Har(I"). The following lemma assures us

that we can associate a harmonic cocycle to any rigid analytic modular form of weight
2.

Lemma 4.13. Let f : H, — C, be a rigid analytic modular form of weight 2. The
function

ki E(Ty) = Cp, e rese(f(2)dz),
is an harmonic cocycle I'-invariant i.e. k¢(ve) = rg(e) for ally € T.

Proof. The claim that ¢ is a harmonic cocycle is a direct consequence of the residue
theorem for rational differentials. The I' invariance is a direct result of the fact that,
for all v € T,

res,.(f(2)dz) = res.(f (v 'y)d(v'y)) = res.(f(2)dz).
[

Since the residue map is injective i.e. two functions that coincide in all the residues for
all the edges e € £(7,) they must be the same function. This lemma also proves that
the map induced Sy(I") — Har(I") is injectve.

In order to prove the surjection, we shall introduce the concept of p-adic measure and
the integrals that they produce.

Now we aim to associate a p-adic measure to the function f using the harmonic cocycle
attached to it. In order to do this, we shall introduce the line integral over P'(Q,).

Definition 4.14. A p-adic distribution on P(Q,) is a finitely additive function
p : {compact open U C P}(Q,)} — C,.
satisfying u(P1(Q,)) = 0.

If we consider a p-adic distribution p, a local function g in P*(Q,) and an open cover
{U1,...,U,} C PY(Q,) where g takes constant values in each open, we can define the
integral of g in PP'(Q,) with respect to the distribution y following the similar approach
as the common Riemann integral

gdp = > g(t;)u(U;).
/Pl<@p> ; B
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In order to extend this definition to a bigger collection of functions, we shall impose
stronger conditions on the distribution . A p-adic measure is a bounded distribution
of P1(Q,) i.e. a distribution p such that there exists a real constant C' > 0 such that

|1(U)], < C for any compact open U C P'(Q,).

Let 4 be a p-adic measure and ¢ a continuous function in P*(Q,). We define the p-adic
line integral as

/P I(Qp)g(t)d“(” = lim za: 9(te)(Us).

where the limit is taken over increasing fine covers {U,} of P*(Q,) by disjoint compact
open subsets and ¢, € U, is a sample point.

After recalling the definition of p-adic measures and line integrals, we are in a position
to assign a p-adic measure to the function f defined before. For any oriented edge
e € £(T,) we define the compact open U, := D, NPY(Q,) of P*(Q,). This will allow us
to associate a measure to each py using the following lemma.

Lemma 4.15. Given a Harmonic cocycle k, we can associate a p-adic measure i to
this cocycle.

Proof. We define the function p : {compact open U C PY(Q,)} — C, defined as
p(Ue) = k(e) for all e € £(7,), using the reduced map 4.2.1 associated to the Bruhat-
Tits tree 7,. The additive map follows from the properties of the reduced map we have
defined before.

Using the theory developed in the subsection 4.2, we have that we can generate an open
compact disjoint cover of P*(Q,) considering all the open sets U, for all the edges that
have the same initial vertex v. Using this fact, the additive property of the map p and
the second property of the cocycle, we have the following equation

pPH @) =p| U w@) | =D uwU)=> rle)=0

s(e)=v s(e)=v s(e)=v

With these two last properties, we have proven that u is a distribution. Since the map
r is I-invariant and 7,/I" is finite, we have that the defined map p is bounded and,
consequently, 1 is a measure. ]

This result implies that the cocycle k¢ gives rise to a p-adic measure y satisfying

/e dpy = ry(e).

Observe that k; induces that this measure is I-invariant. After fixing the measure
attached to the rigid analytic modular form f we want to explicitly develop the p-adic
line integral associated to this function.
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Proposition 4.16. The measure attached to the boundary distribution of the function
f gives us the following expression

=, () et

Proof. Since the residue map is injective, to prove the equation of this exercise, it is
enough to check that the function

o) = [ (2 ) austo)

is a weight two modular form in Xt that has the same residues as f.
First, one should notice that g is rigid analytic since, from the definition, the line
integral is defined as the limit of Riemann sums (which are rational functions) that
converge uniformly to g on any affinoid Ap.
Following the computations of Ta, given a v € I', we have

1 (cz+d)?

vz — T z—

When this result is translated to the definition of g, we get that

9(yz) = (cz + d)?g(2),

which proves that g is a weight 2 modular form with respect to I'.
Using the definition of the residue defined before, we have that for any e € £(7,), we
have

res.(9(2)d) = [ diag = ry(e).

This proves that g and f have the same residues; consequently, from the injectivity of
the map S»(I") — Har(I"), we have f = g as we wanted. O

Observe that this proposition immediately proves the surjection of the map stated
before between weight 2 modular forms and Harmonic Cocycles

Sy(I") — Har(I).
From the Jacquet-Langlands correspondence and p-adic uniformization, we have that

the modular form
fE — E an627r7,n’r
n>1

attached to E corresponds to a weight 2 rigid analytic modular form on #H, with respect
to the group I'. From the work of Cerendnik-Drinfeld and Jacquet-Langlands, we have
the following result.
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Theorem 4.17. There exists a weight 2 rigid analytic modular form f : H, — C, with
respect to the group I' satisfying

T.f = a,f for all n > 1 with (n, N) = 1.
where T,, is the n-th Hecke correspondence on Xr.

We denote as Har(I', R) the set of [-invariant cocycles with values in a ring R C C,. In
concrete, we have that Har(I', Q) generates a Q-structure in Har(I', C,) and both spaces
are equipped with an induced Hecke algebra Tr attached to the curve Xp. Moreover,
the subspace of Har(I', C,) where Tr acts via the character defined by the form f is
generated by an element in Har(I", Q).

Since 7,/I" is a finite graph, the elements in Har(I', Q,) are determined by its values on
a finite set of orbits representatives. This fact allows us to fix an f, up to a sign, by
normalizing the function so the set of values representing x; are in Z.

We fix a choice of p-adic logarithm

log,: C; — C,
and we define the Coleman p-adic line integral of the function f.

Definition 4.18 (Coleman p-adic integral). The Coleman p-adic integral of the rigid
analytic function f associated to the boundary measure of this same function is defined,

for T, € Hp, as
2 t—
/ f(z)dz = / log, <t 2> dpy(t).
1 P1(Qp) -n

Observe that this definition is justified by the formal calculation that the equation
proven in 4.16 raises

[ [T ()= [ o, (2 e

In order to define the periods that will be associated to the global points of the Shimura
curve, we are interested in the values inside the logarithm. Therefore, we are going to
define the multiplicative Coleman integral by formally exponentiating the expression in
the definition of the integral given before.

Definition 4.19 (Multiplicative Coleman integral). Given two elements 71,7 € H,,
we define the multiplicative Coleman integral of f as

froea=f (F=2) )
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where the integral on the right-hand side of the equation is defined as

(t)dps(t) := lim | ] g(ta)s )
][w(@m ! {Ua} H

the limit is taken over increasingly fine covers {U,} of PX(Q,) of disjoint open subsets
and t, € U, is an arbitrary collection of sample points.

Remark 4.20. One should observe that this definition would be independent of the
choice of p-adic logarithm that we did in the additive integral, since we have forced ky
to take integer values. If we were to use another measure, this definition would depend
on the choice of a p-adic exponential.

The multiplicative Coleman integral induces a rigid analytic uniformization of the el-
liptic curve E by the curve Xr. If we extend linearly the formula on the definition of
the multiplicative integral, we will obtain a map from the degree zero divisors of H, to
C,. The descend of this map to the Jacobian of Xp (denoted as Pic’(Xr)) and Cx/ar
deﬁned as
(r2) — (m) = 2)dz —7[ 1z
(72)—(71

If the reader compares this process with the one we have used in the Archimedean
side, in this setting we are interested in a map which goes to the multiplicative group
C, rather than the addictive group C of the Archimedean case. This interest in the
multiplicative group CJ justifies the choice of the Coleman multiplicative integral in
front of the Coleman additive integral. We fix a correspondence ¢ € T that maps
Div(Xr) to Div’(Xr) for example T; — (I + 1) for a prime [ { N. We redefine the

multiplicative integral as
T2
][ f(2)dz ::][ f(2)dz.
1 0((2)—(71))

This redefine definition can be extended to Pic(Xr) as

T) r—>][ f(2)dz = . f(z)d=

One can see this definition as an analogous concept to the common semi-indefinite
integral, since the integral satisfies the following relation

][ " e)ds — ( f(z)dz) ( h f(z)dz> |
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4.6 Heegner points and p-adic periods

Let K/Q be a quadratic imaginary field contained in C, satisfying the Heegner Hy-
pothesis i.e.

(i) the primes dividing N~ are inert in K,
(i) the primes dividing Nt are split in K,
(iii) p is inert in K.
Condition (ii) assures us the existence of an embedding from K into the quaternion

algebra B. Let O be any Z[1/pl-order of K of conductor coprime to N. Over this
setting an orientation on the rings T'= O or T' = R is a surjective homomorphism

T — (Z/N+7) % H Fp.
IIN-

The conditions (i) and (ii) imply the existence of an orientation on O. We fix an
orientation associated to the order O.

Given an embedding ¥ : K — O, because of condition (iii), we have that the group
LW (K*) has a fixed vertex vy € 7, through the action induced on the tree. The
definition of optimal oriented embedding that we have described over the modular
curve case can be extended to this setting by satisfying the following conditions

(i) (Optimal) The embedding W is optimal if it satisfies W(K) N R = ¥(O).

(ii) (Oriented) The embedding W is oriented with respect to the fix orientations in O
and R if the following diagram commutes

\, l

(Z/N+z) x [Tyn- Fe

(iii) The embedding W is oriented at p (which plays the role of infinity in this setting)
if
Uy € SLQ(@p)UO

The Heegner hypothesis that we have imposed on the field K assures us of the existence
of optimal oriented embeddings.

We denote as K, the field K ®Q,. From the properties of optimal oriented embeddings,
we have that K acting on H, through the embedding (¥ has a unique fixed point Ty

satisfying
LT () (Tf) =\ (Tf“) , forall A € K.
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More specifically, this point belongs to K, N H,. We denote as 7, the conjugate of 7,
under the action of Gal(K,/Q,).

Observe that the condition of 7y, similarly to the case over the modular curve, we
have an isomorphism Pic(O) = End(O, R). This endomorphism allows us to define the
conjugacy of an embedding ¥ by an element a € Pic(Q), similarly to what we did in
that setting.

Definition 4.21. Given an embedding ¥ € Emb(O, R), we define the following periods
T v «
Iy ::][ f(2)dz € C; and Jy ::][ f(2)dz € C; /q%'
Tw

The following lemma concretely determines that this period belongs in C, and Cp / ¢%

respectively.

Lemma 4.22. Given ¥ € Emb(O, R), the periods Iy and Jy satisfy Iy € K and

Proof. This lemma is an immediate consequence of the expression given in the definition
of the multiplicative Coleman line integral. O

One should also observe that the property of the semi-indefinite integral gives us the
following relation between the periods Jy and Iy

Ju/Jy = Iy (mod qZ).

Let w be the sign associated to the elliptic curve E/Q, i.e. is 1 if E has split mul-
tiplicative reduction in p and -1 otherwise. We denote H as the ring class field of K
associated to the fixed order O. We choose an embedding K, < C — p, which is equiv-
alent to choosing a prime p on H above p. We consider o, the Frobenius element of p
in Gal(H/Q). We are in a position to state the following theorem, which states that
the image of the periods Jy over 7, are Heegner points in F.

Theorem 4.23. For any ¥ € Emb(O, R), the point n,(Jy) is a Heegner point in E(H).
Furthermore n,(ly) is the Heegner point n,(Jy) — wopyn,(Jw) and for all a € Pic(O),
we have

Mp(Jws) = rec(a)ilnp(J\I’»

Proof. The proof follows from Drinfeld’s moduli interpretation of the upper half-plane.
O
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5 Stark-Heegner points

So far, we have defined CM points over Shimura curves (or modular curves) and
found an analytical analog to the main theorem of complex multiplication, both in
Archimedean and non-Archimedean settings. These theorems mainly follow from the al-
gebraic interpretation of the maps given by the modularity theorem, Jacquet-Langlands
correspondence, and p-adic uniformization, and comparing such results with the explicit
analytic expressions given by such theorems.

In this chapter, we are going to introduce the notion of real multiplication points. These
objects are especially interesting because there is no kind of algebraic intuition in the
setting where they are defined.

One should start by noting that there will not be any real multiplication point, over a
Riemann surface of the form H/T". This fact justifies us in using a non-Archimedean
setting in order to define real multiplication points. Let F//Q be a real quadratic field,
pM € 7Z an integer such that p is inert in F' and all the prime divisors are split in F'
We consider the analogous object to My(M) with coefficients in Z[1/p]

R = Mo(M) @ Z[1/p]

and its restriction to SLo(Z[1/p]), which will be denoted as I'. We define real multipli-
cation points for a given Z[1/p]-order O C F' as

RM(O) = {r € H,/T : O, =0}.

One should not that I does not act discretely in H, and, therefore, in order to get some
analytic periods associated to such points one should take a different approach. In this
chapter, we will define a map from optimal oriented embeddings, with respect to O and
R, and an elliptic curve E/Q of conductor pM

Emb(O, R) --» E(C,).

More concretely, to each optimal oriented embedding, we will associate the values of a
period defined on H, x H (where the group I' acts discretely) and we will conjecture
the behavior of the images of such embeddings.

5.1 Integration over H, x H

As we have mentioned before, we need to define periods associated to the space H, x H.
In order to do so, we need to start defining cusp forms on this space.

Definition 5.1. A function
f:HxET) —C

is a cusp form of weight 2 on (H x H,)/T is it satisfies the following properties.
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For all v = (CCL Z) € T the function f satisfies f(vz,ve) = (cz +d)?f(z,¢e),

For every edge e € £(T,) the function f. := f(—,e) is a holomorphic function satisfying
that fz = —f. and for all vertex v € V(7,)

Z fe =0,
s(e)=v

Given an edge e € E(T,) the function f. is a cusp form of weight 2 on T, the stabilizer
of e.

We will denote the collection of cusp forms over (H x T,)/T' of weight 2 as Sa((H X
Hq)/T).

We should point out that there exist two degenerative maps between the regular cusp
forms associated to the congruence subgroups I'y(/V) and ['o(M)

So(H/To(N)) = Sa(H/To(M)).

As we have pointed out at the preliminary notions, the cusp forms that will be killed
by both maps are called p-new cusp forms, and the collection of these forms we will
denote as S5 "(H /To(N)). The following proposition will give us a correspondence
between p-new cusp forms and the cusp forms of (H x H,)/T.

Proposition 5.2. There exists an isomorphism
Sa((H x Tg)/T) = 837" (H/To(N))
defined by the correspondence f + feo.

Proof. We should start pointing out that the stabilizer of e° is equal to I'o(N) and
consequently the correspondence gives us, a priori, a map

So((H x Hy)/T) — So(H/To(N)).
One should note that if f.o = 0 then fz is also trivial and, therefore, we have
fe=0forallee&(T,) =Te® UT .

This last property shows that the assignment is injective; we shall check that all p-new
forms will be in the image of the correspondence. Let fy be a p-new form. We define

fo(2)dz = fo(y2)d(y'2) for e = ye® € Te’.

We extend the definition of f to e € I'e® by imposing f. = —fz, one should note
that this defines a collection {f.} for all e € £(7,). It is also easy to check that this
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collection satisfies all the properties of the definition of cusps form over (H x H,)/I’
with the exception of the Harmonic condition. We will prove such a condition. From
the definition of p-new forms, we have that

Z fo(y '2)d(v712) =0, (5.1.1)

v€To(N)/To(M)

Z foly e t2)d(y at2), (5.1.2)

v€Lo(N)/To(M)

where a € GLs(Z[1/q]) is an element of positive determinant which belongs to the
normalizer of I'g(N) but not to I'y(N). Observe that from this definition, we have that
e® = ae® and we denote v!' := av° as the target of e°. Using strong approximation,
we have that the natural embedding of SLy(Z) into SLy(Z,) identifies the closed space

Lo(N)/To(M) with SLy(Z,)/T9(gZ,). This implies that
{ve® + v €Lo(IN)/To(M)}
is the list of edges with source v° and
{aye® + v €To(N)/To(M)}

is the list of edges with source v!. Consequently, the equations 5.1.1 and 5.1.2 imply
that the collection {f.} satisfies the harmonic condition for the edges v° and v!

> fe=0, > fo=0. (5.1.3)
e:s(e)=v°

e:s(e)=vl

the Harmonic condition follows from this last property of f and the fact that V(7,) =
I'v°UT'v!. Consequently, we have proven that f is a cusp form of weight 2 on (H xH,)/T
such that f.. = fy, consequently, this proves that all p-new forms are in the image
of the correspondence. The fact that these are the only forms of the image of the
correspondence follows from the equivalences given by the equations 5.1.1, 5.1.2, and
5.1.3. O

This proposition will be fundamental for the development of this section. On one hand,
this isomorphism allows us to consider the action of Hecke operators in Sy((H x H,)/T")
inherited from the action in S5 "““(H/To(N)). As it is pointed out in [Dar01, p. 18]
this action can be explicitly described as

(Tof)(e, 2)dz = Z (v te yy t2)d(yy tz)
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for £ a prime prime to NV and the collection {~;}; describe a disjoint union of left cosets

such that
¢ 0
r (0 1) = ijr.
J

On the other hand, this proposition will also allow us to identify a cusp form in Sy ((H X
H,)/T') related to the cusp form in S5 "““(H/T'¢(N)) related to the elliptic curve E.
Before specializing the theory to this concrete cusp form, we need to develop the theory
of integration for general cusp forms in So((H x H,)/T).

For each matrix v € PGLy(Q,), we can define the norm |y|, := ord,(det(y)) which
is well defined modulo 2. Furthermore, we define w as the eigenvalue of the Atkin-
Lenhner involution W, action on fj i.e. w is a sign which is equal to 1 if the abelian
variety attached to fy has split multiplicative reduction over Q, and -1 otherwise. The
following lemma describes the action of R}, which re the matrices in R* with positive
determinant, for any cusp form f € Sy((H x H,)/T).

Lemma 5.3. For all elements v € «(R)), the function f will satisfy the following
exTPression

Fre(v2) f(v2) = Wbl fo(2)dz.
Proof. The proof is in Lemma 1.5. of [Dar01]. 0

After exploring the definition of Stark-Heegner points, we aim to give an analytic ex-
pression of these points using integration over H, x H for a prime p. Essentially, we
are going to generalize the methods of the last section by exchanging the roles of the
primes p and oo.

Fixing the general modular form f of the previous section with ¢ = p, we consider the
following Harmonic cocycle on the tree 7, defined for all e € £(7,) and 71,75 € H* as

Re{ms — 1u}(e) := /T4 fe(2)dz.

The measure fis{73 — 74} attached to this Harmonic cocycle takes values in Z,, which
does not allow us to follow the natural construction we have used before (see remark
4.20). In order to use this measure in this setting, we need to modify the definition of
the measure so that it becomes a p-adic integral, it’s bounded, and it takes Z-values.
To do so, we have to restricting the points 73 and 74 to the boundary of H* (i.e. in
P'(Q)), after imposing this condition, the measure will be arisen from a cocyle which
takes values in the lattice A defined in the last section. Using the first property of
Lemma 6.2, we can assume that 73,74, € P'(Q) and, therefore, fis{m3 — 74} can be
viewed as a A-valued p-adic measure. We consider a surjective group homomorphism

B:AN—Z,
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such that the map is zero on (¢R N A) and restricted to (A NR™) takes values on the
same set. We use this group isomorphism to define the following measure with values
in Z

pp{rs = 1t = Blag{ms = 74} (U)).
Since this new measure takes Z-values, we can define the double integral using the
multiplicative Coleman integral defined before

T2 Yy _
Fle=f ((Z2)autasno,
n Ja Pi(Q,) \l—T1

where 71,75 € and z,y € P}(Q). Similarly to what we have done before, given 7 € H,,
and z € P'(Q), we define a 2-cocylce

~ Nt N2
dT,x(’VL')@) ::][ / wry.
T Y1

One should note, as we have shown on passed settings, that the class d of this cocycle
in H?(T, C,;) will not depend on the choice of 7 and x. We want to relate d with an
element of the first cohomology of v with values in a module of M-symbols.

Definition 5.4. Let A be an abelian group. A function
m{,}: P{(Q) x PH(Q) — A
(z,y) = m{x =y}
is an A-valued M -symbol if, given and x,y,z € P*(Q), satisfies the property
m{zx =y} +m{y — z} = m{z — z}.

Let M be the I'-module of C,-valued M-symbols on P}(Q) and F the C,-valued func-
tions on P(Q). One can consider a general these groups for any abelian group A, and
we will denote them as M(A) and F(A), respectively. We consider the map A : F — M
defined as

Az =y} = fl2) = f(y).
One should note that this map is surjective and its kernel is the collection of constant
functions. From the short exact sequence of C,[I']-modules

0—>Cp—>F3>M—>0,

we can state the long exact sequence of cohomology groups
o= H\T,F) —» H'(U, M) > H*(T,C,) — H*(T',F) — -+ - .
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Given an element 7 € H,,, we define an M(C))-valued one-cocycled as

ate = f [

One can deduce, by directly computing it, that the class ¢ of ¢, in H'(I', M(C))) does
not depend on the choice of 7, and it satlsﬁes

d(c) =d.

In section 3.1 of [Dar01] Darmon proves that the cohomology groups H*(I', M) and
H?*(T',C,) are finite dimensional C,-vector spaces with an induced action of the Hecke
algebra T and equipped with an involution W, induced by conjugation of

1 0
0 —-1/)°
We denote as H!(I', M)/ and H?(I",C,)"* to the respective f isotypic part of H'(I', M)

and H*(T',C,) fixed by W.

Lemma 5.5. The subgroups H'(I', M)+ and H*(T',C,)"* are 1-dimensional C,-
vector spaces.

Proof. Using the long exact sequence defined before, we get a long exact sequence for
their f isotypic part fixed by W, by the following commutative diagram

H',F) — H'(I, M) —*— H*(I',C,) ——— H*T, M)

! L !

H\T, F)f+ —— HYT, M)+ —— H>T,C,)"* —— H*(, M)/*

Darmon proved in section 3.1. of [Dar01] that the cohomology groups H (T, F)H* are
trivial for all j. This implies that the map ¢ iduces an isomorphism

0 : HY(T, M)"+ 5 H*(T,C,)".
The proposition follows from Corollary 3.3 on [Dar01, p. 41]. ]

Since the elliptic curve E has multiplicative reduction at p (because p divides the
conductor), we can consider the Tate’s p-adic period g7 attached to £/Q, and the Tate
p-adic uniformization

Np - (C;/QZZ“ — E(C,).

We defined, as made in previous cases, w as the sign associated to the p-reduction of
the elliptic curve E. The following proposition will help us choose a lattice that satisfies
the same properties with respect to the classes ¢ and d as the ones we have stated in
previous sections.
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Theorem 5.6. There exists a lattice A, C C; commensurable with ¢* such that both
images of ¢ and d are trivial in H (I, M(CX/A,)) and H*(I',CX/A,), respectively.

Proof. We start choosing the p-adic logarithm function log, : C; — C, which satisfies
log,(p) = 0. From lemma 3.4. of [Dar01], we have that ord,(c) and log,(c) both belong
to HY(T', M)/ and ord,(c) # 0. From Lemma 5.5, we can deduce that there exists a
L € C, such that

log,(¢;) = Lord,(¢:) (mod B'(I', M)). (5.1.4)

Let n be a positive integer prime to N and j the minimum integer such that p¥ =1
(mod n). Given an element p € (Z/nZ)*, we consider

_

the generator of of the stabilizer in T of (00, zz/c) € (PY(Q))*. We should note that for
any 1-coboundary b € B'(T', M), we have

b(v){o0 — p/n} = 0.

Consequently, the Equation 5.1.4 implies the relation

log, (&) (1) {00 = /e} = Lord,(&)(17) {00 - pfc}. (5.1.5)

We consider a Dirichlet character x : (Z/nZ)* — CJ of conductor n such that x(p) = w
and y(—1) = 1. In proposition 2.16 of [Dar01], Darmon proves that

2jn L(E/Q,x, 1)
7(x) ot

ST Xl ordy(@) () oo — u/n} = (5.1.6)

w€(Z/nL)>

where 7 represents the Gauss sum of Dirichlet characters and Q7 is a rational multiple
of the real period of the elliptic curve E. Using Proposition 2.18. of [Dar01| and the
definition of the Mazur-Swinnerton-Dyer p-adic L-function, denoted as L,(E/Q, x, s),
attached to the elliptic curve E/Q and the character y, we have that

Y x(w)log, (@) (vu){oo = nfe} = Ly(E/Q.x,1). (5.1.7)

WE(Z/nZ)*
Combining the equations 5.1.5, 5.1.6 and 5.1.7, we have that the difference
L<E/Q7 X 1) - L/(E/Q7X7 1)a

for any Dirichlet character x such that x(p) = w, is given by a constant £ independent
of the choice of x. This was a conjecture first stated by Mazure, Tate, and Teitelbaum
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in [MTT86]. In the same article, the authors conjectured, based on numerical evidence,
that
~ log,(qr)
ord,(gr)
It is important to remark that this conjecture was proven by Greenberg and Stevens in
[SG93]. From the proof of this conjecture, we get that
- log,(qr) o log,(qr)

1 = ———ord d log,(d) =
ng(C) Ordp(qT) or P(C) an ng( ) Ordp(QT)

where the second equation is deduced from the first and the fact that d(c) = d, as
shown before. We define é,, a 2-cocylce for 7 € H,, and z € P}(Q) as

ord,(d), (5.1.8)

Jordp(QT) )
e T,T X
el € 2. G),

€ra

and we denote as e the image of this cocycle in H*(T, C, ). Using the second statement
of the equation 5.1.8, we have

ord,(e) = log,(e) =0
i.e. the class e is of torsion. Consequently, there exists an integer o € Z such that
deordtam) — geos () (mod BA(T, C))).
The statement of the theorem follows from this last equation. O

We consider A, = ¢% by raising ¢ and d to a common power. Using Theorem 5.6, we can
consider an M-symbol m, € C°(T', M(C)/¢})) and a 1-cochain &, € CH(T,C /qF),
for x € P(Q) and 7 € H,, such that

& = dm, and d,, = dé, .

We can use the M-symbol m, to give a definition of a semi-definite double integral as

Ty
][/wf =m.{z -y} € CX/qf,

for 7 € and x,y € P}(Q). The semi-indefinite notion is justified by the fact that the
integral will satisfy the following properties

F L) Lor)=f [
F o[ [
Frle(f L) [ =)
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for all 7,71, 72 € H,, x,y,2 € PH(Q) and v € T.

5.2 Periods and Stark-Heegner points

Similarly to the case studied in section 5, we set the constant M = N/p. Let O be a
Z[1/p]-order of the real quadratic field F' and R the Eichler Z[1/p]-order of M5(Q). We
define the notion of optimal oriented embedding, as we have done previously, for this
setting.

Definition 5.7 (Optimal oriented embedding). An embedding ¥ : F — M>(Q) is an
optimal oriented embedding if it satisfies the following properties

The embedding is optimal, with respect to O, if it satisfies ¥V(O) = U(F) N R.

Given two ring homomorphisms O, R — Z/MZ, we say that V is oriented with respect
to such maps if the following diagram is commutative

0O — >R

~

7/MZ,

We say that the embedding U is orientated at p if the unique vertex of T, fized by the
action of U(F™) is SLy(Q,)-equivalent to the vertex v°. This condition is equwalent to
requiring that the distance between this vertex and v° is even.

Given an optimal oriented embedding ¥, we can define the period associated to this

embedding as
T Yr T
J‘ll = gT,l‘(’YT) :][ / Wy € (C;/QTZ’

The following lemma, which follows from similar computations to the ones we will do
in the next chapter, will imply that the period will be well-defined independently of the
choices made.

Lemma 5.8. Given an optimal oriented embedding ¥, the period Jy only depends on
the I'-conjugancy class of ¥ and not on the choice of x made in the definition.

Let Oy € O the maximal Z-order. We define H as the narrow ring class field of F
attached to the order O, which is the same as the one attached to the order Qg since
we are supposing that p is split in F'. From the theory of class field theory, we can state

the reciprocity map
rec : Pict(0) — Gal(H/K),

where Pic? is the narrow Picard group which is defined by quotiening by the principal
ideals which have totally positive norm. The following conjecture, made first by Darmon
in [Dar01], would extend the result of 6.9 for totally real fields.
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Conjecture 5.9. For any optimal oriented embedding ¥ € Emb(O, R), the point n,(Jy)
is in E(H) and, for all a € Pic™(O), we have

N(Jwe) = rec(a>7177q(‘]‘11)-

Despite having a similar statement to all the main theorems we have stated in the
previous sections, no proof has been found so far for this conjecture. As we have
mentioned before, the main obstacle to proving it resided in the fact that we have
no algebraic interpretations of the objects defined in this section. In the following
chapters, we will introduce settings where algebraicity can be proven, and we will show
that similar periods are related to CM points that satisfy the conjecture started by
Darmon.

6 Heegner points and integration over H X H,

In this section, we will consider the same cusp form as in the previous section, and
we will develop another integration theory exchanging the roles of the primes p and
00, following the work of [BDGO7|. After developing this theory of integration, we will
show that the periods associated to certain optimal oriented embeddings are related to
the classical CM points over modular curves.

Let K/Q be a quadratic imaginary field and pM € Z, with ged(p, M) = 1 and all its
prime divisors split at K. As before, we define the groups

R = My(M)®Z[1/p] and T := RN To(M).

Similarly to the last case, I' does not act discretely in H, but it does over H x H,.
Given an elliptic curve E/Q of conductor N := pM, we will use this fact to construct
C-periods over H x H, in order to construct a map for a given Z[1/p|-order O C K

Emb(O, R) - E(C).

6.1 Cusp forms over H x 7T,

We use the same definition of cusp forms as the one of the last section, and using
the modularity theorem and the isomorphism that identifies Sa2((H x #H,)/I") with
SPT(To(N)), we consider f associated to the elliptic curve E.

Given a general cusp form f € Sy((H x H,)/T'), we will see the integration of this cusp
form imagining an integration theory taking values in C ® C7 and we will view this
value through the map ord, : C®C; — C. Consequently, we define the double integral
of f for any 7,7 € H;" and z,y € HUPH(Q) as

[[o 5 [

er(m1)—r(T2)
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One should notice that this definition satisfies the common addition properties of in-
tegrals and that given any matrix v € I', we will have the following relation for any
7,7 € H})" and 2,y € HUPY(Q)

T2 ) T2 )
Lo fe=] ] e
Y11 T 1 T

Following a similar motivation to past chapters, given x € H;" and 7 € H, we consider
the function JW :I' x I' — C defined as

- Y272% YT
d:c,T(’Yl;'ﬁ) = / / Wi
'yll‘ T

One can check, by direct computation, that this function is indeed a 2-cocycle and that
the image of CLM in H*(T, C) is independent of the choice of the elements = and 7.

As it has been pointed out before, Proposition 5.2 allows us to choose a cusp form
f e Sy((H x H,)/T') such that fe. is the cusp form associated to the elliptic curve
E given by the modularity theorem. We define the group A C C as the image of
the relative homology H;(Xo(N), cusps; Z) under the integration pairing with fy. The
following theorem will enable us with a useful property of A, which will be essential for
the definition of the periods that we will do at the end of this section.

Theorem 6.1 (Manin-Drinfeld). The subgroup A C C is a lattice which is commensu-
rable with the Néron lattice A associated to the elliptic curve E.

Proof. From [ManT72| and [Maz73|, we have that the theorem follow from the fact that
(41 —"Ty, maps Hi(Xo(N),cusps, Z) to Hi(Xo(N),Z) and, consequently, (¢ + 1 —a,)A
is contained in Ag. O

The following lemma will give us a useful property of the line integral with respect to
the lattice A, which will be useful for further results.

Lemma 6.2. The cusp form f satisfies the following two properties with respect to the
lattice A

(i) Given two elements x,y € PY(Q) and e € E(T,), the complex line integral
v
/ fe(2)dz

(i1) Given any 1,7 € H)" and any x,y € P(Q) we have

T2 )
/ / wr € A.
1 T
7

4

belongs to the lattice A.
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Proof. Given an edge e € £(7,), there exists an element vy € I" such that
vl =eoryle® =e.

Using Lemma 5.3 and the properties of f, we have the following equation

[ sz == / "l

We clearly have that the second integral of the last expression belongs to A, which proves
the first part of this proposition. The second part of the lemma follows immediately
from the first part and the definition of the double integral. m

The lemma we have just proven will be fundamental to proving the following property
of the 2-cocycle d, ;.

Proposition 6.3. The image of the 2-cocycle CZM through the natural projection in
H?*(T,C/A) is trivial.

Proof. In order to prove this lemma, we will show that the image of Jw will be equal
to the class of the coboundary map of the 1-cochain map & : I' — C defined as

ertn= [ [

Using the fact that I' acts trivially on C, we have

Y1v2® T
dg‘r:r 71772 / / Wf +/ / (.x.)f / / Wf
) T [e'S)
[ L[]
Y1y2z J 00 T )
T T Y271 V1T
[l
Y1y2z J 00 T Y100
Y271 Y271% Y100
A /
Y1z Y1z
Y271 Y100
T,z('Yla’YQ)_/ / Wf-
T S

The second part of the Lemma 6.2 implies that the second term of the last expression
is in A and, consequently, the statement of the proposition is proven. O

?

The 1-cochain £ used in the proof of this last proposition depends on a choice of  and
7. In order to make such a choice canonical, we will show that the group of 1-cocycles
has finite exponent, so this indetermination can be solved by replacing ¢ by an integer
multiple of the same cocycle.
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Lemma 6.4. The group of 1-cocycles on I' with coefficients in the quotient C/A has
finite exponent.

Proof. We have that I" acts trivially on C/A and, consequently the group of n-cocycles
is

Hom(I™,C/A) = Hom((I'™)**,C/A).
The rest follows from the Corollary of Theorem 3 of [Ser70]. O

6.2 Heegner points and complex periods

Let O C K a Z[1/p]-order of conductor prime to N and denote Oy := O N Ok as
the maximal Z-order in @. We suppose that N satisfies the Heegner hypothesis and,
consequently, there exists an orientation A such that NOy = NN . As we have pointed
out before, we consider the standard Eichler order R = My(M) ® Z[1/p] and we extend
the definition of optimal oriented embeddings for this setting.

Definition 6.5. Giwen an embedding V : K — B, we say is optimal oriented with
respect to O and R is it satisfies the following conditions

The embedding is optimal if it satisfies V(O) = RN V(K),

Given an Fichler orientation R — Z/N7Z and considering the ideal M := NO, the
embedding is said to be oriented (with respect to N' and the given orientation) if the
following diagram is commutative

oO—> R

| |

O/M — 7JMZ

There exists a fived point T € K, associated to the action of V(K ) such that for any

q
A€ KX, we have
T T
o )-+()

q’
We say that the embedding ¥V is oriented at q if it belongs to Z, under a chosen embedding
K, — C,.

As in previous sections, we denote the collection of optimal oriented embeddings in this
setting as Emb(O, R).

One should observe that W(K ) leaves invariant the geodesic on the tree 7, joining the
two fixed points of W(K ) in P'(Q,). The following lemma will give us a useful result
of the stabilizer of 7¢ in I'.
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Lemma 6.6. Given an ¥V € Emb(O, R), the stabilizer of Ty in ', which we denote as
I'-, has rank one.

Proof. The generalization of the Dirichlet unit theorem assures us that the group Of
is of rank one. Since W(K*) is the stabilizer of 7 in GLy(Q) and ¥ is optimal oriented
we have that I'; = W(Oy), which proves the statement. O

Let u be a generator of the group O of units of norm one and consider the matrix
vr = W(u). Given x,y € H™ and 7 € H, using the properties of the double integral,
we have the equation

YrT T Yry T Yrx T y T T T x T
[ Lo L= Ly Lo Lo L ) Lo
T 00 Y 00 YryY 00 T e’} Y T_l Y e’}

up to a coefficient in A and, for any v € I' we have

Ve re T Yyl T Yz T
/ / Wy = / / Wy = / / Wy (mod A)
T ) ~y~lg vy~ loo T 0

which shows that £(v,) does not depend on the choice of x and only depends on the
['-conjugacy class of the embedding ¥. Given a vertex v, this last fact motivates the
definition of the following period associated to the embedding ¥

=gt = 3 [ i

ev—yrv Y X

Note that this definition does not depend on the choice of vertex v. We consider the
decomposition pOy = pp and we denote as w the uniformizer of p ® Z,. The following
lemma will give as a useful property between the optimal oriented embeddings in this
setting and the same notion defined on the sense of Section 3.

Lemma 6.7. For any ¥V € Emb(O, R), there ezists an optimal oriented embedding (on
the sense of Definition ) Uy € Emb(QOq, My(N)) such that the restriction of ¥ to Oy is
Wy. The choice of Yo will be characterized by the fact that v° and V(w)v® are adjacent
vertices connected by e°.

Proof. We consider the edge e € £(T,) such that it lies on the path joining the two fixed
points of the action W(K) in P*(Q,). There exists an element v € I' (up to change of
orientation if needed) such that e = y~'¢°. The Embedding satisfying the properties
given by the statement is ¥y = y¥U~y~!. Furthermore, the lattice \Il(w)ZZ is homothetic

to
TyO0 p
(1)z+ ()=

which is in the class of the adjacent vertex of v°. m
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In order to have a more clear notation, given an embedding WV, € Emb(Oy, My(N)), we
will denote as Jy g, the archimeadian period define in section 3. One should recall that
w is a sign of the abelian variety attached to fy. We will let ¢ be twice the order of the
prime p in Pic(Oy).

Proposition 6.8. Given an optimal oriented embedding ¥ € Emb(O, R) and we con-
sider the embedding Vo € Emb(Og, Mo(N)) given by lemma 6.7, then we have

t—1

Jy = Zwuongj (mod A).

J=0

Proof. We consider the consecutive vertices vy, vy, ..., v; of 7, on the path joining vy and
vy = YUy and ey, ..., e,_1 the different edges joining the consecutive vertices. Let R, ,,
be the subring of matrices in M,(Q,) which fix both vy and v;. Observe that

U(w)(vj) = vjqq for j =0,...,t — 1.
Using strong approximation, we have that there exists an element v € R’ such that its
image in PGLy(Qq)/ R, ,, is ¥(w). This implies that

v(ej) = €jq for j =0,...,t —2.

Using the definition of the period attached to ¥, we have

Jy = ZOL:PO fe;(2)dz (mod A). (6.2.1)

Using the property that we have stated before for the edges e and Lemma 6.2, we can
state the following equation

/WO fe,(2)dz = /WO frieo(2)dz = o /W_ " fo(2)dz (mod A). (6.2.2)

o0

Using the conjugation property of optimal oriented embeddings Emb(Qq, My(N)), we
have the following equation

’Y*jﬂpo
/ folz)dz = J i (6.2.3)

o0

The proposition is an immediate consequence of the equations 6.2.1, 6.2.2, and 6.2.3. [

Let Hy be the ring class field of K attached to the order O, and o, the Frobenius
element of Gal(H,/K) identified with the prime p. We define the p-narrow class field

H = Hg ’ , and we consider the reciprocity given by the theory of class field theory
rec : Pic”"(0) — Gal(H/K),
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which Pic?"(0O) is defined by adding the condition that principal ideals must have even
valuation at p. If we consider the Weierstrfs uniformization 7 associated to the lattice
Ag, we can give the main result of this section.

Theorem 6.9. For all ¥ € Emb(O, R) the point n(Jy) is a global point of E(H).
Furthermore, for all a € Pic’*(0), we have

n(Jus) = rec(a) 'n(Jy).

Proof. The Proposition 6.8 shows us that the periods Jy are products of periods of
optimal oriented embeddings in Emb(Oy, My(N)). Consequently, this Theorem follows
from this last result and the main theorem of complex multiplication. n

It is important to remark that this theorem, in concrete terms using the underlying idea
of its proof, allows us to find periods over H x H, for a prime ¢|N, such that ¢*> f N, as
long as N satisfies the Heegner Hypothesis with respect to a given quadratic imaginary
field.

7 Heegner points and integration over H, x H,

After studying the relation between Heegner points and integration periods over H,, we
would like to extend this definition to periods over products of two upper half-planes
H, x H,. Before developing the integration for this setting, we shall introduce exactly
the basic objects that we are going to work with.

Let E/Q be an elliptic curve of conductor N = pgN*+t N~ with all the factors prime
pairwise, p and ¢ prime, and N~ square-free with an odd number of prime divisors.
Let B be the definite quaternion algebra over QQ of discriminant N~ and R the Eichler
Z[1/pq]-order of level N*. We fix the following embedding associated to the algebra B

L. B— MQ(@p) X MQ(QQ)

Similarly to the last section, we define Ry as the collection of units with norm 1, and
we define the following modular subgroup

I':=(Ry) C SLy(Q,) x SL2(Q,).
Given an element v € I') we will represent its coordinates in the matrix product by

Y= (7107 ’Yq)'

7.1 Integration of cusp forms on H, x H,

In order to define the periods, we shall extend the definition of cusp forms to the ones
associated to I' and the definition of the integrals over this product. We can define
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an action in H, x H, by I', considering the induced actions in the coordinates i.e. for
v € I'and (7,,7,) € Hp x H,, we have (7, 7,) = (Y7, 77,). Furthermore, we have that
I' acts naturally on £(7,) x H,.

Definition 7.1 (Cusp form). A function
fE&(T,) xH, = C,

is a cusp form of weight two if it satisfies the following conditions

(i) f(vpe,742) = (cz +d)?f(e,2) for all v € T with ~, = (Z Z)

(ii) f.(e):= f(e,z) is an harmonic cocycle with values in C, for all z € H,.
(iii) For all e € £(T,), the function f.(z) := f(e, z) is a g-adic rigid analytic modular form
of weight two (as defined in section 3) for the stabilizer T', of e in T.

We will denote as S2((T, x H,)/T') the C,-vector space of weight 2 cusp forms over
(Tp < Hy)/ T

We fix an Eichler Z[1/q]-order Ry of level pN*. Using this concrete Eichler order, we
can consider a base edge e° in £(7,) by imposing the condition that I'.c is equal, via
the embedding ¢, to the group I'; of norm 1 elements in Ry. We denote S5~ " (H,/T,)
the subspace of p-new cusps forms of weight 2 on I',. The following lemma relates to
the two spaces we have just defined.

Lemma 7.2. There exists an isomorphism from Ss((T, x H,)/T) to S5 " (H,/T,)
which sends [ to feo.

Proof. Since the stabilizer of e® in I' is I';, from the cusp forms definition over 7, x H,
that the following map is well defined

S2((Tp x Hq)/T) = S2(Hq/Ty)
f = feo
If we assume that f.o = 0, then we have that f.o = 0, consequently

fo=0foralle € o UTw = E(Tp),

which proves that the assignment is injective. We will continue proving that the image
of this assignment is S5 " (#H,/T,). We consider a modular form f° in S5~"“(H,/T,)
and we define

fu2)dz = foly™2)d(r"2) for € = e

We can extend this definition for edges e € I'e by establishing the relation f, = — f.
One can easily check that {f.} satisfies all the conditions, with the exception of the
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Harmonic condition, of the definitions of cusp forms of weight 2 over (7, x H,)/I'. We
will check that it satisfies the Harmonic condition. Since fy is a p-new form, we can
establish the following two equations

Z fo(y '2)d(v712) =0, (7.1.1)

v€To(N)/To(M)

Y. flyaTzd(aTz) =0, (7.1.2)

v€Lo(N)/To(M)

where o € GLo(Z[1/p]) such that it has positive determinant, it belongs to the nor-
malizer of To(N) but not to To(N) itself. One should realize that ae® = €°, and
consequently v! = av? is the target of e°. Using strong approximation, we have that
the natural embedding of SLy(Z) into SLy(Z,,) identifies the coset space I'g(N)/T'o(M)
with SLy(Z,)/To(pZ,), which implies that the set

{ye® + vy eTo(N)/To(M)}

is the list of edges with source v° and

{aye® © vy € D(N)/To(M)}

is the list of edges with source v'. This implies that the equations 7.1.1 and 7.1.2,
deduced from the definition of fy, imply that the collection {f.} is harmonic at v° and
v! i.e. we have the equations

> fo=0and Y fo=0 (7.1.3)

e:s(e)=v0 e:s(e)=vl

Using the fact that V(7,) = I'v” UTw! and the T-equivariance property from f, we can
establish the Harmonic property.

Consequently, f is a cusp form of weight 2 on (#, x 7,)/I". This shows us that the
assignment f +— f.o has all the new-forms at p on its image. The fact that all the
functions in the image will be p new forms comes from the fact that the statement
given in equation 7.1.3 is equivalent to the equation 7.1.1 and 7.1.2. ]

Using this lemma, we can find a correspondent function f on (7, x#H,)/I" to the function
f defined in section 3. Recall that the function of section 3 is defined using the Jacquet-
Langlands and the Modularity Theorem, and we force the associate sy to have integer
values. Note that this function will be determined up to a sign, and f.. will be the
normalized cusp form of Section 3.

Following the same notation as the one introduced in the last section, we denote as
H," the unramified g-adic upper half-plane. Given two points x1, 22 € H;" which have
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associated vertices v, and v,y respectively, we define the Z-valued harmonic cocycle on
E(T,) as
kp{en = w2}(e) = > kg le),
€:01 V2
where the sum is defined over the edges that join the vertices v; and v,. Using the
lemma 7.2, after fixing two points z, r2 € H;" we have the following diagram

S2((Tp x Hy)/T) —— Har(l'y)

F

Sy " (Hy/Ty) —— Har(Ty)

where the right side is given by the multiplication of an integer that depends on z; and
x5. Therefore, using the correspondence between harmonic cocycles and rigid analytic
cusp forms of weight 2, we can see that with this definition, fixed x1, 2 € H}", we are
identifying a subgroup of Har(I'y). In concrete, since we have fixed f so its associated
harmonic cocycles have integer values, we have that the harmonic cocycles kp{x; — 2}
also have integer values. As we proved in Lemma 4.15, Harmonic cocycles stable over
I', generate a g-adic measure, which in our case will be denoted as pg{z; — 25}, such
that

[ e > 2} = rfas > w2 0)

e

Following the same methods as the last section, especially motivated by Proposition
4.16, we define the following integral.

Definition 7.3. Let 11,72 € H) and x1,22 € Hy". We define the double integral

2 2 t— T2 %
wr = dp,f{xl — Ig}(t) S Cp.
m Ja PL(Qp) t—m

This definition should be viewed as a defined double integral on H, x H,. Given a
function g € So((7, x H,)/T"), we define the I'-ivariant cocycle

ArE(Ty) x €(Ty) = C,

defined by the correspondence (e,€) — ky (€). Oberve that from the correspondence
between Sy(#H,/T';) and Har(I';), we have that the harmonic cocycle will uniquely de-
termine g. Furthermore, we have that in the case of f, the Harmonic cocycle Ay will
take integer values. This fact is formalized in the following lemma, where we denote as
Hary(I', R), the I'-invariant harmonic cocycles on 7, x 7, with values on a given ring
RCC.
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Lemma 7.4. The map S>((T, x H,)/I') — Hary(I', C,), defined by sending a cusp form
of weight 2 on (T, x Hy)/T to a C,-valued harmonic cocycle through the residue map,
is a Hecke-equivariant isomorphism of Cy,-vector spaces.

Proof. The proof follows immediately from the correspondence given by Proposition 7.2
and the correspondence between one-dimensional harmonic cocycles and rigid analytic
cusps forms of weight 2. O

Exchanging the roles of p and ¢, we get the analogous definitions for cusps forms of
weight 2 on (H, x 7,)/I' and the correspondent I'-invariant harmonic cocycles A, for
all g € So((H, x T,)/T'), defined by the correspondence (e, €) — £y, ().

Corollary 7.5. For all g € Sy((T, x H,)/T') such that N, is Z-valued, there exists a
cusp form gf# in So((H, x Tg)/T) such that Ay = A%

Proof. The corollary is an immediate consequence of the last lemma, the fact that A;
is Z-valued and that (7, x 7,)/I" is a finite graph. O

From now on, we will denote f# as the cusp form given by this last corollary associated
to the cusp form f.

The following definition gives us the analogous definition of the double definite integral,
where we switch the order given in the previous definition.

Definition 7.6. Given x1,x9 € H," with associated vertices vi and vy respectively, and
71, T2 € Hp, we define the double integral

/ ][wf#— H][ f#(z )dz € C;,
€V —V2 1
where the product is taken over the oriented edges that join vy and vs.

The following theorem relates the two definitions of double definite integrals that we
have given, where the correspondence given by Corollary 7.5 plays an essential role.

Theorem 7.7 (Fubini Theorem). We have the following equation of integrals for all
T1,T2 € Hp and 1,29 € Hy"

T2 T2 T2 T2
f / wf = / ][ Wy
T Ja z1 Jm

Proof. Using the definition of the double integral on the right-hand side and Proposition
4.16, we have the following equation

[ f o TLf o

€:V1—V2
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From the definition of the other double integral, to prove the statement, it is enough
to show that

dus{ry = x2} = Z dpt g

€:1V]1 V2

Using the definition of the double harmonic cocycle, this is essentially reduced to proving

Ky.(€) = K#(e),
which is given by Corollary 7.5. [

To give an analogous definition to the period Jy defined in the last section, we need to
introduce a semi-indefinite double integral. Using the semi-indefinite integral defined
in Section 3, we give the following definition.

Definition 7.8 (semi-indefinite double integral). Given 7 € H, and 1,29 € H", we
define the semi-indefinite double integral, using the semi-indefinite integral defined in

section 3, as
/ 7[ W = H ][ f#(2) dzE(CX/qT

wr(z1)—r(z2)

The semi-indefinite double integral attached to the cusp form f satisfies the following
property, which will be useful in further proofs.

Lemma 7.9. Gwen a7 € H, and x1,x2 € H,", we have the following two properties
of the integrals associated to 7

For all edges e € E(T,), if T € PY(Q,), then

7[ ")z €

If T € PY(Q,), then the double integral of [# satisfies

9o T
/ ][ Wr# € qZ.
T

Proof. We start proving the first part of the lemma. Given an arbitrary edge e € 7y,
there exists an element v € I' such that

o

v le®=eoryle® =@

In either of the two possible definitions, we get that

[ ( " fo(z)dz>wq,
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where w, is the sign of the elliptic curve E at the prime ¢g. The multiplicative integral
on the right of the last equation is clearly in ¢Z and therefore, we have proven the first
part of the lemma. The second part follows immediately using the definition of the
double integral and the first part that we have just proven. O]

Given 7 € H, and x € H}", we define the two-cocycle CZW e Z*(T, Cy) as

5 MNT 7722 MY2T NT
dT,z(’Yh’h) 22][ / Wy = / 7[ Wy
T Y1T Y1 T

Observe that the cohomology class representing this last function in H?(T, C,) does
not depend on the choice of 7 and x. We finish this subsection by proving the following
claim of the image of d., in H*(T',C) /¢F).

Proposition 7.10. The image of d, in H*T,C} /%) is trivial.
Proof. We define the one-cochain &, : I' = C)/ ¢ as

§ra(7) = /x W][T Wy

We will directly compute that d¢..(71,72) is equal to the image of ciﬂx('yl,yg) in
H*(T',Cx /¢”) modulo ¢”. Using the properties of the double integrals, we can find
the following equation

Y1T T Y2 T Y1722 T
d&,x(’hﬁz):/ j[wf# +/ ][wf#—/ ][wf#
xr X X
Y1T T Y2 T
fon [ f o
Y1722 x
Y1z T Y271 1T
[N R B
Y1722 Y1z Y100
Y271 iz Y271 Y100
[ [
7z T "z
Y271% Y100
= T,z(’yla’YQ)_/ f Wy
7z

Since 00 € PY(Q,), from the second part of Lemma 7.9, we have that the second term
of the last equation is in ¢ and consequently the proposition is proven. O

j

7.2 Periods and Heegner points

To underpin the main idea of the methods that we are going to use to construct global
points over the elliptic curve E using periods of H, x H,, we are going to describe this
process following the example of Bertolini, Darmon, and Green.
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As we have mentioned before, we assume that the conductor of the elliptic curve is of the
form N = pgN~ N7 and that it satisfies the following generalized Heegner Hypothesis
for a fixed K/Q quadratic imaginary field

(i) all primes dividing N~ are inert in K,

)
(ii) all primes dividing N are split in K,

(iii) p is inert in K,

(iv) ¢ is split in K

As we have done at the beginning of this section, we define B as the quaternion algebra
over Q of discriminant N~ and R an Eichler Z[1/pg]-order of level N*. We choose a
O a Z[1/pq]-order of K of conductor prime to N. The Heegner Hypothesis imposed
above implies that there exists an optimal oriented embedding (with respect to O, R,
and the Fichler orientations)

v:0 — B.

We define the local algebras K, = K ® Q, and K, = K ® Q,. The group K,* acting on
the upper half-plane H,, via the embedding ¢V has a unique fixed point 7 normalized

so it satisfies
Tw Ty
L\I/(a)(1> —a(1>, for all o € K.

Moreover, we define v¢ € I' as the image of a generator modulo torsion of the group
O; (units of norm 1).

We fix an element z € H;". Using the cocycle &, defined in the last subsection, we
define the multiplicative period integral associated to the embedding ¥ as

224 TV %
Ju =&y (V) = / 7[ Wr# € (Cp /q:%-

Similarly to the last section, we define the signs w, and w, of the elliptic curve E with
respect to the primes p and ¢ (they are 1 if E has split multiplicative reduction on
the respective prime and -1 otherwise). We denote as Oy as the maximal Z[1/p]-order
contained in O, we fic a prime q over ¢ and we denote as h the order of the subgroup
generated by such a prime in Pic(Oy).

Lemma 7.11. If w, is equal to -1 and h is odd, then Ky is equal to 1.

Proof. We take an element v € Oy of norm ug”" with u a unit of the ring of units of K.
Let 0y the image of v through (W. Simple computations give us

Sy YwT [ OUTY YT [LTE w
Sy T
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dyYwT [ OUTY Yo éuT Ty
][ wpe = / ][ .
5q;iﬂ (sq/il?

The lemma follows from these two equations and the fact that the definition of Jy does
not depend on the choice of z. O

and

Let Hp be the ring class field associated to the order Oy and o, the eleemnt of the
Galois group Gal(Hy/K') corresponding to q. We define H as the subgroup of Hy which
is fixed by O'UQI. Recall that in the last section, we defined o, as the Frobenius element
of Gal(H/Q) of a fixed prime p over p.

Theorem 7.12. The point n,(Jy) is a global point in E(H) on which the involution o,
acts via wy. In concrete, n,(Iy) is ny(Jy) — wyopn,(Ju). Moreover, for all a € Pic™(O)
the priods satisfy

Np(Jwa) = rec(a)_lnp(J‘If)-

Proof. Using the definition of the double integral, we have the following expression of
the period Jy

™V
Jo= ] 7[ 17 (2)dz.
EVIYYV
Let Ry C R be an Eichelr Z[1/pl]-order of level NTq in B. We denote as
Wiie{l,.., h}

a set of representatives for the conjugacy classes of Emb(Oy, Ry) which give rise, by
extension of scalars, to the conjugation class of ¥. We denote Ty € Kp the normalized
fixed point associated to each embedding. We also define f; as the rigid analytic
modular form associated to f7.

We will distinguish two cases depending on the parity of h. If h is even we denote as
vo, --, U, the consecutive vertices joining v and v, = ygv and {eq, ..., e,} the oriented
edges joining this vertices. Using the definition of the double integral, we have

h o erg,
Ju = fE(2)dz.
g ]];Ilf ; z)az

Let w be the uniformizor associated to the prime qie. q®Z, = w(Oy ® Z,). Observe
that we have the following property

\I’(W)(U]) = UjJr]_,j S {0, ,h — 1}

Let R, be the subring of M,(Q,) of elements that fix vy and vy,. By strong approxi-
mation, there exists an element v € R} whose image in PGLy(Q,)/R} is V(w) such
that

v(ej) =ejr1,7 € {1,....,.h — 1}
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Using the properties of the element v, we can produce the following computations

Fstae = f 7 1 e - ( [ fif(Z)dZ) - (f )

When we insert this last equation into the expression of Jg, we get

h ) wi
Jy = H ( ’ fo(z)dz) :

i=1

If A is odd the path v — ygv will have 2h edges, where two edges will be represented
by the same embedding. Using a similar method to the one used in the last case proves

the following equation
h - 2
\1174
J\I/ = H < 0 fo(Z)dZ) .

i=1
However, the factors appearing in both expressions are the periods that we defined
through integration over the upper half-plane in section 3, therefore, the statement is
true because of the theorem 4.23 in that section. O]

8 Heegner points and periods on finite products of
upper half-planes

After studying the relation between periods over the products of two upper half-planes

and Heegner points, we want to generalize this relation to finite products of upper half-

planes. We will start studying the Archimedean case, in concrete, we will start studying

such a relation for CM points over the modular curve (the simplest case possible).

Let E/Q be an elliptic curve of conductor N = p; - --p, M with all the factors prime

pairwise and all the numbers py, ..., p, prime. Let B be an indefinite quaternion algebra
split at infinity and at all the primes py, ..., p, i.e. there exists an embedding

t: B — MQ(@) X Mg(@pl) X+ X MQ(@pn>

Similarly to the single product case, we fix the standard Eichler order inside B of level
M i.e. the order that we will consider in this setting is

R = My(M) @ Z[1/pi] @ -~ ® Z[1/py).

Using the embedding associated to the quaternion algebra, we can define the congruence
subgroup associated to the collection of units in R which have norm 1

i () = {3 € SLatelip--op) ) s 1= (5 1) mod b}
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As we have considered in the other cases, this congruent subroup induces an action
over H (on the projection to the group My(M)) and ever Bruhat-tits tree 7, for all
the elements j € {1,...,n}.

8.1 Cusp forms over H X H, X ... x H,,

Before moving to the explicit definition of the cycles we are going to consider in this
section, it is necessary to extend the definition of cusp forms for an arbitrary product
of upper half-planes, where the first upper half-plane is Archimedean.

Definition 8.1. We say that a function
feHxET,) % x&ET,,) = C

is a cusp form of weight 2 on (H x E(Tp,) x - x E(T,,))/T if it satisfies

For all matrices (Z b) € I' the function f satisfies

d

f(yz,7€1, ..., ven) = (cz +d)*f(z,e1, ..., en).

Given any collection of edges (e1, ...,e,) € E(Tp,) X - E(Tp,), the function f, e,y =
f(—,e1,...,en) is a holomorphic function that satisfies for every coordinate j, we have

Given any collection of edges (e1, ...,e,) € E(Tp,) X ---E(Tp,) the function fre, .y is
a cusp form of weight 2 in T'e, N---NT¢, , where all the I'c; are the stabilizer of e; in T

Following the same notation as the last chapters, the collection of cusp forms of weight
2 over (H X Hy, X -+ X H,p, ) /T will be denoted as So((H x Hp, X -+ x H,,)/T).

One should note that for all n > 1, the conditions imposed on the cusp forms over
(HXE(Tp) x---xE(T,,))/T, we have that for all f € So((HxE(Ty,)x---xE(T,,))/T)
and e € £(7T,,), we have

f(=re) € So((H X E(Tp,) x -+ x E(Tp,,))/Te)

where I, is the stabilizer of e in I'. The following proposition will relate the general cusp
forms we have just defined with the common cusp forms of weight two over H /T'o(NV).
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o o

Proposition 8.2. The correspondence f + feo  co = f(—,e7,...,e;) induces an iso-
morphism

So(H x E(Tpy) % x E(T,,)/T) = (] 557" (H/To(N)).

7j=1,...,n

Proof. We start introducing a notation for the different C-vector spaces
Xy = 8, (M E(T) x X ET) [y p, ) for0<j<n.
The correspondence ¢ : X,, = X, defined by fixing e, ..., e, can be decomposed as
(pIXn%Xn,1—>"'—>X1—>X0

by fixing the different €7 in each step. The methods introduced in Proposition 5.2 imply
that all these maps are well-defined and injective, and, consequently, ¢ is injective. On
a similar way, given an f € Sy(H/T'o(/N)) which is new for all the primes py, ..., p,
we can construct recursively functions in X; which are the image of the previous ones
under the maps X; — X;_;, which proves the inclusion

) SPTHTo(N)) € p(Xn).

The equation of this last inclusion follows from the relation between the p;-new proper-
ties and the condition of the Harmonic condition in X specified in Proposition 5.2. [

The isomorphism given by this last proposition induces an action of the Hecke algebra
from the action in all the SPi="*"(H/I'y(N)). Following the methods described by
Darmon in [Dar01, p. 18], one can give an explicit expression for the action of Ty, for a
prime ¢ coprime to N, as

(To)(z, €1, ..., en)dz = Z f(vj_lz,vj_lel, ...,vflen)d(yj_lz)
J

where the collection of matrices {7;}, gives us a description of a disjoint union of left

cosets such that
¢ 0
T (0 1) = U%r.
J

Moreover, the isomorphism allows us to identify a cusp form f € So((H x H,p, X -+ X
H,,)/T') which is related to the cusp form fr associated to the elliptic curve E given
by the modularity theorem.
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In light of the definition we have given over the product of two upper half planes, we
can generalize such construction for H x Hy, X --- x H,, for elements 7;1,7;2 € H”
and z,y € H* as

Tn,2 n 71,2 ) Tn— 12
/ / / =2 / / / o
Tn,1 71,1 z €r(Tn,1)—=7(Th,2) Tn

One should note that this definition is recursive and, in fact, most of the generalizations
we are going to specify will consist of reducing the n-integration case to the one we have
studied before. It follows from the definition that the n-integrals of the function f will
be I'-invariant i.e. for all v € T’

VYTn,2 n YT1,2
e wf — wf
YTn,1 Y71,1 Tn,1

If we fix an element 7 € H and a vector v e T, - X 771”7 we can define the n-cocycle
dr: T" = C as

Y1 YnYn+1Un Y172v1 T
o n
dT,ﬁ(’ylv"wfynu’}/n—i-l) — / / / w
Y1 YnUn Y1v1 T

In order to prove that this cocycle is indeed trivial in its associated cohomology group,
we shall check the following property of the n integrals we have defined in this section.

Lemma 8.3. Given z,y € P(Q) and a collection
71 € Hy with t € {1,...,n} and j € {1,2},

we have that the associated integral satisfies

Tn,2 n 71,2 Yy
/ / / wy € A
Tn,1 T1,1 z

Proof. The proof of this lemma follows from the definition of the integral and the first
part of Lemma 6.2. ]

Similarly to the case where n = 1, we are able to prove that the n-cocycle is trivial in
its cohomology group.

Proposition 8.4. The class of d,5 in H*(I',C/A) is trivial.

Proof. Let € : IT™ — C an n-cocycle defines as

YnZn n Y1v1 T
E(V1y s ) = / / / wr.
In V1 o0

The proof follows from showing that the coboundary map of £ is equal to CZT@ modulo
A, following a similar computation to the one we have done for n = 1 and the previous
lemma. O]
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In order to show that the definition of £ does not depend on the choice of 7 and ¥, we
should show that the group of n-cocycles has finite exponent.

Lemma 8.5. The group of n-cocycles on I' has finite exponent.

Proof. Similarly to the case shown by Bertolini-Darmon-Green, we have that I' acts
trivially on C/A and, consequently the group of n-cocycles is

Hom(I'™,C/A) = Hom((I'™)®,C/A).

The rest follows from the Corollary of Theorem 3 of [Ser70]. O]

8.2 Finite dimensional periods and Heegner points

In this subsection, we will construct certain periods on H x H,, X --- X H,, and prove
that they satisfy similar properties to the ones stated at the main theorem of complex
multiplication.

Let O C K be an Z[1/q; - - - gy]-order of discriminant prime to N. The definition of
optimal oriented embeddings is easily extended to this setting with respect to O and
R. We denote the collection of these embeddings as

Emb(O, R).

Given an optimal oriented embedding ®, we consider the collection of matrices vy 1, ..., Yo.n
which are the images of the generators of O; through ¥. Using this notation, we define
the period associated to ¥ as

V¥, nTn n Y¥,101 v
Jq; = 57-%17(’}/\1;71, ...,’7\1,,”) = / s / / Wf S C/A

V1 00

One should recall that we have shown that the definition of this period does not depend
on the vector of vertices ¥ we have chosen. Let Oy C O the maximal Z[1/q; - - - gn-1]-
order. We fix a prime q|¢ and we define h to be the order of q in Pic(Oy) if it is even
and twice the order if it is odd. )

Let Hy be the ring class of Oy and H := Hg %1 the g-narrow class field. The following
Theorem generalizes the main theorem of complex multiplication to the periods we have
defined.

Theorem 8.6. All the periods associated to optimal oriented embeddings ¥V € Emb(O, R)

satisfy the statement of the main theorem of complex multiplication. In other words
n(Jy) € E(H) is a global point and for all a € Pic? (),

n(Jus) = rec(a) (o).
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Proof. We will prove the statement by induction over the variable n. The case n = 1
is the common theorem of complex multiplication. For a general n > 0, let Ry C R be
an Eichler Z[1/q, ..., ¢,_1]-order of level N*gq, and ¥y € Emb(Oy, Ry) be the optimal
oriented embedding who’s conjugacy classes give rise to the conjugacy classes of . By
direct computation, we get that

t—1 o o
J, — Z j fyxpgj,nq "1 ng],l ! v
v — qu wf
]:0 Tn—1 U1 D

Sine we have reduced to expression of the period to a product of periods for the case
n — 1, the statement follows by the induction hypothesis. O

This result is a priori surprising, since it assures us that the periods constructed over
H x Hg X - H,g, will always satisfy the properties of the main statement of Complex
Multiplication as long as our data (N, K') satisfies the Heegner Hypothesis.

It is easy to show that if such a hypothesis were not to be satisfied, we would not
have optimal oriented embeddings in any of the possible rigid analytic spaces and,
consequently, we would not be able to construct the periods. As we have pointed out
before, the Heegner hypothesis should be seen as a principle that forces us to choose a
concrete Shimura curve depending on our data (in this case, the data forces the modular
curve). This result has a similar effect: After choosing the based Modular curve for our
Heegner points, one has to choose an appropriate rigid analytic space to construct our
periods on. One should notice that the rigid analytic space H X Hy, X - - H,, is closely
related to the ring associated to the order O we consider, Z[1/q; - - - ¢,], and that the
number of primes is equal to the Z-rank of O*.

Now we are going to generalize this result to non-Archimedian settings, and we will see
that the value rkz(O*) will give us useful information about the values of the periods
in the cases where the underlying Shimura curve is not the modular curve.

8.3 Cusp forms over T, x T, X ... x H,,
For this setting, we are going to consider a decomposition of the level N of the form
N=pq-qN"N",

where p, q1, ..., q, are prime and all the factors are prime pairwise. We also consider a
quaternion algebra B/Q of discriminant N~ and split at all primes p, g1, ..., g, i.e. there
exists an embedding

t: B — My(Qp) x My(Qq,) X -+ x My(Qy,).

We also consider R C B an Eichler Z[/pq; - - - g,]-order of level N* and we define the
congruence subgroup I' := (Ry). We follow a similar notation to before, and we
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will denote the components of the elements of I' as (7, V4,5 ---s Vg, ). After fixing this
notation, we are in a position to define cusp forms over 7, X Tg, X -+ X H,, .

Definition 8.7. We define a cusp form of weight 2 on (T, x Ty, X -+ X H,,)/T as a
function

[Ty x Ty X xHy —C,,
satisfying

For all v € T' such that v, = (CCL Z), we have that f(Vpep, Yo €ars - Yau 2) = (€2 +

d)2f(ep,€qyy s 2).
Given z € Hq and eq; € E(Ty;) for j € {1,..,n — 1}, we have that the restriction
fteqs ) = f(=1 €415 -5 2) s an Harmonic cocycle.

For each e € £(T,), the restriction f. := f(e,—) is a cusp form of weight 2 on T, X
oo X Ty, X Hg with respect to the stabilizer I'c of e in .

The collection of cusp forms of weight 2 on (T, X Ty, X -+ x H,,)/T" will be denoted as
So((Tp X Ty X -+ X Mg, )/T).

Recursively, one can find that the space of the cusp forms we have defined is isomorphic
to a subgroup of a similar rigid analytic space with n — 1 primes.

Lemma 8.8. The assignment that restricts every cusp form to eq € E(T,,) induces an
1somorphism

So((Tp X Tgy %+ o X Mg, )/T) = S5 ((Ty X Tgy X -+ X He,_y)/1),
where T is the Fichler Z[1/pq1 - + - gn—1]-order of level N*q,.

Proof. The proof follows from similar computations to the ones we have explicitly writ-
ten before. n

Using this lemma recursively we can consider a cusp form f € Sy((T, x Ty, - -xH,,)/T)
which is related to the p-adic cusp form we have defined in previous sections associated
to the elliptic curve E by the theorey of p-adic uniformization, Jacquet-Langlands and
the modularity theorem.

We define the Harmonic cocycle associated to f also recursively. Given (vj1,v;2) €
(V(7,,))? pair of vertices for all j € {1,...,n} and e € £(T,), we define

/if{’l]l’l — ULQ} <o {Un,l — Un,g}(e) = Z Hfﬁ{vl,l — ULQ} <o {Unfl,l — ’Un,LQ}(E).

€:Un,1—Un,2

We denote the measure of P'(Q,) associated to the Harmonic cocycle of the type we have
just defined as pp{vi1 — via}---{vn1 — vn2} and we define the following integral.
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Definition 8.9. Given (vj1,v;2) € (V(T,,))* pair of vertices for all j € {1,...,n} and
T1,Te € Hp, we define the n + 1-integral as

][ / / ntd _][ (i = 2) pp{vig = vigh e {ong = va2}(t).

Given an arbitrary cusp form g, we consider the associated I'-invariant harmonic cocycle
Ay, defined by the assignment

(€1, €nr€) = kg, (e).

.....

The following proposition gives us a similar assignment to the one that Bertolini-
Darmon-Green proved for the case n = 1.

Proposition 8.10. There exists a cusp form f# € So((H, X Ty X -+ x Ty, )/T) such
that A = A ps.

Proof. The proof is given by proving an Hecke-equivariant isomorphicm between o((7, x
Ty X=X Hg,)/T) and So((T, X Ty, % -+ - x T,,)/T') and then use the fact that A, takes
vlaues in Z. O

The following Theorem relates the integral we have defined with an a new type of
n + 1-integral defined for the cusp form f7#.

Theorem 8.11 (Fubini). We have the following equality

A B S A

where the right side of the equation is defined as
Un2 V1,2 T2 Un-12
[ L
Un,1 v, YT evi—vg Y Un—1,1
Proof. The proof is given by explicit computations similar to the case n = 1. O

The result of this theorem allows us to extend the definition of semidefinite integral (in
a recursive way) to the setting we are studying.

Definition 8.12. Let 7 € H,, and (vj1,v;2) € (V(Ty,))? pair of vertices for all j €
{1,...,n}. We define the semi-idefinite n + 1-integral as

Lol feome I e

€:V]—V2

where f¥ is the restriction of f¥ to e in its first coordinate.
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Given a 7 € H, and a vector of vectices v € V(T,,) X --- x V(T,,) (we denote its
components by the prime subindexes), we define the following N + 1-cocycle

Y1 YnYn+1Un Y17Y201 Y1 T

~ n

dri ;:/ / ][ W
Y1 YnUn Y1v1 T

The following proposition will show us that the class of this cocycle in H" (T, C,/ q%) is
trivial, and consequently, we can consider an n-cochain for the definition of our periods
in the next subsection.

Proposition 8.13. The class of d, is trivial in H™(T, Cx/q7).

Proof. We consider the n-cochain & 5 : T — C)/ ¢% defined as

Tl YOIVl LT
67,5(71a"'77n> = / / f wf#
Tn vy

By similar computations to the ones given by Bertolini-Darmon-Green one can prove
that dy 7 and &, 7 are equal modulo ¢Z. O

8.4 Generalization of the Heegner Hypothesis

We will finish this document showing that similar periods to the ones we have defined on
the Archimedean construction exist for non-Archimedean settings and proving a gener-
alization of the Heegner hypothesis for the general settings we have studied throughout
this thesis.

Let O C K beaZ[1/pg - - - gn]-order of discriminant prime to N. One can easily extend
the definition of optimal oriented embeddings with respect to O and R; we will denote
this collection as

Emb(O, R).

Given an optimal oriented embedding W, we consider the collection of matrices g 1, ..., Yo
which are the images of the different generators of O; through the map «¥. Using this,
we can define the period associated to an optimal oriented embedding W as

YU, nTn n Y¥,1V1 T o 7
J\If = 57_‘1/71—;(’)/\1;71, "'77‘1’@) = / .o / f wf# - Cp /qT
Tn v1

As mentioned before, the definition of the period does not depend on the choice of the
collection of vertices v. Before continuing, we will impose the following conditions on
the level N

e all primes dividing ¢; - - - ¢, N are split in K,

e all primes dividing pN~ are inert in K.
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Fix a prime q,|¢, in K and Oy C O the maximal Z[1/pgq; - - - ¢,—1]-order. Consider the
sign w,, of the elliptic curve E with respect to the prime g, and let A be the order
of the prime in Pic(Qp). The following lemma assures us that the periods Jg will be
trivial under a concrete assumption of i and wy,.

Lemma 8.14. If h is odd and w,, = —1 then Jy = 1.

Proof. Similarly to the two-dimensional case, the proof is given by using the properties
of the integral and reaching an equation that only 41 can satistfy. O]

The following theorem will generalize the theorem of complex multiplication to the
periods we have just defined under the conditions we have assumed. Let Hy be the
ring class field of the order Oy and oy, be the associated element in Gal(Hy/K) to the
prime q,. We consider the subfield H C Hj fixed by the action of the element afln.

Theorem 8.15. Given any ® € Emb(O, R), the value n,(Jy) is a global point in E(H)
satisfying that for all a € Pict(O),

Np(Jaa) = rec(a)_lnp(Jfb)-

Proof. We will prove the theorem by induction over the set of primes {q,...,¢,}. The
case n = 0 is the main theorem of complex multiplication. If we consider an arbitrary
n > 0 and an optimal oriented embedding ® € Emb(O, R), by definition we have that

h TnTn Y1v1 T
n—1
j=1"2n v1

Consider the Eichler Z[1/pq; - - - ¢,_1]-order Ry C R of level N*g, and a collection

Ul je{l, .., h}
of representatives of the conjugacy classes of Emb(Oy, Ry), which gives rise to the
conjugacy class of U. Let Tyi the fixed points associated to the optimal oriented em-

beddings \Ilé and fp the cusp form we obtain by restricting f to ey € £(7,,). By explicit
computations, one gets that in the case when h is even, the period has the following

expression
h

Yn—1Tn—1 Y1v1 T_j w?)n
n—1 d%
J\I’ = o o (,Uf .
Tn—1 V1

=0
On the other hand, if ~ is odd and w,, =1 (avoiding the trivial case), we have that

h

Tn—1Tn—1 n—l Y1v1 T@% 2
Jy = H i wr ) .
Tn—1 U1

Jj=0

In both cases, we have that the period reduces to a product of periods of the case n—1,
which by induction satisfies the statement of the theorem. m
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This Theorem is a generalization of the main complex multiplication theorem for a very
concrete setting. The following theorem explicitly tells us under which conditions we
can construct the periods Jy and in which instances we can assure their triviality.

Theorem 8.16 (Generalization of Heegner Hypothesis). Let ¢y, ...q, be a non-repetitive
collection of primes strictly dividing N which are not p and consider the ring T =
Z[1/pq1 - - qn). Given an T-order O, the values n(Jy) associated to the period Jy con-
structed on the rigid analytic space

Hy X Hey X - X Hy,

as described in this section, for any optimal oriented embedding ® € Emb(O, R), it sat-
1sfies the main theorem of complex multiplication if and only if K satisfies the Heegner
Hypothesis. In other words, the underlying Shimura curve X+ ,n- satisfies

all primes dividing N are split in K,

all primes dividing pN— are inert in K.

Furthermore, the values n(Jy) will be trivial in all the instances were the strict inequality
T]{Jz(ox) <n
15 satisfied i.e. at least one of the primes qi, ..., q, 1S tnert in K.

Proof. As we have mentioned before we have that the existence of a non-trivial col-
lection of optimal oriented embeddings Emb(O, R) happens if and only if the Heegner
Hypothesis is satisfied. If one of the primes ¢, ..., g, is inert in K there is one of the
paths of the reduced Bruhat-Tits trees becomes trivial and, consequently, Jg = 1 for
all U € Emb(O, R), which satisfies the statement trivially. If all the primes are split,
then it is the only case where rkz(O*) = n and the proof is given by the previous
theorem. O

As mentioned before, this result, which can be relatively easily adapted to an Archimedean
construction of similar Heegner points over a Shimura curve, should induce us to make
two choices: First, one should choose the underlying Shimura curve depending on the
data (N, K), and secondly, depending on the Z[1/pq; - - - ¢,]-order O, one should con-
sider the periods associated to a rigid analytic space H, x Hy X --- X H,, Jy for a
given optimal oriented embedding ¥ € Emb(O, R). Furthermore, if one wishes to get
interesting periods i.e. aim for periods that might not be trivial, one should restrict to
the cases where the rank of the unit group O is equal to the number of primes that
we are considering i.e. by the generalization of the Dirichlet Unit Theorem that all the
primes ¢y, ..., g, are split in K.

One should notice that the restrictions to n = 0 and n = 1 are the common Heegner
Hypothesis and the results of Bertolini-Darmon-Green, respectively.
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