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Abstract

In the 1970s, Harold Stark proposed a series of conjectures which if true would bring some partial solution to the so-called Hilbert
Twelfth problem. In 2008, Pierre Charollois and Henri Darmon (see [CD08]) proposed an interesting refinement of a special case of
the rank one Stark conjecture in the setting of ATR fields (Almost Totally Real field). They consider a base field 𝐾 which is ATR and
which is also a relative quadratic extension of a totally real field 𝐹 of class number one. Their refinement provides a conjectural analytic
expression for the complex Stark number itself, and not just its absolute value, in the setting of 𝐹 -ring class fields over 𝐾 . In this
thesis, we provide a generalization of their construction in the setting of 𝐹 -ray class fields over 𝐾 . We consider a zeta functions of
level 𝑓 over 𝐾 where 𝑓 is an element of 𝐹 and we give a conjectural expression for the complex Stark number associated to this zeta
function, and not just its absolute value. Our formula consists in integrating an Eisenstein series of parallel weight 2 over a suitable real
analytic chain on the corresponding Hilbert modular variety of 𝐹 and level 𝑓 . In the first part of this work, we provide some theoretical
background. Secondly, for pedagogical reasons, we then choose to reformulate the version of the Stark conjecture which arises in our
setting with the help of an integral formula which computes the logarithm of the absolute value of the Stark number. Finally, at the end
of this work, we present our generalization which can be viewed as a natural refinement of the previous integral formula.

Abrégé
Dans les années 70, Harold Stark a proposé une série de conjectures qui, si vraies, apporteraient une résolution partielle au 12e problème
de Hilbert. En 2008, Pierre Charollois et Henri Darmon (voir [CD08]) ont proposé un raffinement de la conjecture de Stark en rang
un lorsque le corps de base est un corps ATR (Almost Totally Real). Les auteurs considèrent un corps de base ATR 𝐾 qui est une
extension quadratique relative d’un corps 𝐹 totalement réel ayant un nombre de classe égal à un. Leur raffinement propose de manière
conjecturale une expression analytique pour le nombre complexe de Stark lui-même et non pas seulement pour sa valeur absolue dans
le contexte des 𝐹 -corps d’anneau au-dessus de 𝐾 . Dans ce travail nous considérons une généralisation de leur construction dans le
contexte des 𝐹 -corps de rayon de 𝐾 . Nous considérons une fonction zêta de niveau 𝑓 sur 𝐾 où 𝑓 est un élément de 𝐹 et nous proposons
une expression conjecturale pour le nombre complexe associé à cette fonction zêta et non pas seulement pour sa valeur absolue. Notre
formule consiste à intégrer une série d’Eisenstein de poids parallèle 2 sur une chaîne réelle analytique convenable d’une certaine variété
modulaire de Hilbert associée à 𝐹 et de niveau 𝑓 . Dans la première partie de ce travail, nous présentons certaines notions de base
qui seront essentielles pour la suite. Deuxièmement, pour des raisons pédagogiques, nous avons choisi de reformuler la version de la
conjecture de Stark qui intervient dans notre contexte à l’aide d’une formule intégrale qui calcule la valeur absolue du nombre de Stark.
Finalement, comme derrière partie de ce travail nous présentons notre généralisation laquelle peut être vue comme un raffinement de la
formule intégrale précédente.

Resum
En els anys 70, Harold Stark va proposar un seguit de conjectures que de ser certes donarien una solució parcial del 12è problema de
Hilbert. Al 2008, Peirre Charollois i Henri Darmon (observeu [CD08]) van proposar un refinament interessant de la Conjectura de Stark
de rang 1 per a cossos Quasi Totalment Reals. Consideren un cos 𝐾 Quasi Totalment Real que també sigui una extensió quadràtica de
un cos totalment real 𝐹 amb un nombre de classes trivial. El refinament de Charollois-Darmon proporciona una expressió conjectural
per a nombres de Stark Complexes, en comptes de per a el seu valor absolut, de 𝐹 -cossos d’anells sobre 𝐾 . En aquesta tesis, proposem
una generalització de la seva construcció per a 𝐹 -cossos de rajos sobre 𝐾 . Considerem les funcions zeta de nivell 𝑓 sobre 𝐾 on 𝑓 és
un element de 𝐹 i donem una expressió conjectural dels nombres de Stark complexes associats a aquestes funcions zeta. Les nostres
formules es basen en integrar unes series d’Eisenstein de pes 2 sobre un cicle de la corresponent varietat modular de Hilbert de 𝐹 . En
la primera part d’aquest document, proporcionarem el coneixements previs necessaris per entendre els nostres resultats. Segonament,
per raons pedagògiques, considerarem una reformulació de la Conjectura de Stark que apareix en la nostre distribució ajudant-nos
de una expressió que relaciona la integral de una forma diferenciable amb el valor absolut del nombre de Stark. Finalment, al final
d’aquest document, presentem la nostre generalització que pot ser vista com un refinament natural de la formula integral mencionada
anteriorment.trivial.
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Intoduction

To introduce the objectives of this document, we shall give a motivational example which underpins the Charollois-
Darmon construction paper [CD08] and take this opportunity to introduce some basic concepts. Let 𝐾 be a
number field and let

𝑆∞ = {𝑣1, ..., 𝑣𝑡}

be the collection of its archimedean places. We let 𝑛 = 𝑟1 + 2𝑟2 where 𝑟1 is the number of real embeddings of
𝐾 and 2𝑟2 is the number of complex embeddings of 𝐾; so that 𝑡 = 𝑟1+ 𝑟2. For every element 𝑥 ∈ 𝐾× and place
𝑣 ∈ 𝑆∞ we define a sign function 𝑠𝑣 ∶ 𝐾× → {±1}

𝑠𝑣(𝑥) ∶=
{

sign(𝑣(𝑥)) if 𝑣 is real
1 if 𝑣 is complex

Let 𝐾 be the ring of algebraic integers of 𝐾 . We say that an element 𝑥 ∈ 𝐾× is fully positive if for all 𝑣 ∈ 𝑆∞
we have that 𝑠𝑣(𝑥) = 1. We shall denote the collection of fully positive integers of 𝐾 and 𝐾 as 𝐾+ and 𝐾,+,
respectively. In particular, we have that

𝑥 ∈ 𝐾,+ ⟺ 𝑠𝑣(𝑥) = 1, ∀𝑣 ∈ 𝑆∞

Given an 𝐾 -fractional ideal 𝐼 ⊆ 𝐾 , we shall denote the collection of fully positive units of 𝐾 congruent to
1 modulo 𝐼 by ×

𝐾,+(𝐼). Given 𝔞 ⊆ 𝐾 a fractional ideal, we associate to the pair (𝔞, 𝐼) the partial 𝐿-Function
of Hurwitz as

𝐿(𝔞, 𝐼, 𝜔; 𝑠) ∶= 1
(𝐍 𝔞)𝑠

∑

𝑥∈
(

(1 + 𝐼𝔞−1)
/

×
𝐾,+(𝐼)

)

𝑥≠0

𝜔(𝑥)
|

|

|

𝐍𝐾∕ℚ(𝑥)
|

|

|

𝑠 (1)

where 𝜔 ∶ 𝐾× → {±1} is a choice of a sign character. We shall point out that we think of 𝐼 as a level of the
zeta function. Furthermore, 𝔞−1 is the inverse ideal of 𝔞 and 𝑠 ∈ ℂ is a complex number such that ℜ(𝑠) > 1 so
that the series converges absolutely.
For the scope of this document, we shall be mainly interested when 𝜔 is equal either to 𝜔0 ∶= sign ◦𝐍𝐾∕ℚ or
𝜔1 ∶= (sign ◦𝐍𝐾∕ℚ)∕𝑠𝑣1 . It can be shown that this 𝐿-function admits a meromorphic continuation to the whole
complex plane with a possible pole at 𝑠 = 1. For every unit 𝜖 ∈ ×

𝐾 it is straightforward to check that

𝐿(𝜖𝔞, 𝐼, 𝜔; 𝑠) = 𝜔(𝜖) ⋅ 𝐿(𝔞, 𝐼, 𝜔; 𝑠)

In particular, it should be pointed out that if there exists a unit 𝜖 ∈ ×
𝐾 (𝐼) such that𝜔(𝜖) = −1 then𝐿(𝔞, 𝐼, 𝜔; 𝑠) ≡

0 (identically equal to zero). Note also that if 𝑡 > 2 and 𝜔 = 𝜔1, then the 𝐿-function in (1) has an order of
vanishing at least one at 𝑠 = 0. For any real place 𝑣 ∈ 𝑆∞, let 𝛼𝑣 ∈ 𝐾 be an algebraic integer satisfying the
conditions that

𝛼𝑣 ≡ 1 (mod 𝐼), 𝑠𝑣(𝛼𝑣) = −1 and 𝑠𝑣′(𝛼𝑣) = 1 if 𝑣 ≠ 𝑣′

These elements will give rise to complex conjugations in the abelian extension of 𝐾 prescribed by the ideal 𝐼 .
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Introduction Carlos Caralps

In order to give an explicit expression of the ray class group of modulus 𝐼 , in the narrow sense, we need to
introduce a monoid of integral ideals coprime to 𝐼


(𝐼) ∶=

{

𝔞 ⊆ 𝐾 an 𝐾 -ideal ∶ 𝔞 + 𝐼 = 𝐾
}

We also need to consider the collection of elements in 𝐾 fully positive and congruent to 1 mod 𝐼

𝑃+
𝐾 ,1

(𝐼) ∶=
{

𝜆 ∈ 𝐾 ∶ 𝜆 ≡ 1 (mod 𝐼) and 𝜆 ≫ 0
}

The ray class group of 𝐾 can be expressed as a quotient of the last two sets, understood through the relation of
ideals in 𝐾

by multiplication of elements in 𝑃+
𝐾 ,1

(𝐼)

Cl+𝐾 (𝐼) ≅ 
(𝐼)

/

𝑃+
𝐾 ,1

(𝐼)

From class field theory we know that there exists an abelian extension 𝐾(𝐼∞) over 𝐾 , the ray class field of
modulus 𝐼 in the narrow sense, such that its Galois Group is canonically isomorphic to the class group Cl+𝐾 (𝐼).
Since 𝐼 is fixed we let 𝐻 ∶= 𝐾(𝐼∞) and we consider

rec ∶ Cl+𝐾 (𝐼) → Gal(𝐻∕𝐾)

the reciprocity isomorphism given from class fields (it is defined in detail in Section 1.2). We define the complex
conjugation associated to an infinite place 𝑣 ∈ 𝑆∞ as

𝑐𝑣 =
{

rec
(

𝛼𝑣𝐾
)

if 𝑣 is real
Id if 𝑣 is complex

In particular, note that 𝑐𝑣 is either trivial or an involution (an element of order two). If 𝑣 is a lift of 𝑣 to 𝐻 then
𝑐𝑣 is an involution precisely when 𝑣 is real and 𝑣 is complex. From now on, we suppose that the place 𝑣1 splits
in 𝐻 (i.e. 𝑐𝑣1 = 1) and that the remaining places ramify (i.e. 𝑐𝑣𝑘 is non-trivial for 2 ≤ 𝑘 ≤ 𝑡). Let 𝑣1 be a lift of
𝑣1 to 𝐻 and let 𝑒𝐻 denote the number of roots of unity of 𝐻 . We are now ready to state the Stark Conjecture
which gives a precise relationship between the first derivative of the 𝐿-functions at 𝑠 = 0 and the so-called
“Stark number”.

Conjecture (Stark Conjecture). Let 𝑣1 ∈ 𝑆∞ be a choice of a lift of 𝑣1 to 𝐻 . Then for any fractional ideal
𝔞 ⊆ 𝐾 there exists an algebraic number 𝑢𝔞 ∈ 𝐻 , called the Stark number, such that

(i) 𝐿′(𝔞, 𝐼, 𝜔1, 0) =
1
𝑒𝐻

log |𝑣1𝑢𝔞|2

(ii) 𝑐𝑣1(𝑢𝔞) = 𝑢𝔞

(iii) If 𝑡 ≥ 3, then 𝑐𝑣2𝑢𝔞 = ⋯ = 𝑐𝑣𝑡𝑢𝔞 = 𝑢−1𝔞

(iv) For all [𝔟] ∈ Cl+𝐾 (𝐼), we have 𝑢𝔞𝔟−1 = rec(𝔟) 𝑢𝔞
Remark. In [CD08] the authors assume that the 𝛼𝑣’s are units but doing so automatically implies that the
potential complex conjugations 𝑐𝑣’s are trivial since rec(𝜖𝑣𝐾 ) = Id because 𝜖𝑣𝐾 = 𝐾 . Furthermore, if
𝑡 > 2, this assumption when combined with (iii) readily implies that 𝑢𝔞 = 𝑢−1𝔞 i.e. 𝑢𝔞 ∈ {±1}.

The computation of Stark numbers is an interesting and non-trivial problem which allows one to test the conjec-
ture but also to construct explicitly specific abelian extensions over 𝐾 (relation with the 12th Hilbert Problem).
In the case where the place 𝑣1 is real, since 𝑐𝑣1 = Id, it follows that 𝑣1 is also real and therefore the quantity
log |𝑣1𝑢𝔞| determines 𝑢𝔞 up to a sign.
It is possible to rewrite the 𝐿-function 𝐿(𝔞, 𝐼, 𝑠) in a more uniform way using what we call a lattice zeta function.
Given any lattice 𝔫 ⊆ 𝐾 (not necessarily an 𝐾 -ideal) and a pair of elements 𝑎, 𝑏 ∈ 𝐾 we define

𝑍𝔫(𝑎, 𝑏, 𝜔; 𝑠) = 𝐍(𝔫)𝑠
∑

𝑥+𝑎 ∈
(

+
𝑎,𝑏,𝔫

\(𝔫 + 𝑎)
)

𝑥+𝑎 ≠ 0

𝜔(𝑥 + 𝑎) ⋅ 𝑒2𝜋 i 𝐓𝐫𝐾∕ℚ(𝑏(𝑥+𝑎))

|

|

|

𝐍𝐾∕ℚ(𝑥 + 𝑎)||
|

𝑠 (2)
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Recall that 𝜔 ∶ 𝐾× → {±1} is a choice of a sign character, ℜ(𝑠) > 1 and +
𝑎,𝑏,𝔫 is a certain finite index

subgroup of ×
𝐾,+. It follows from the definition that 𝐿(𝔞, 𝐼, 𝜔1, 𝑠) = 𝑍𝐼𝔞−1(1, 0, 𝜔1; 𝑠) and one can show that

for all 𝑎 ∈ 𝐾

𝜕
𝜕𝑠

𝑍𝐼 (𝑎, 0, 𝜔1; 𝑠)
|

|

|

|𝑠=0
= 𝜋

2
i𝑟1 |𝑑𝐾 |1∕2𝑍𝐼∗(0, 𝑎, 𝜔1; 1) (3)

where 𝐼∗ denotes the dual lattice of 𝐼 with respect to the trace pairing and 𝑑𝐾 corresponds to the discriminant of
𝐾 . In particular, when the identity (3) is combined with the Stark conjecture we obtain that the absolute value
of the Stark number 𝑢𝔞 can be calculated in terms of the value of a lattice zeta function at 𝑠 = 1 (instead of a
first derivative at 𝑠 = 0 of the dual lattice zeta function).
When the place 𝑣1 is complex so that 𝑣1 is automatically complex, the element 𝑣𝑖𝑢𝔞 is a priori a complex number
and therefore it is not possible to recover directly this number from its absolute value since the argument of 𝑢𝔞
is lost. Charollois and Darmon proved a theorem [CD08, p. 671] that relates certain Eisenstein series with the
values of 𝐿′(𝔞, 𝐼, 𝜔1, 0) when 𝐼 = 𝐾 (the trivial level) and when 𝐾 is a relative quadratic extension of a totally
real field 𝐹 of narrow class number 1. Moreover, in that case, they give a conjectural formula for the complex
number 𝑣1𝑢𝔞 and not just for its absolute value. We should also point out that their construction is more general
than what we just described since they can replace the maximal order 𝐾 of 𝐾 by non-maximal orders  ⊆ 𝐾
relative to 𝐹 ; such orders are of the form  = 𝐹 + 𝔠𝐾 where 𝔠 ⊆ 𝐾 is an integral ideal of 𝐹 (the conductor
of  relative to 𝐹 ). In that setting the Stark number 𝑢𝔞 is conjectured to lie in a ring class field of 𝐾 associated
to that order .
In this document, we shall present a generalization of the Charollois-Darmon construction for the lattice zeta
functions given in (2) by allowing the level 𝐼 to be non-trivial so that in that case the Stark numbers are con-
jectured to lie in the ray class fields of 𝐾 of modulus 𝐼 in the narrow sense (rather than ring class fields as
it was the case in the Charollois-Darmon construction). As in the Charollois-Darmon construction, we shall
also assume that 𝐾∕𝐹 is a relative quadratic extension of a totally real field 𝐹 with trivial narrow class group.
Moreover, partly because not all the details have been fully worked out and partly to simplify the presentation
we shall only formulate a conjecture when the ideal 𝐼 ⊆ 𝐾 is of the following specific form: we let �̃� ∈ 𝐹
be a prime element, totally positive, and of absolute degree one which splits in 𝐾 . This means in particular that
�̃� = 𝜛1 ⋅𝜛2 where 𝜛1 and 𝜛2 are distinct primes in 𝐾 of absolute degree one. We let 𝐼 ∶= 𝜛1𝐾 . In par-
ticular, we have that 𝐾∕𝜛1𝐾 ≃ 𝐹∕�̃�𝐹 ≃ 𝔽𝑝 where 𝐍𝐹∕ℚ(�̃�) = 𝑝 is a prime element of ℤ. Our approach
will rely heavily on a detailed study made by Hugo Chapdelaine in the preprint [Cha16] on the so-called lattice
Eisenstein series.
If we let 𝑔 ∶= [𝐹 ∶ ℚ] and 𝔞 ⊆ 𝐾 be a fractional ideal then the Stark conjecture, stated with detail in Section
1.2, predicts

𝜕
𝜕𝑠

𝑍𝜛1𝔞−1(1, 0, 𝜔1; 𝑠)
|

|

|

|𝑠=0
= − 1

𝑒𝐻
log |𝑣1(𝑢𝔞)|2

where 𝑢𝔞 is an algebraic number in 𝐻 = 𝐾(𝐼∞). The main objective of this document is to relate the values of
lattice zeta functions and their derivatives at 𝑠 = 0 with holomorphic lattice Eisenstein series of parallel weight
2 associated to the number field 𝐹 , which can be formally defined as

𝐸∗
2 (𝑏; 𝑧) = “

∑

(𝑚,𝑛)∈
(

𝐹 × 𝐹
/

+
0,𝑏,𝐹

)

(𝑚,𝑛)≠(0,0)

𝑒2𝜋 i Tr(𝛿𝑏𝑚)

𝐍 (𝛿(𝑚𝑧 + 𝑛))2
” (4)

where 𝑏 ∈ 𝐹 , Tr𝐹∕ℚ corresponds to the trace of 𝐹 and 𝛿 ∈ 𝐹 is a totally positive generator of ∗
𝐹 (the dual

lattice of 𝐹 with respect to the trace pairing). Note that the summation on the right hand side of (4) does not
converge absolutely (this is why we have put quotes) but it can be given a meaning using the Fourier series
expansion. Let

Γ ∶= Γ1(�̃�𝐹 ) ≤ 𝑆𝐿2(𝐹 ) and  ∶= Γ
\𝔥𝑔 (5)
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Here  is a complex analytic space with 𝑝− 1 cusps. It is known that  can be viewed as the set of ℂ-points of
a quasi-projective variety which is called a Hilbert modular variety. Using the holomorphic lattice Eisenstein
series of weight 2 we can associate the following closed differential form on  of degree 𝑔 = [𝐹 ∶ ℚ]:

Ω𝐸𝑖𝑠(𝑏; 𝑧) ∶=

⎧

⎪

⎨

⎪

⎩

−𝐸∗
2 (𝑏; 𝑧) 𝑑𝑧1 ∧ 𝑑𝑧2 +

𝑅�̃�
𝐹
2

(

𝑑𝑧1∧𝑑�̄�1
𝑦21

− 𝑑𝑧2∧𝑑�̄�2
𝑦22

)

if 𝑔 = 2

i−𝑔 𝐸∗
2 (𝑏; 𝑧) 𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑔 if 𝑔 > 2

Here 𝑅�̃�
𝐹 is the regulator associated to the group of units ×

𝐹 (𝜛). In Sections 2 and 3 we will generalize the
analogous theorems from [CD08] for these zeta functions by providing an analytic expression for the Stark
number 𝑢𝔞.

1. 𝐾 is totally real and 𝜔 = 𝜔0. Let us assume that 𝐾 is a totally real field (i.e. if 𝑣1 is real). In order to
simplify the presentation we shall also assume that the ideal 𝔞 is of the form 𝔞 = 𝐹 + 𝜏𝐹 for some
𝜏 ∈ 𝐾 . Let 𝛾 ∈ Γ1(�̃�𝐹 ) be a matrix which stabilizes 𝜏. Since 𝐾 is totally real it follows that the matrix
𝛾 must be totally hyperbolic. It thus follows that for each 1 ≤ 𝑗 ≤ 𝑔, the matrix 𝛾 (𝑗) ∈ 𝑆𝐿2(ℝ) associated
to the 𝑗-th embedding of 𝛾 has two fixed points in ℙ1(ℝ) which we denote by 𝜏𝑗 , 𝜏′𝑗 where 𝜏𝑗 < 𝜏′𝑗 . Note
that the collection {𝜏𝑗 , 𝜏′𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑔} corresponds to the set of all ℚ-conjugates of 𝜏 ∈ 𝐾 . In particular,
we can associate to 𝜏 the following totally geodesic real analytic submanifold of 𝔥𝑔 of real dimension 𝑔:

𝑅𝜏 = Υ[𝜏1, 𝜏′1] ×⋯ × Υ[𝜏𝑔, 𝜏′𝑔]

We let Δ𝜏 be the image of of 𝑅𝜏 in  which is a 𝑔-cycle on  which is topologically homeomorphic to
(𝑆1)𝑔. We shall prove the following Taylor series expansion which relates a lattice zeta functions at 𝑠 = 0
to an integral of an Eisenstein series defined over 𝐹 :

𝑍𝔞(𝑎, 𝑏, 𝜔0; 𝑠) =
𝑑𝐹

√

𝑑𝐹
𝐍𝐾∕ℚ(𝜈) ∫Δ𝜏

Ω𝐸𝑖𝑠 + 𝑂(𝑠) as 𝑠 → 0 (6)

2. 𝐾 is ATR and 𝜔 = 𝜔1. Let us assume now that 𝐾 is an almost totally real field (i.e. if 𝑣1 is complex).
As before let us assume to simplify that the fractional 𝐾 ideal 𝔞 ⊆ 𝐾 has the form 𝔞 = 𝐹 + 𝜏𝐹 for
some 𝜏 ∈ 𝐾 . Let 𝛾 ∈ Γ1(𝜛𝐹 ) be a matrix which stabilizes 𝜏. Since 𝐾 is ATR it follows that the matrix
𝛾 has exactly one elliptic component and 𝑔 − 1 hyperbolic ones. Let us assume that 𝛾 (1) ∈ 𝑆𝐿2(ℝ) is
elliptic with 𝜏1 ∈ 𝔥 as its fixed point. For 𝑗 ≥ 2, the matrices 𝛾 (𝑗) ∈ 𝑆𝐿2(ℝ) admit two fixed points in
ℙ1(ℝ) which we denote by 𝜏𝑗 , 𝜏′𝑗 where 𝜏𝑗 < 𝜏′𝑗 . Note that the collection {𝜏𝑗 , 𝜏′𝑗 ∶ 2 ≤ 𝑗 ≤ 𝑔} ∪ {𝜏1, 𝜏1}
corresponds to the set of all ℚ-conjugates of 𝜏 ∈ 𝐾 . In particular, we can associate to 𝜏 the following
totally geodesic real analytic submanifold of 𝔥𝑔 of real dimension 𝑔 − 1:

𝑅𝜏 = {𝜏1} × Υ[𝜏2, 𝜏′2] ×⋯ × Υ[𝜏𝑔, 𝜏′𝑔]

Let Δ𝜏 be the image of 𝑅𝜏 in  . It is a (𝑔 − 1)-cycle which is topologically homeomorphic to (𝑆1)𝑔−1.
It will be proved that Δ𝜏 , modulo torsion, is a (𝑔 − 1)-boundary so that there exists a 𝑔-chain 𝐶𝜏 on  ,
well-defined up to a 𝑔-cycle of  , such that 𝜕𝐶𝜏 = Δ𝜏 . Moreover, we shall prove the following Taylor
series expansion

𝑍𝜛1𝔞−1(1, 0, 𝜔1; 𝑠) = 𝑠

(

𝑑𝐹
√

𝑑𝐹
𝐍𝐾∕ℚ(𝜈)

√

𝜋

)

∫𝐶𝜏

Ω+
𝐸𝑖𝑠 + 𝑂(𝑠2) as 𝑠 → 0 (7)

where Ω+
Eis is the real part of the form ΩEis.

Since here 𝑣1 is complex (so that 𝑣1 is also complex) we have that 𝜔0 = 𝜔1. We think here of the formula in (7)
as being an analogue of (6) where the totally real field 𝐾 in case 1 is replaced by an ATR field 𝐾 in case 2.
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Remark. When 𝐾 is totally real and 𝜔 = 𝜔1, there is also a formula analogous to (6) and (7) which involves
an Eisenstein series defined over 𝐹 of parallel weight 2 but this time twisted by a non-trivial unitary character
of weight (1, 0, 0,… , 0) of the ℂ-algebra (𝐹 ⊗ℚ ℂ)×. In particular, the resulting Eisenstein series is no longer
holomorphic in 𝑧. This Eisenstein series needs also to be multiplied by

(

(𝑧1 − 𝜏1)∕(𝑧1 − 𝜏1)
)1∕2 so that the

overall expression has parallel weight 2. But we do not pursue this line of investigation in this document.

As was pointed out earlier, the second theorem only provides an analytic expression for |𝑢𝔞| rather than the value
of 𝑢𝔞 ∈ ℂ itself because the argument of 𝑢𝔞 gets loss when one takes the absolute value. The main contribution
of P. Charollois and H. Darmon in [CD08] was to state a conjectural analytic expression for 𝑢𝔞 using an Abel-
Jacobi map defined from the classical holomorphic Eisenstein series of parallel weight 2 associated to 𝐹 . In
this work, we generalize this construction. More precisely we show that

𝑒𝐻 ⋅ΦEis(Δ𝜏) = log(𝑣1(𝑢𝔞)) (mod 2𝜋 iℤ)

If the reader compares the statement of the Stark conjecture given in the paper [CD08] with ours, they will
notice that we do not conjecture that the Stark numbers 𝑢𝔞 are units in 𝐻 but rather only algebraic numbers.
Our choice of formulation is in accordance with the presentation given in Tate’s well-known monograph [Tat84]
where 𝑆-units appear rather than units. Here 𝑆 is a finite set of places of 𝐻 which contains all the finite ramified
places in 𝐻∕𝐾 and all the infinite places of 𝐻 . For the remainder of this introduction, we would like to present
a motivating example which illustrates this subtle point.
We let 𝐹 = ℚ and 𝑀 be an imaginary quadratic extension of discriminant 𝑑𝑀 < 0. For every positive integer
𝑓 ∈ ℤ>0 there exists a unique order of 𝑀 of conductor 𝑓 which corresponds to 𝑓 ∶= ℤ + 𝑓𝑀 . In
particular, if 𝑓 = 1 then 1 = 𝑀 is the maximal order of 𝑀 . If  ⊆ 𝑀 is an order it is also convenient
to let 𝑐() be the conductor of . Given a lattice  ⊆ 𝑀 we let 𝐍 ∶= [𝑀 ∶ ] ∈ ℚ>0 be the rational
index of  in 𝑀 . If 1,2 ⊆ 𝑀 are two lattices then the product 12 is again a lattice inside 𝑀 . We let
 ∶= {𝜆 ∈ 𝑀 ∶ 𝜆 ⊆ } be the ring of endomorphisms of  (it is an order of 𝑀 which depends only on
the homotethy class of ). Furthermore, we let −1 ∶= {𝜆 ∈ 𝑀 ∶ 𝜆 ⊆ } be the inverse lattice of .
By definition we have that −1 ⊆ , moreover, since 𝑀 is quadratic it can be shown that −1 =  (see
Theorem 2 on p. 90 of [Lan87]) and therefore  = −1 . In other words every lattice  is invertible with
respect to its endomorphism order. To any lattice  ⊆ 𝑀 such that −1 = ℤ + 𝜏ℤ with 𝜏 = 𝑥 + i𝑦 ∈ 𝔥 we
associate the zeta function

𝑍(, 𝑠) ∶= 1
𝑒𝑀 𝐍()𝑠

∑

(0,0)≠(𝑚,𝑛)∈ℤ2

1
|𝑚𝜏 + 𝑛|2𝑠

(8)

where ℜ(𝑠) > 1. Note that the function 𝑍(, 𝑠) only depends on the homotethy class of . Since 4𝑦2 =
𝐍(−1)2 ⋅ |𝑑𝑀 | = 1

𝐍()2 ⋅ |𝑑𝑀 | it follows that

𝑍(, 𝑠) = 1
𝑒𝑀

⋅

(

2
√

|𝑑𝑀 |

)𝑠
∑

(0,0)≠(𝑚,𝑛)∈ℤ2

𝑦𝑠

|𝑚𝜏 + 𝑛|2𝑠
= 1

𝑤
⋅

(

2
√

|𝑑𝑀 |

)𝑠

𝐸(𝜏, 𝑠) (9)

where 𝑦 = ℑ(𝜏) ∈ ℝ>0. Given an order  ⊆ 𝑀 we let 𝐻 denote the ring class over 𝑀 associated to . It
can be proved that the conductor of the abelian extension 𝐻∕𝑀 , namely 𝔣(𝐻∕𝑀), is “essentially” equal to
𝑐() (see exercise 9.20 on p. 196 of [Cox13])
Using the first Kronecker limit formula one finds that for any pair of lattices 1,2 ⊆ 𝑀 , the difference of zeta
function 𝑍(1, 𝑠) −𝑍(2, 𝑠) has no pole at 𝑠 = 1 (which is equivalent, using the functional equation of 𝐸(𝜏, 𝑠)
in 𝑠, that this difference vanishes at 𝑠 = 0). More precisely one has that

𝑍(1, 𝑠) −𝑍(2, 𝑠) =
𝜋

3
√

𝑑𝑀
log

(

𝐍(−1
1 )6 ⋅ |Δ(−1

1 )|

𝐍(−1
2 )6 ⋅ |Δ(−1

2 )|

)

+ 𝑂(𝑠 − 1) as 𝑠 → 1 (10)
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Here Δ(ℤ+𝜏ℤ) = Δ(𝜏) corresponds to the modular discriminant function of weight 12 with respect to 𝑆𝐿2(ℤ).
It follows from a theorem of Deuring (see the Corollary on p. 166 of [Lan87]) that if 1 and 2 are both -
invertible for the same order  then the positive real number inside the logarithm, namely

𝐍(−1
1 )6 ⋅ |Δ(−1

1 )|

𝐍(−1
2 )6 ⋅ |Δ(−1

2 )|
(11)

is a unit in ×
𝐻

. This is a priori surprising since the abelian extension 𝐻∕𝑀 is ramified (essentially) at the
primes dividing 𝑐(). However, if 1

≠ 2
then the quantity in (11) will not be a unit in general but only an

algebraic number. In [CD08, p. 659] the two authors made the conjecture that the Stark number in the setting of
ring class fields is expected to be a unit and not just a 𝑆-unit which is consistent with our previous observation
when 𝑀 is imaginary quadratic and this seems to us the best reason to trust their conjecture.

Remark. Our definition of the norm of a lattice  ⊆ 𝑀 differs slightly from the definition used in [Lan87]
where it is defined instead as 𝐍 = [ ∶ ]. This is of no consequence for the discussion above since the
quantity in (11) does not depend on the choice of the definition used as long as 1

= 2
.

Remark. As a side remark let us point out that the statement made in [CD08, p. 659] to the effect that

𝜂(𝜏2)∕𝜂(𝜏1) or |𝜂(𝜏2)∕𝜂(𝜏1)|

(here 𝜂(𝜏)24 = Δ(𝜏)) is a unit when 𝜏1, 𝜏2 ∈ 𝑀 ∩ 𝔥 is obviously false. Furthermore, note also that it could well
be that |𝜂(𝜏2)∕𝜂(𝜏1)| is a unit while 𝜂(𝜏2)∕𝜂(𝜏1) fails to be a unit.

Some quite interesting numerical examples for the Stark number were given in [CD08] when 𝐾∕𝐹 is a relative
ATR quadratic extension of a real quadratic field 𝐹 . We would like to emphasize that the numerical examples
presented there were for the ring class field 𝐻 of 𝐾 associated to the maximal order  = 𝐹 + 1 ⋅ 𝐾 = 𝐾
(i.e. the order of 𝐾 with trivial conductor). Note that in that case the group of 𝑆-units of 𝐻𝐾

(the Hilbert
class field of 𝐾 in the narrow sense) coincides with the group of units ×

𝐻
since 𝑆 contains only the infinite

places. It is not completely clear to the present author why the Stark number 𝑢𝔞 is still expected to be a unit
when the order  = 𝐹 + 𝔠𝐾 is no longer considered to be maximal i.e. when 𝔠 is an 𝐹 -ideal distinct from
𝐹 ; even though such a strong statement to the effect that 𝑢𝔞 would be a unit (and not just an 𝑆-unit) would be
consistent with our previous observation regarding ring class fields of an imaginary quadratic field 𝑀 . It would
be interesting to provide numerical examples in the situation when 𝔠 ≠ 𝐹 to test their conjecture.
In the setting of ray class fields, if 𝜁 (𝑎, 𝑓 ; 𝑠) denote the partial zeta function over ℚ of modulus 𝑓∞, it is well
known that

𝜁 ′(𝑎; 𝑓, 0) = −1
2
log

|

|

|

|

|

2 sin
(

𝜋𝑎
𝑓

)

|

|

|

|

|

2

and 2 sin
(

𝜋𝑎
𝑓

)

∈ ℚ(𝑓∞) = ℚ(𝜁𝑓 + 𝜁𝑓 ) fails to be a unit when 𝑓 is a power of a prime which justifies the
necessity of considering 𝑆-units and not just units.

1 Preliminary Notions

Given a number field, which is a finite field extension of ℚ. It is important to point out that we will normally
denote these extensions with a general root of a given irreducible polynomial 𝑝 ∈ ℤ[𝑥] and denoted them as
ℚ[𝑥]∕𝑝(𝑥) (be aware that this is not the decomposition field of 𝑝). Therefore, the extension generated by a root
of an irreducible polynomial and a different extension generated by another root of the same polynomial are
essentially considered as the same abstract number field. We shall start defining the Archemedian Places of a
number field

Definition 1.1 (Places of a Number Field). Given a Number Field 𝐿, its Archimedean places are the equivalent
classes of non-trivial Archimedean absolute values. The collection of Archemedian places of 𝐿 is denoted as

𝑆𝐿
∞ = {𝑣1, ..., 𝑣𝑡}

8
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As André Weil points out in his book [Wei74, p. 44], to each Archemedian place we can assign an embedding
using the competition of the given number field through the absolute value chosen. If such completion is included
in ℂ we say the place is complex, otherwise, we say is a real place. The non-trivial fields which only have one
complex Hilbert Place are called Almost Totally Real fields, which will be denoted from now on as ATR fields.

It is remarkable that number fields will have the same
number of embeddings into ℝ as real places and will
have two times the embeddings into ℂ as complex
places.
If an element of an arbitrary field extension 𝜆 ∈ 𝐿∕ℚ
has all the images through the real places positive, we
say is a fully positive element of 𝐿 and will be denoted
as 𝜆 >> 0. In the concrete case where 𝐿 does not have
any complex places the elements that satisfy this condi-
tion are normally said to be totally positive.
For the generalization, we will consider a number field
𝐹 of degree 𝑔 = [𝐹 ∶ ℚ], with all its places real, and a
relative quadratic ATR extension 𝐾 of 𝐹 . Since all the
Places of 𝐹 will split in 𝐾 except for the one that will
ramify into the complex one, consequently, the field 𝐾
has 𝑛1 = 2(𝑔 − 1) real places.

ℝ𝑛1

𝐾 ℝ𝑛1 × ℂ ≅ 𝐾 ⊗ℚ ℝ

ℂ

𝐹 ℝ𝑔 ≅ 𝐹 ⊗ℚ ℝ

ℚ

2

𝑔

2𝑔

Diagram 1

We shall introduce a specific notation to denote the Archimedean places of 𝐾 (taking under consideration it
is an ATR) on the following subsections, we will follow a similar notation as [CD08, p. 656] to facilitate a
simultaneous reading of both documents

𝑆𝐾
∞ = {𝑣1, 𝑣2, .., 𝑣2𝑔−1}

To give a good definition of the zeta functions associated to a ray class field in the next subsection it is necessary
to introduce the concept of tensor product which will also be helpful to understand the general picture of the
two Number Fields that we are considering.

𝑉 ×𝑊 𝑉 ⊗𝑊

𝑍

⊗

𝜏 𝜏

Definition 1.2 (Tensor Product of 𝑅-Algebras). The
tensor product of two 𝑅-algebras 𝑉 and 𝑊 , denoted as
𝑉 ⊗𝑅 𝑊 , is the unique set that satisfies the decomposi-
tion of any bilinear map between 𝜏 between 𝑉 ×𝑊 and a
𝑅-algebra 𝑍 with the 𝑅-bilinear map ⊗(𝑣,𝑤) = 𝑣⊗𝑤
(i.e. exists a unique bilinear map 𝜏 satisfying 𝜏 = 𝜏◦⊗).

This definition is an adapted version of a general statement that uses the concept of universal property in Cate-
gory theory. If the reader wants to understand better the tensor products the author recommends reading [Wei74],
however, the document can be understood without this knowledge because, using the embeddings of 𝐾 and 𝐹 ,
it can be easily shown (it will be left as an advanced exercise to the reader) that

ℝ𝑛1 × ℂ ≅ 𝐾 ⊗ℚ ℝ and ℝ𝑔 ≅ 𝐹 ⊗ℚ ℝ

Considering these two isomorphisms, we have introduced all the notions that appear in Diagram 1 which gives a
visual representation of the general field distribution we will use in this thesis and their respective embeddings.
It will also be useful to introduce a notation to denote, given an element 𝜆 ∈ 𝐾 , the image of this element
through the 𝑗 embedding as 𝜆(𝑗). Introducing an injective map 𝜄 from 𝐾 to the tensor product 𝐾 ⊗ℚ ℝ.

𝐾 ↪ℝ𝑛1 × ℂ2

𝜆 ↦
(

𝜆(𝑗)
)2𝑔
𝑗=1

9
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For the definition of the Zeta function associated to a ray class field, the norm and trace of a general number
field 𝐿 shall be introduced. The norm will be the product of the images through all the embeddings (the reader
can check the norm definition as an exercise) and the trace will be defined as the summation of all the images.

𝐍𝐿∕ℚ ∶ 𝐾 →ℝ 𝐓𝐫𝐿∕ℚ ∶ 𝐾 →ℝ

𝜆 ↦
2𝑔
∏

𝑗=1
𝜆(𝑗) 𝜆 ↦

2𝑔
∑

𝑗=1
𝜆(𝑗)

For the scope of this document, it is also necessary to introduce the Ring of Integers of a given number field.

Definition 1.3 (Ring of Integers). Given any number field 𝐿, its integers ring is defined as the collection of
elements of the field that are zeros of a monic polynomial with integer coefficients. We denote this ring as 𝐿.

There are propositions in the literature that give a concrete expression for the rings of integers of relative
quadratic extensions but they will not be useful for this document since we focus on the theoretical general-
ization of the Charollois-Darmon conjecture and they can be easily computed. However, it is interesting to
point out that, since [𝐾 ∶ 𝐹 ] = 2 and 𝐹 has a trivial class number (defined on the following pages), there will
exist 𝜔1, 𝜔2 ∈ 𝐾 such that

𝐾 = 𝜔1𝐹 + 𝜔2𝐹

Since 𝐾 is a free 𝐹 -module and using the fact that 𝐹 is a Principal Ideal Domain, we have that there exists
a number 𝜏 ∈ 𝐾 such that

𝐾 = 𝐹 + 𝜏𝐹

Despite not giving the general expression of the rings of integers, it is interesting to introduce the expressions
for quadratic extensions over ℚ

Proposition 1.4. Given a quadratic extension 𝑅 = ℚ[𝑥]∕(𝑥2 − ), with  a positive integer free of squares
and ℎ ∈ 𝑅 the general generator of the field, we will have two possible options for the expression of its integer
ring.

(i) If  ≡ 2, 3 (mod 4), then the integer ring is 𝑅 = ℤ + ℎℤ.

(ii) If  ≡ 1 (mod 4), then the integer ring is 𝑅 = ℤ +
(

1+ℎ
2

)

ℤ.

We shall also introduce a notation for the collection of all the fully positive elements in the ring of integers of a
given number field 𝐿.

𝐿(∞) ∶=
{

𝜆 ∈ 𝐾 ∶ 𝜆 >> 0
}

Before stating the definition of lattice zeta functions we need to introduce the concept of lattices over 𝐾 . This
concept comes from the lattices in ℝ𝑛: Given a subgroup 𝐿 ⊆ ℝ𝑛 is called a lattice if

𝐿 ≅ ℤ𝑛 and 𝐿 is discrete

To generalize the concept of lattice to 𝐾 , and for the future enunciation of the Stark conjecture, we need to give
the definition of the fractional ideal over 𝐾 . These ideals are 𝐾 -modules which satisfy that its multiplication
by an element of 𝐾 is included in the ring of integers.

(𝐾) ∶=
{

∅ ≠ 𝐼 𝐾 -module ∶ ∃𝜆 ∈ 𝐾× s.t. 𝜆𝐼 ⊆ 𝐾
}

We can also provide a norm to the collection of fractional ideals in 𝐾 by considering the absolute value of
determinant representative matrix 𝑈𝐼 of the map that sends the basis of a concrete fractional ideal 𝐼 ⊆ 𝐾 into
the basis of 𝐾

𝐍(𝐼) ∶= | det(𝑈𝐼 )|
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We shall point out that, as it is widely known, the norm of a fractional ideal 𝐼 ⊂ 𝐾 can be related to an expression
that depends on the element 𝛼 ∈ 𝐾 satisfying 𝛼𝐼 ⊆ 𝐾

𝐍(𝐼) =
[𝐾 ∶ 𝛼𝐼]
|𝐍(𝛼)|

After introducing fractional ideals, it is possible to induce a similar object to real latices in an arbitrary number
field 𝐿 using the natural embedding into 𝐾 ⊗ℚ ℝ ≅ ℝ2𝑔.

Definition 1.5 (Lattice in a number field). Given a fractional ideal of 𝐾 , it will be called a lattice if its image
through the natural embedding 𝐾 ↪ 𝐾 ⊗ℚℝ and the usual isomorphism between 𝐾 ⊗ℚℝ and ℝ2𝑔 is a lattice

𝐾 ↪ 𝐾 ⊗ℚ ℝ ≅ ℝ𝑛1 × ℂ ≅ ℝ𝑛1+2

With the concept of the lattice of a number field defined, it is possible to introduce the dual of a lattice, which
will be a fractional ideal (left as an exercise)

𝔫∗ ∶=
{

𝜆 ∈ 𝐾 ∶ 𝐓𝐫𝐾∕ℚ(𝜆𝑛) ∈ ℤ, ∀𝑛 ∈ 𝔫
}

The invertible of a lattice can not be defined in general, however, we can give proportionate an invertibility
property for any fractional ideal 𝔫 ⊆ 𝐾

𝔫−1 ∶=
{

𝜆 ∈ 𝐾 ∶ 𝜆𝔫 ⊆ 𝐾
}

if 𝔫 ⊈ 𝐾 or 𝔫−1 ∶= {𝜆 ∈ 𝐾 ∶ 𝜆𝔫 ⊆ 𝔫} if 𝔫 ⊆ 𝐾

The reader should observe, as we pointed out in the introduction, that not all fractional ideals satisfy𝔫𝔫−1 = 𝐾 ,
in fact, if a fractional ideal satisfies this equation we say it is an invertible ideal (if we consider the maximal
order all ideals are invertible). After specifying the concepts of lattice and fractional ideal of 𝐾 we are going to
give the definition of two interesting values. We start with the discriminant of a number field, which is a value
that will be useful in the description of the Fourier series of the lattice Eisenstein series.

Definition 1.6 (Discriminant of a number field). Let 𝐿 be a number field and 𝑎1, ..., 𝑎2𝑔 ∈ 𝐾 a ℤ-basis of 𝐿,
the discriminant of 𝐿 is defined, denoting it by 𝑑𝐿, as

𝑑𝐿 ∶=

⎛

⎜

⎜

⎜

⎜

⎝

det

⎛

⎜

⎜

⎜

⎜

⎝

𝑎(1)1 𝑎(1)2 ⋯ 𝑎(1)2𝑔
𝑎(2)1 𝑎(2)2 ⋯ 𝑎(2)2𝑔
⋮ ⋮ ⋱ ⋮

𝑎(2𝑔)1 𝑎(2𝑔)2 ⋯ 𝑎(2𝑔)2𝑔

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

2

In other words, the discriminant of a number field is the square of the area covered by the images of the elements
in a given ℤ-basis of 𝐾 . Similarly to the concept of the ring of integers, we shall give an explicit expression
of the discriminant of totally real quadratic extensions which will be useful for computations.

Proposition 1.7. Given a quadratic extension 𝑅 = ℚ(𝑥2 − ), with  a positive integer free of squares, the
discriminant will be one of the following two options

(i) If  ≡ 2, 3 (mod 4), the discriminant of 𝑅 is 𝑑𝑅 = 4𝑝.

(ii) If  ≡ 1 (mod 4), the discriminant of 𝑅 is 𝑑𝑅 = 𝑝.

Proof. This statement is an immediate result of Proposition 1.4 and the definition of the discriminant.

We shall also introduce the regulator of a number field that will also be useful for the Eisenstein series section.

11
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Definition 1.8 (Regulator of a number field). Let 𝐿 be a number field, 𝑛1 the number of real places (we assume
they are the first 𝑛1 ones) of 𝐿 and 𝑛2 the number of complex places. From Dirichlet’s unit theorem, we can
extract that the rank of ×

𝐾 is 𝑛 = 𝑛1+𝑛2−1, consequently, there exist a collection of generators 𝜖1, ..., 𝜖𝑛 ∈ ×
𝐿.

We define the regulator of the number field 𝐿, denoted by 𝑅𝐿, as

𝑅𝐿 ∶=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

log |𝜖(2)1 | log |𝜖(2)2 | ⋯ log |𝜖(2)𝑛 |

log |𝜖(3)1 | log |𝜖(3)2 | ⋯ log |𝜖(3)𝑛 |

⋮ ⋮ ⋮
log |𝜖(𝑛1)1 | log |𝜖(𝑛1)2 | ⋯ log |𝜖(𝑛1)𝑛 |

log |𝜖(𝑛1+1)1 |

2 log |𝜖(𝑛1+1)2 |

2 ⋯ log |𝜖(𝑛1+1)𝑛 |

2

⋮ ⋮ ⋮
log |𝜖(𝑛+1)1 |

2 log |𝜖(𝑛+1)2 |

2 ⋯ log |𝜖(𝑛+1)𝑛 |

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1.1 Zeta functions associated to Ray Class Fields

In this section, we will define the lattice zeta functions and, the ones of interest for this thesis, the zeta functions
associated to a ray class field over the number field 𝐾 (defined on the general distribution before).
Given two numbers 𝑎, 𝑏 ∈ 𝐾 and a fractional ideal 𝔫 ⊆ 𝐾 , we define the following subset of 𝐾

𝑎,𝑏,𝔫 ∶=
{

𝜀 ∈ 𝐾 ∶ (𝜀 − 1) ∈ 𝔫, (𝜀 − 1)𝑏 ∈ 𝔫∗, (𝜀 − 1)𝑎𝑏 ∈ ∗
𝐾
}

For the definition of the zeta functions we are only interested on the fully positive units of this last subset,
therefore we consider +

𝑎,𝑏,𝔫 = 𝑎,𝑏,𝔫 ∩ ×
𝐾 (∞). We shall also consider a sign function: for the rest of the

document we consider
𝜔𝐾 = sign ◦𝐍𝐾∕ℚ

In both of the cases we are going to consider, 𝐾 Totally Real and 𝐾 ATR, this function works for the expressions
that we want to prove, however, the reader should appreciate that the sign functions that we need in order for
the zeta function to vanish at 𝑠 = 0 are different but 𝜔0 = 𝜔1 in the ATR case.
After having introduced these two concepts we are in position of giving the definition of lattice zeta functions:
Given a lattice 𝔫 ⊆ 𝐾 , two elements 𝑎, 𝑏 ∈ 𝐾 and 𝑠 ∈ ℂ such that ℜ(𝑠) > 1, the lattice zeta function, denoted
as 𝑍𝔫(𝑎, 𝑏; 𝑠), can be defined as the summation

𝑍𝔫(𝑎, 𝑏; 𝑠) = 𝐍(𝔫)𝑠
∑

𝑥+𝑎∈
(

+
𝑎,𝑏,𝔫

\(𝔫 + 𝑎)
)

𝑥+𝑎 ≠ 0

𝜔𝐾 (𝑥 + 𝑎)𝑒2𝜋 i 𝐓𝐫𝐾∕ℚ(𝑏(𝑥+𝑎))

|

|

|

𝐍𝐾∕ℚ(𝑥 + 𝑎)||
|

𝑠

It is remarkable that for some variables 𝑎, 𝑏 ∈ 𝐾 the summation of the numerator can be bounded and that the
denominator will tend to infinity for 𝑠 > 0 as the norm of the elements in 𝔫 grow. This implies, by Dirichlet
theorem, that 𝑍𝔫(𝑎, 𝑏; 𝑠) is also well defined for ℜ(𝑠) > 0 which does not happen on the uncompleted Dirichlet
L-function case. To prove the meromorphic continuation and, therefore, define the Lattice zeta function over ℂ
with the exception of a possible pole in 𝑠 = 1, we need to introduce a function 𝜙

𝜙(𝑠) = |𝑑𝐾 |
𝑠∕2𝜋−(𝑛1+1)𝑠∕221−𝑠Γ(𝑠)

(

Γ
(𝑠 + 1

2

))𝑛1

The definition of the Lattice zeta functions comes from the analytic continuation of the product 𝜑Ψ which is
normally denoted as the Completed zeta function. We will use the following theorem that appears in the paper
of Chapdelaine [Cha08, pp. 2, 3] to define these functions (adapted to our case).

12
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Theorem 1.9 (Compleated Lattice zeta functions). Let

𝜙(𝑠)𝑍𝔫(𝑎, 𝑏; 𝑠)

be the completed zeta function of 𝑍𝔫(𝑎, 𝑏; 𝑠). Then 𝑍𝔫(𝑎, 𝑏; 𝑠) admits an analytic continuation to ℂ and, there-
fore, has no pole at 𝑠 = 1, 0. Moreover, 𝑍𝔫(𝑎, 𝑏; 𝑠) satisfies the following functional equation

𝑍𝔫∗(−𝑏, 𝑎; 1 − 𝑠) = i2(𝑔−1) 𝑒−2𝜋 i𝐓𝐫𝐾∕ℚ(𝑎𝑏)𝑍𝔫(𝑎, 𝑏; 𝑠)

The meromorphic continuation of the completed zeta function simultaneously also gives a meromorphic con-
tinuation for the lattice zeta function over ℂ (dividing 𝑍𝔫(𝑎, 𝑏; 𝑠) by 𝜙(𝑠)). Moreover, the functional equation
of 𝑍𝔫(𝑎, 𝑏; 𝑠) also induces a functional equation for 𝑍𝔫(𝑎, 𝑏; 𝑠)

𝑍𝔫∗(−𝑏, 𝑎; 1 − 𝑠) = 𝜑(𝑠) i2(𝑔−1) 𝑒−2𝜋 i𝐓𝐫𝐾∕ℚ(𝑎𝑏)𝑍𝔫(𝑎, 𝑏; 𝑠)

where the function 𝜑(𝑠) is defined as

𝜑(𝑠) = |𝑑𝐾 |
𝑠−1∕2𝜋−(𝑛1+1)(𝑠−1∕2)21−2𝑠

Γ(𝑠)
Γ(1 − 𝑠)

⎛

⎜

⎜

⎜

⎝

Γ
(

1+𝑠
2

)

Γ
(

1 − 𝑠
2

)

⎞

⎟

⎟

⎟

⎠

𝑛1

For the main study of this document, the Stark conjecture, it is important to have a good understanding of the
first derivative of the functions at 𝑠 = 0. For the Dirichlet L-functions, we do not have a general expression of
the first derivative, however, the lattice zeta functions are defined over all the complex plane. Consequently, H.
Chapdelein worked out an expression of the first derivative in 𝑠 = 0 for this type of functions.

𝜕
𝜕𝑠

𝑍𝔫(𝑎, 𝑏; 𝑠)
|

|

|

|𝑠=0
= 𝜋

2
i2(𝑔−1) 𝑒2𝜋 i𝐓𝐫(𝑎𝑏)

|𝑑𝐾 |
1∕2𝑍𝔫∗(−𝑏, 𝑎; 1) (12)

It is also interesting to point out that H. Chapdelaine worked out a relationship between the lattice zeta functions
and the Hecke L-functions, which are Dirichlet L-functions with a restrictive congruence in their ideals of
definition, in [Cha10, p. 812]. The following proposition, extracted from the paper of Chapdelaine, expresses this
relation. The proposition uses some concepts we have not introduced (the ideal class group will be introduced
in the next chapter) but the reader can appreciate that Hecke L-functions can be expressed as a summation of
lattice zeta functions multiplied by some scalars which will imply some relation between the Stark numbers of
both functions (will be discussed in the next subsection).

Proposition 1.10 (Relation between the lattice zeta and the Hecke L functions). Let  be an arbitrary ℤ-orde
of 𝐾 and let 𝜒 ∶ 𝐼(𝑓 )∕𝑃,1(𝑓∞) → ℂ× be a primitive Hecke character. Then

∑

𝑐∈
(𝐼(𝑓 )

/

𝑃,1(𝑓 )
)

𝜒(𝔞𝑐)𝑍𝑓𝔞−1𝑐
(𝜒∞; 𝑠) = 𝑔(𝜒, 1)𝐿(𝜒, 𝑠)

where 𝔞𝑐 ∈ 𝑐 is an arbitrary chosen integral invertible -ideal in the class of 𝑐.

For the generalisation of the Charollois-Darmon Conjecture that will be presented in this document, we will
work with a subcollection of the uncompleted lattice zeta functions. This collection will be given by a lattice
that will depend on an element 𝑓 ∈ 𝐾∖{0} and 𝑎 = 0, which will be called the level of the zeta function,

𝑍𝑓
𝔫 (𝑏; 𝑠) = 𝑍𝑓𝔫−1(0, 𝑏; 𝑠), with 𝔫 ⊆ 𝐾 coprime with 𝑓𝐾

these functions are called zeta functions associated to a ray class field. From this point forward when I mention
the zeta functions without specifying the type, I will be referring to the zeta functions associated to a ray class
field of level 𝑓 ∈ 𝐾∖{0} and 𝑎 = 0. We will finish the subsection by introducing two lemmas that will be
useful for the Stark Conjecture.

13
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Lemma 1.11. If the exponential variable satisfies 𝑏 ∈
(

𝔫−1)∗, then the exponential term will be invariant by
any 𝜆 ∈ 𝐾 satisfying 𝜆 >> 0 and 𝜆 ≡ 1 (mod 𝑓 ).

Proof. Given a 𝜆 ∈ 𝐾 satisfying the properties specified on the statement of the lemma, the basic properties of
the exponent function and the trace of 𝐾 imply the following equation for any 𝜇 ∈ 𝔫−1

𝑒2𝜋 i𝐓𝐫(𝑏𝜆𝜇) = 𝑒2𝜋 i𝐓𝐫(𝑏𝜇)𝑒2𝜋 i𝐓𝐫(𝑏(𝜆−1)𝜇), ∀𝜇 ∈ 𝑓𝔫−1

The exponent term will be invariant when the second term of the product is trivial, which is the same as asking
the trace of this term to be an integer. Since 𝜆 is 1 mod 𝑓 , we have that (𝜆− 1)𝜇 ∈ 𝔫−1 and, therefore, the trace
will be an integer if and only if 𝑏 ∈

(

𝔫−1)∗

𝑒2𝜋 i𝐓𝐫(𝑏(𝜆−1)𝜇) = 1 ⟺ 𝐓𝐫(𝑏(𝜆 − 1)𝜇) ∈ ℤ ⟺ 𝑏 ∈
(

𝔫−1)∗

which directly implies the statement of the proposition.

After proving this lemma we are in position of giving the conditions that make the zeta functions associated to
a ray class field invariant through elements satisfying the same properties as 𝜆, which will give us an interesting
property of the Stark Numbers on the following subsection.

Proposition 1.12. Given a level 𝑓 ∈ 𝐾∖{0}, a lattice 𝔫 ⊂ 𝐾 and assuming that 𝑏 ∈
(

𝔫−1)∗, we have that
the zeta function associated to a ray class field of level 𝑓 will be invariant by multiplication of 𝜆 ∈ 𝐾 satisfying
𝜆 >> 0 and 𝜆 ≡ 1 (𝑚𝑜𝑑 𝑓 )

Proof. Given any arbitrary 𝜆 ∈ 𝐾 satisfying 𝜆 >> 0 and 𝜆−1 ≡ 1 (𝑚𝑜𝑑 𝑓 ), the last lemma and the fact that the
element is fully positive imply that for ℜ(𝑠) > 1 the expressions of the zeta functions are the same

𝑍𝑓
𝜆𝔫(𝑏; 𝑠) = 𝐍

(

𝜆−1𝔫−1)𝑠
∑

𝜆−1𝑥∈
(

+
0,𝑏,𝔫−1

\

(𝜆𝔫)−1
)

𝑥 ≠ 0

𝜔𝐾 (𝜆−1𝑥)𝑒
2𝜋 i 𝐓𝐫𝐾∕ℚ(𝜆−1𝑏𝑥)

|

|

|

𝐍𝐾∕ℚ(𝜆−1𝑥)
|

|

|

𝑠 =

=

(

𝐍𝐾∕ℚ(𝜆−1)𝐍
(

𝔫−1)

𝐍𝐾∕ℚ(𝜆−1)

)𝑠
∑

𝜆−1𝑥∈
(

+
0,𝑏,𝔫−1

\

(𝜆𝔫)−1
)

𝑥 ≠ 0

𝜔𝐾 (𝜆−1)𝜔𝐾 (𝑥)𝑒
2𝜋 i 𝐓𝐫𝐾∕ℚ(𝑏𝑥)

|

|

|

𝐍𝐾∕ℚ(𝑥)
|

|

|

𝑠 = 𝑍𝑓
𝔫 (𝑏; 𝑠)

which implies that their meromorphic expressions are also equal and, therefore, we can conclude that they are
equivalent by the multiplication of 𝜆.

1.2 Stark Conjecture

The Stark conjecture predicts general expressions for the first non-zero coefficients of the Taylor expansion of all
the L functions at 𝑠 = 0. The rank 𝑛 Stark conjecture refers to the L functions which vanish in all the derivatives
until 𝑛 − 1 and its 𝑛 derivative is conjectured to be the determinant of a matrix that has as entry logarithms of
algebraic numbers {𝑢1,1, 𝑢1,2, ...} up to a rational coefficient 𝐶 ∈ ℚ. Therefore the Taylor expansion in 𝑠 = 0 is

𝐿(𝜒, 𝑠) = 𝐶

|

|

|

|

|

|

|

|

|

det

⎛

⎜

⎜

⎜

⎝

log(𝑢1,1) log(𝑢1,2) ⋯ log(𝑢1,𝑛)
log(𝑢2,1) log(𝑢2,2) ⋯ log(𝑢2,𝑛)

⋮ ⋮ ⋱ ⋮
log(𝑢𝑛,1) log(𝑢𝑛,2) ⋯ log(𝑢𝑛,𝑛)

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

𝑠𝑛 + 𝑂(𝑠𝑛+1)

The conjecture does not give an analytic expression for these numbers, which are also not uniquely defined, (𝐶 is
determined) but gives the concrete fields where they are integers. In our particular case, the lattice zeta functions
will vanish for 𝑠 = 0 (citation) and, using the expression we mentioned of the first derivative depending on the

14



Preliminary Notions Carlos Caralps

value in 𝑠 = 1 we can also deduce that the first derivative will not vanish, therefore, I will only enunciate the
rank one Stark Conjecture in this document.
In order to describe where these algebraic numbers live, it is essential to define the ray class field of a level
𝑓 ∈ 𝐾∖{0}. For this concept, we need to introduce the following equivalent relation on fractional ideals.
Given two fractional ideals 𝐼, 𝐽 ⊆ 𝐾

𝐼 ∼𝑓 𝐽 ⟺ ∃𝜆 ∈ 𝐾 s.t. 𝜆 >> 0, 𝜆 ≡ 1 (mod 𝑓 ) and 𝐼 = 𝜆𝐽

The ray class field, which is simply called narrow class field if 𝑓 = 1, is the quotient of fractional ideals by this
relation

Cl+𝑓 (𝐾) = (𝐾)
/

∼𝑓

We can also think about the ray class group as a quotient that measures how many essentially different fractional
ideals are in 𝐾 up to multiplication of a full positive element congruent to one modulus 𝑓 . The elements of this
quotient are closely related to the value in 𝑠 = 0 of the associated derivatives as we will see in the following
proposition

Proposition 1.13. The derivatives of all the zeta functions of level 𝑓 ∈ 𝐾 have the same value at 𝑠 = 0 for all
the representatives of a given class [𝔫] ∈ Cl+𝑓 (𝐾), if 𝑏 ∈

(

𝔑−1)∗ ⊃ 𝐾 where 𝔑 is the integer representation
of the class.

Proof. This proof is a direct implication of Proposition 1.12 and the definition of the relation∼𝑓 on the definition
of the Ray Class group. However, if the reader wants to see a more general proof for zeta functions associated
to a ray class field the author recommend reading the proof in [Cha10, p. 806].

To be consequent with this last result, we will assume from now on that the variable 𝑏 is in the dual lattice of
all the integer representatives of the elements on the ray class field. From Class Field Theory, there exists an
abelian extension 𝐻∕𝐾 such that its Galois group is isomorphic to the ray class group

Gal(𝐻∕𝐾) ≅ Cl+𝑓 (𝐾)

For the formulation of the Stark Conjecture, we need to relate the ideals of Cl+𝑓 (𝐾) with the elements of
Gal(𝐻∕𝐾). This relation is described using the Frobenius Symbol which is defined in the following propo-
sition.

Proposition 1.14 (Frobenius Symbol). Given an unramified prime ideal 𝔭 ⊆ 𝐾 (i.e. it splits in 𝐻) and  ⊆ 𝐻
satisfying 𝔭 =  ∩ 𝐾 , there exists a unique element 𝜎 ∈ Gal(𝐻∕𝐾) such that for all elements 𝛼 ∈ 𝐻

𝜎(𝛼) ≡ 𝛼𝐍(𝔭) (mod )

Where 𝐍(𝔭) is the cardinality of the quotient 𝐾∕𝔭. The element 𝜎 is the Frobenius element of 𝔭 and is denoted
as

(

𝐻∕𝐾
𝔭

)

.

Proof. It is not interesting for the scope of this document to specify all the details of this proof. However, in
the book of J.S. Milne [Mil08, pp. 117–118], the reader can get a more extensive definition of the Frobenius
Symbol, which can be defined explicitly, and the proof of all the statements of this proposition.

Using the Frobenius Symbol, we can define a function from the ray class group to the Galois Group of the
extension 𝐻∕𝐾 .

rec ∶ Cl+𝑓 (𝐾) →Gal (𝐻∕𝐾)

𝔭 ⟼

(

𝐻∕𝐾
𝔭

)

15
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This function is well defined because given two representatives of a class [𝔞] = [𝔟] ∈ Cl+𝑓 (𝐾) and the element
𝜆 ∈ 𝐾 that relates both, we have for all 𝛼 ∈ 𝐻

(

𝐻∕𝐾
𝔞

)

(𝛼) ≡ 𝛼𝐍(𝔞) ≡ 𝛼𝜆𝐍(𝔟) (mod 𝜆𝔅) ⟺
(

𝐻∕𝐾
𝔞

)

(𝛼) ≡ 𝛼𝐍(𝔟) ≡
(

𝐻∕𝐾
𝔟

)

(𝛼) (mod 𝔅)

For any real place 𝑣 ∈ 𝑆∞ there exists an integer 𝛼𝑣 ∈ 𝐾 such that 𝛼𝑣 ≡ 1 (mod 𝑓 ) and

sign
(

𝑣(𝛼𝑣)
)

= −1 and sign
(

𝑣′(𝛼𝑣)
)

for all 𝑣′ ≠ 𝑣 real

The elements 𝛼𝑣 associated to each real place of 𝑆∞ help us inducing a complex conjugation for any place of
𝐾 . The general expression of each place image is

𝑐𝑣 =
{

rec
(

𝛼𝑣𝐾
)

if 𝑣 is real
Id if 𝑣 is complex

Since 𝐾 is a two-degree extension of 𝐹 , we have taht any arbitrary fractional ideal 𝔞 ⊆ 𝐾 is a two degree 𝐹 -
module, consequently, there exist 𝜔1, 𝜔2 ∈ 𝐾 such that 𝔞 = 𝜔1𝐹 + 𝜔2𝐹 . To have a simplified expression
of all the elements of the ray class field we shall assume that the narrow class group of 𝐹 is trivial (i.e. all the
fractional ideals of 𝐹 are principal ideals from a fully positive element of 𝐹 ). Consequently, we can always
consider a totally positive element 𝜈 ∈ 𝐹 (∞) and 𝜏 ∈ 𝐾 such that

[𝔞] =
[

𝜈(𝐹 + 𝜏𝐹 )
]

After specifying this simplification, we shall consider a prime �̃� ∈ 𝐹 (following the notation of the introduc-
tion) that splits in 𝐹 as �̃� = 𝜛 ⋅𝜛′ and state the Rank one Stark Conjecture [Sta80, p. 198] for zeta function
of level 𝜛. We will state a similar conjecture as the one Charollois and Darmon stated [CD08, p. 657] but we
add a fifth classical condition that can be seen in the monograph [Tat84].

Conjecture 1.15 (Rank one Stark Conjecture). Let 𝑒𝐻 be the number of unit roots contained in the field 𝐻 . For
all the classes [𝔞] ∈ Cl+𝜛(𝐾) and 𝑏 ∈

(

𝔑−1)∗ ⊃ 𝐾 , where ℜ is the integer representation of the class; there
exists an algebraic number 𝑢[𝔞] ∈ 𝐻 satisfying

(i) Let 𝑣𝑗 be a choice of a lift of 𝑣𝑗 to 𝐻 and | ⋅ | the common ℂ-norm. The zeta function satisfies

𝜕
𝜕𝑠

𝑍𝜛
𝔞 (𝑏; 𝑠)

|

|

|

|𝑠=0
= −𝑒−1𝐻 log |𝑣𝑗(𝑢[𝔞])|2

(ii) For any class [𝔞] ∈ Cl+𝜛(𝐾), the element 𝑢[𝔞] satisfies 𝑐𝑣1(𝑢[𝔞]) = 𝑢[𝔞].

(iii) The other complex conjugations satisfy 𝑐𝑣2(𝑢[𝔞]) = ⋯ = 𝑐𝑣2𝑔−1(𝑢[𝔞]) = 𝑢−1[𝔞]

(iv) For any two classes [𝔞], [𝔟] ∈ Cl+𝜛(𝐾) the following equation will be satisfied rec(𝔟)(𝑢[𝔞]) = 𝑢[𝔞𝔟−1].

(v) For any class [𝔞] ∈ Cl+𝜛(𝐾), the 𝑒𝐻 root of 𝑢[𝔞] generates an abelian extension of 𝐾 .

Given a class ideal [𝔞] ∈ Cl+𝑓 (𝐾), the unit defined in this conjecture 𝑢[𝔞] ∈ 𝐻 will be called the Stark Number
associated to the zeta function 𝑍𝔞(𝑎, 𝑏; 𝑠).

The conjecture, on the non p-adic case, has only been proved in the cases where there is a real extension 𝐾∕ℚ
and the extension of the ray class field is of degree 2. Therefore, it is interesting to compute numerical examples
to test the conjecture in differing cases.
In the cases where the ray class field is totally real (i.e. all its places are real) is relatively easy to compute
numerical examples since we only have to compute the value of 𝑍𝔫∗(−𝑏, 𝑎; 𝑠) because of equation 12.

𝑣𝑗(𝑢[𝔫]) = exp
(

−𝜋
2
𝑒𝐻 i2(𝑔−1) |𝑑𝐾 |1∕2𝑍𝔫∗(−𝑏, 0; 1)

)
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It is worth mentioning that various mathematicians have developed different algorithms to compute Stark Num-
bers in this case concrete case. For example, Takuro Shintani developed analytic expressions using special
functions related to the double gamma function [Shi77a] [Shi77b] (he was able to compute 20 decimals of Stark
Numbers 46 years ago). For the time being, expressions are being developed using general modular forms and
Eisenstein Series (developed and coded in 2022 summer by H. Chapdelaine and me using a trick proposed by
Pierre Colmez [Car22a], the reader can see the codes for the Riemann zeta function here [Car22b]).
In contraposition, if the ray class field is not totally positive the Stark Unit 𝑢[𝔫] might be embedded into a strictly
complex number by the place 𝑣𝑗 of 𝐻 . Therefore, the unit can not be induced by computing the right side of
the following equation

|

|

|

𝑣𝑗(𝑢[𝔫])
|

|

|

2
= exp

(

−𝜋
2
𝑒𝐻 i𝑛1 |𝑑𝐾 |1∕2𝑍𝔫∗(−𝑏, 0; 1)

)

This problem has been an obstacle in obtaining analytic expressions of the Stark Units in the case where 𝐻 has
complex places. One of the first results proposed for ATR fields was given by Samit Dasgupta in his senior
thesis [Das99] where he computed the Stark number of a cubic ATR field. However, the more general advanced
for complex Stark numbers is the main object of study: The Charollois-Darmon Conjecture.

1.3 Eisenstein Series

This subsection aims to define the lattice Eisenstein series over the number field 𝐹 and their main properties.
To define them and, more generally any modular form, we need to define a subgroup of the Hilbert group
Γ = SL2(𝐹 ) of 𝐹 using the modularity respect to the level 𝜛.

Γ1(𝜛) ∶=
{

𝑆 ∈ Γ ∶ 𝑆 ≡
(

1 ∗
0 1

)

(mod 𝜛𝐹 )
}

≤ Γ

The modular forms of weight two respect of the subgroupΓ1(𝜛) are functions 𝑓 that go from SL2(𝐹 ⊗ℚ ℝ)/SO(2)𝑔 ,
which is isomorphic to 𝑔 copies of the upper half plane 𝔥𝑔 of ℂ satisfying

𝑓 (𝑆𝑧) = (𝑐(1)𝑧1 + 𝑑(1))2⋯ (𝑐(𝑔)𝑧𝑔 + 𝑑(𝑔))2𝑓 (𝑧), 𝑧 ∈ 𝔥𝑔, 𝑆 ∈ Γ1(𝜛)

For the scope of this thesis, we are only interested in the lattice Eisenstein series and not the general modular
forms. To give the definition of such series we shall introduce, for any 𝑔 ∈ ℕ, over any vector 𝑧 = (𝑧1, ..., 𝑧𝑔)
in 𝔥𝑔 ⊂ ℂ𝑔, their norm 𝐍(𝑧) = 𝑧1⋯ 𝑧𝑔 and their trace 𝐓𝐫(𝑧) = 𝑧1 +⋯ + 𝑧𝑔. During this chapter when we talk
about the summation 𝑧+ 𝑣 and the product 𝑧𝑣 of vectors is understanding the operations over their components
(𝑧1 + 𝑣1, ..., 𝑧𝑛 + 𝑣𝑛) and (𝑧1𝑣1, ..., 𝑧𝑛𝑣𝑛), respectively. After the introduction of this notation, we are in position
to define the Eisenstein Series

Definition 1.16 (Holomorphic Eisenstein Series of parallel weight 2). Considering the totally positive generator
𝛿 ∈ 𝐾 of 𝐹 , the holomorphic Eisenstein series of parallel weight two is formally defined (the expression we
give does not converge but can be extrapolate to the Fourier series of the general Eisenstein series) through the
nonzero summation over 𝐹 × 𝐹∕+

𝑏,0,𝐹
of the following terms

𝐸∗
2 (𝑏; 𝑧) =

∑

(𝑚,𝑛)∈
(

𝐹 × 𝐹
/

+
0,𝑏,𝐹

)

𝑚,𝑛≠0

𝑒2𝜋 i𝐓𝐫𝐹∕ℚ(𝛿𝑏𝑛)

𝐍 (𝛿(𝑚𝑧 + 𝑛))2

This function is periodic, a common property of modular forms, which implies it has a Fourier series expansion.
We have to define two subsets to give a general expression of this series. The first one collects the products of
two lattices

 ∶=
{

𝑑 ∈ 𝐾× ∶ ∃(𝜉1, 𝜉2) ∈
(

∗
𝐹 − 𝑏

)

× 𝐹 s.t. 𝑑 = 𝜉1𝜉2
}

The second one concretes the divisors of both lattices given an element of 𝑑 ∈ 

𝑅𝑑 ∶=
{

(𝜉1, 𝜉2) ∈
(

∗
𝐹 − 𝑏

)

× 𝐹 ∶ 𝜉1𝜉2 = 𝑑
}
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Having defined both sets, we can give a general expression of the Fourier series expansion of 𝐸∗
2 (𝑏; 𝑧) using the

formulas developed by H. Chapdelaine [Cha16, p. 162]

𝐸∗
2 (𝑏; 𝑧) = 𝑍∗

𝐹
(𝑏, 0; 0̄, 2) + (−4𝜋2)𝑔

∑

𝑑∈
𝜎1(𝑑)𝑒2𝜋𝑖𝑇 𝑟(𝑑𝑧)

where 0̄ represents the trivial sign (the one that sens all the elements to 1) and the function 𝜎1 is defined as

𝜎1(𝑑) =
∑

(𝜉1,𝜉2)∈𝑅𝑑∕∕+
𝑏,0,𝐹

|𝑁(𝜉2)|

where the double quotient is defined over the following action of +
𝑏,0,𝐹

over 𝑅𝑑

𝜖 ∙ (𝜉1, 𝜉2) = (𝜖𝜉1, 𝜖−1𝜉2), 𝜖 ∈ +
𝑏,0,𝐹

, (𝜉1, 𝜉2) ∈ 𝑅𝑑

It is remarkable that if we assume 𝑏 = 0, the Fourier series expansion matches the one that P. Charollois and H.
Darmon give in their paper up to some multiplicative factor. In the general definition of lattice Eisenstein series
of H. Chapdelaine gives an expression with more variables that 𝑎, 𝑏 ∈ 𝐾 with the formal definition

𝐸∗
2 (𝑈,𝑍) =

∑

(𝑚,𝑛)∈
(

𝐹 × 𝐹
/

+
0,𝑏,𝐹

)

𝑒−2𝜋 i𝐓𝐫(𝑢1(𝛿𝑚+𝑣1)+𝑢2(𝛿𝑛+𝑣2))

𝐍
(

(𝛿𝑚 + 𝑣1)𝑧 + (𝛿𝑛 + 𝑣2)
)2
, 𝑈 =

(

𝑢1 𝑣1
𝑢2 𝑣2

)

∈ 2(𝐾)

This expression is useful because with it is possible to introduce an equation for the Mobius Transformation of
the Eisenstein series

𝐸2(𝑈 ; 𝛾𝑧) = 𝐍(𝑐𝑧 + 𝑑)2𝐸2((∗
𝐹 × ∗

𝐹 )𝛾, 𝑈
𝛾 ; 𝑧), ∀𝛾 =

(

𝑎′ 𝑏′
𝑐 𝑑

)

∈ Γ1(𝜛)

where
𝑈 𝛾 =

(

𝛾−1
(

𝑢1
𝑢2

)

, 𝛾 𝑡
(

𝑣1
𝑣2

))

We will consider the following form, which will be essential for the rest of the paper

Ω𝐸∗
2
(𝑏; 𝑧) ∶= 𝐸∗

2 (𝑏; 𝑧) 𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑔

We shall also define the following form, which depends on the dimension of the number field 𝐹 and is based on
the form Ω𝐸∗

2

Ω𝐸𝑖𝑠(𝑏; 𝑧) ∶=

⎧

⎪

⎨

⎪

⎩

−2Ω𝐸∗
2
(𝑏; 𝑧) + 𝑅𝐹

2

(

𝑑𝑧1∧𝑑�̄�1
𝑦21

− 𝑑𝑧2∧𝑑�̄�2
𝑦22

)

if 𝑔 = 2

(−2 i)𝑔Ω𝐸∗
2
(𝑏; 𝑧) if 𝑔 > 2

For the rest of the subsection, we are going to define a function whose integral, over a cycle that we will define
in the following sections, is equal to this last form. We start introducing the analytic Eisenstein series of weight
zero from 𝔥𝑔 to ℂ through the lattice of ∗

𝐹 × ∗
𝐹 , which will be defined, for ℜ(𝑠) > 1, as

𝐸∗
0 (𝑏; 𝑧, 𝑠) =

∑

(𝑚,𝑛)∈
(

𝐹 × 𝐹
/

+
0,𝑏,𝐹

)

𝑒2𝜋 i𝐓𝐫𝐹∕ℚ(𝛿𝑏𝑛)𝐍(𝑦)𝑠

|𝐍 (𝛿(𝑚𝑧 + 𝑛))|2𝑠

This function, similar to the weight two case, has a meromorphic extension to the complex plane which is nor-
mally called the Analytic Eisenstein Series. It is remarkable that this function has a pole at 𝑠 = 1, consequently,
using the Kronecker limit formula, we can deduce the existence of an analytic function ℎ ∶ 𝔥𝑔 → ℂ such that
the Taylor expansion of 𝐸∗

0 is

𝐸∗(𝑏; 𝑧, 𝑠) = 2𝑔−2𝑅𝐹

( 1
𝑠 − 1

+ 𝛾𝐹 − log𝐍(𝑦) + ℎ(𝑏; 𝑧)
)

+ 𝑂(𝑠 − 1) as 𝑠 → 0 (13)
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To simplify the notation on the proofs we will do in this document, we consider a multiple of this last function
and denote it ℎ̃. This will be the key function that appears on the corollary of Section 6 which is fundamental
to prove the main Theorem 2.1 and Theorem 3.2

𝜆𝐹 = 4𝑔−1𝑅𝐹 , ℎ̃(𝑏; 𝑧) = 𝜆𝐹ℎ(𝑏; 𝑠)

To give some interesting properties of the functions ℎ and ℎ̃, we shall introduce an essential operator for this
paper. For every place 𝑣𝑗 ∈ 𝑆∞

𝐹 , we define the Hecke Operator at infinity of a given place 𝑣𝑗 over 𝑔 copies of
the upper half plane as

𝑇𝑣𝑗 (𝑧) ∶=
(

𝜖(𝑗)1 𝑧𝑣1 , ..., 𝜖
(𝑗)
𝑣𝑗
�̄�𝑗 , ..., 𝜖

(𝑗)
𝑣𝑔
𝑧𝑔
)

where 𝜖𝑗 ∈ ×
𝐹 is the unit that satisfies

sign(𝑣𝑗(𝜖𝑗)) = −1 and sign(𝑣𝑖(𝜖𝑗)) = 1 for all 𝑖 ≠ 𝑗

recall that the narrow class group of 𝐹 is trivial and consequently, these units will always exist. We denote the
involution of 𝑇𝑣𝑗 over 𝐻𝑔( ,ℂ) (recall that  was defined in the introduction and we will define it again in
Section 3), defined with the pullback over the differential forms, as 𝑇 ∗

𝑣𝑗
. After defining this operator we give

prove some properties of ℎ and ℎ̃.

Proposition 1.17. The functions ℎ(𝑏; 𝑧) and ℎ̃(𝑏; 𝑧) satisfy the following properties

(i) Both functions are harmonic with respect to all the variables 𝑧𝑗 ∈ 𝔥.

(ii) They satisfy the following equations for
(

𝑎′ 𝑏′
𝑐 𝑑

)

∈ Γ2(𝜛)

ℎ(𝑏;𝐴𝑧) = ℎ(𝑏; 𝑧) − 2 log |𝐍(𝑐𝑧 + 𝑑)|

ℎ̃(𝑏;𝐴𝑧) = ℎ̃(𝑏; 𝑧) − 2𝜆𝐹 log |𝐍(𝑐𝑧 + 𝑑)|

(iii) The derivative of ℎ̃ with respect all the complex variables satisfies

𝜕𝑔ℎ̃(𝑏; 𝑧)
𝜕𝑧1⋯ 𝜕𝑧𝑔

𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑔 = (−2 i)𝑔Ω𝐸∗
2
(𝑏; 𝑧)

(iv) The derivative of ℎ̃ with respect to all the complex variables and the conjugation of one satisfies

𝜕𝑔ℎ̃(𝑏; 𝑧)
𝜕𝑧1⋯ 𝜕�̄�𝑗 ⋯ 𝜕𝑧𝑛

𝑑𝑧1 ∧⋯ ∧ 𝑑�̄�𝑗 ∧⋯ ∧ 𝑑𝑧𝑛 = 𝑇 ∗
𝑣𝑗

(

(−2 i)𝑔Ω𝐸∗
2
(𝜖−1𝑗 𝑏; 𝑧)

)

Proof. The first condition is a direct implication of the definition of the functions ℎ and ℎ̃, and their relation
with 𝐸∗

0 . We will prove the three following properties separately

(ii) From the functional equation of the function 𝐸∗
0 over the action of Γ1(𝜛), we get

𝐸∗
0 (𝑏;𝐴𝑧, 𝑠) = 𝐸∗

0 (𝑏; 𝑧, 𝑠) ⟺ ℎ(𝑏;𝐴𝑧) = ℎ(𝑏; 𝑧) − log
(

𝐍(𝑦)
𝐍(𝐴𝑦)

)

Developing the expression of 𝐴𝑧 for a general matrix 𝐴 ∈ Γ1(𝑓 ), we get

𝐴𝑧 = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

=
(𝑎𝑧 + 𝑏)(𝑐�̄� + 𝑑)

|𝑐𝑧 + 𝑑|2
=

𝑎𝑐|𝑧|2 + 𝑎𝑑𝑧 + 𝑏𝑐�̄� + 𝑏𝑑
|𝑐𝑧 + 𝑑|2

⟹ 𝐴𝑦 =
(𝑎𝑑 − 𝑏𝑐)𝑦
|𝑐𝑧 + 𝑑|2

= 𝑦|𝑐𝑑 + 𝑑|−2

Using this expression on the first one, we conclude

ℎ(𝑏;𝐴𝑧) = ℎ(𝑎, 𝑏; 𝑧) − log
(

𝐍(𝑦)
𝐍(𝐴𝑦)

)

= ℎ(𝑏; 𝑧) − log |𝐍(𝑐𝑧 + 𝑏)|2

The other expression is trivial after proving the first one using the definition of ℎ̃.
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(iii) By deriving the individual components of 𝐸∗
0 when ℜ(𝑠) > 1 and, remembering that 𝐸∗

2 is defined with
the same analytic extension, we have

𝜕𝑔𝐸∗
0 (𝑏; 𝑧, 𝑠)

𝜕𝑧1⋯ 𝜕𝑧𝑔
=
( 𝑠
2𝑖

)𝑔
𝐸∗
2 (𝑏; 𝑧, 𝑠 − 1)

On the other hand, by deriving the expression that defines ℎ, we get

𝜕𝑔𝐸∗
0 (𝑏; 𝑧, 𝑠)

𝜕𝑧1⋯ 𝜕𝑧𝑔
= 2𝑔−2𝑅𝐹

(

𝜕𝑔ℎ(𝑏; 𝑧)
𝜕𝑧1⋯ 𝜕𝑧𝑔

)

+ 𝑂(𝑠 − 1) = 2−𝑔
𝜕𝑔ℎ̃(𝑏; 𝑧)
𝜕𝑧1⋯ 𝜕𝑧𝑔

+ 𝑂(𝑠 − 1)

Specializing at 𝑠 = 0 we get the equation of the statement.

(iv) By deriving the individual components of 𝐸∗
0 for ℜ(𝑠) > 1 and, since 𝐸∗

2 is defined with the same analytic
extension, we have

𝜕𝑔𝐸∗
0 (𝑏; 𝑧, 𝑠)

𝜕𝑧1⋯ 𝜕�̄�𝑗 ⋯ 𝜕𝑧𝑔
𝑑𝑧1 ∧⋯ ∧ 𝑑�̄�𝑗 ∧⋯ ∧ 𝑑𝑧𝑔 =

( 𝑠
2𝑖

)𝑔
𝑇 ∗
𝑣𝑗

(

𝐸∗
2 (𝜖

−1
𝑗 𝑏; 𝑧, 𝑠 − 1)𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑔

)

On the other hand, by deriving the expression that defines ℎ, we get

𝜕𝑔𝐸∗(𝑏; 𝑧, 𝑠)
𝜕𝑧1⋯ 𝜕�̄�𝑗 ⋯ 𝜕𝑧𝑔

= 2𝑔−2𝑅𝐹

(

𝜕𝑔ℎ(𝑏; 𝑧)
𝜕𝑧1⋯ 𝜕�̄�𝑗 ⋯ 𝜕𝑧𝑔

)

+ 𝑂(𝑠 − 1) = 2−𝑔
𝜕𝑔ℎ̃(𝑏; 𝑧)

𝜕𝑧1⋯ 𝜕�̄�𝑗 ⋯ 𝜕𝑧𝑔
+ 𝑂(𝑠 − 1)

Specializing at 𝑠 = 0 we get the equation of the statement.

For the following lemma, we shall consider the function 𝑈𝜖𝑗 that applies the matrix
(

𝜖𝑗 0
0 𝜖−1𝑗

)

to a modular

form. In concrete, using the formula specified before, we have that the image of Ω𝐸∗
2

is

𝑈𝑣𝑗 (Ω𝐸∗
2
(𝑏; 𝑧)) = Ω𝐸∗

2
(𝜖𝑗𝑏; 𝑧)

The involution 𝑇𝑣𝑗 added with this last map will be important for the main theorem of Section 3. Now, we
specify a lemma that will be useful for this theorem.

Lemma 1.18. The form (𝑈𝑣𝑗 + 𝑇 ∗
𝑣𝑗
)Ω𝐸𝑖𝑠 is exact.

Proof. Since our ℎ̃ function has similar properties to the one presented by P. Charollois and H. Darmon we will
reproduce their proof [CD08, pp. 664–665] but instead of assuming 𝑗 = 1, we will work out the general case
where 𝑗 ∈ {1, ..., 𝑔}. We start defining the (𝑔 − 1)-differential form of 𝔥𝑔

𝜂 =
𝜕𝑔−1ℎ̃(𝑏; 𝑧)

𝜕𝑧1⋯ 𝜕𝑧𝑗−1𝜕𝑧𝑗+1𝜕𝑧𝑔
𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑗−1 ∧ 𝑑𝑧𝑗+1 ∧⋯ ∧ 𝑑𝑧𝑔

When 𝑔 > 2, by the second property of Proposition 1.17, we have that the form 𝜂 will be invariant through the
Mobius action of Γ1(𝜛) and, consequently, will be a (𝑔−1) differential form of the fundamental domain. Since
ℎ̃ is harmonic, this form is holomorphic through all the variables 𝑧1, ..., 𝑧𝑗−1, 𝑧𝑗+1, ..., 𝑧𝑔, which helps us deduce
the following formula

𝑑𝜂 =

(

𝜕𝑔ℎ̃(𝑏; 𝑧)
𝜕𝑧1⋯ 𝜕𝑧𝑔

𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑔 +
𝜕𝑔ℎ̃(𝑏; 𝑧)

𝜕𝑧1⋯ 𝜕�̄�𝑗 ⋯ 𝜕𝑧𝑔
𝑑𝑧1 ∧⋯ ∧ 𝑑�̄�𝑗 ∧⋯ ∧ 𝑑𝑧𝑔

)

The properties three and four of the function ℎ̃ specified in Proposition 1.17 directly imply that 𝑑𝜂 = (𝑈𝑣𝑗 +
𝑇 ∗
𝑣𝑗
)ΩEis and, equivalently, that the form (𝑈𝑣𝑗 + 𝑇 ∗

𝑣𝑗
)ΩEis is exact.
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In the case where 𝑗 = 2 the form 𝜂 will not be invariant through the action of Γ1(𝜛), consequently, we make a
slight modification to the definition of this form in order to make it invariant

𝜂′ ∶=

(

ℎ̃(𝑎, 𝑏; 𝑧)
𝜕𝑧𝑗

+
2𝑅𝐹

i 𝑦𝑡

)

𝑑𝑧𝑗 where 𝑦𝑡 ∶=
{

−𝑦2 if 𝑡 = 1
𝑦1 if 𝑡 = 2

The formula of 𝑑𝜂 is adaptable to this case taking under consideration the two following equations

𝑑
(

2𝑅𝐹
i 𝑦1

𝑑𝑧1

)

= 𝑅𝐹
𝑑𝑧1 ∧ 𝑑�̄�1

𝑦21
and 𝑑

(

−2𝑅𝐹
i 𝑦2

𝑑𝑧2

)

= −𝑅𝐹
𝑑𝑧2 ∧ 𝑑�̄�2

𝑦22

Since the respective terms 𝑑𝑧1 ∧ 𝑑�̄�1∕𝑦21 and 𝑑𝑧2 ∧ 𝑑�̄�∕𝑦22 (in the cases 𝑗 = 2 and 𝑗 = 1, respectively) will be
invariant through 𝑇 ∗

𝑣𝑗
and consequently will not appear on (𝑈𝑣𝑗 + 𝑇 ∗

𝑣𝑗
)ΩEis, we can conclude

(𝑈𝑣𝑗 + 𝑇 ∗
𝑣𝑗
)ΩEis = 𝑑𝜂′

which proves that (𝑈𝑣𝑗 + 𝑇 ∗
𝑣𝑗
)ΩEis is also exact on the case 𝑔 = 2.

For every 𝑞 ≥ 0, we define 𝐶0
𝑚() as the group formed by all the combinations of linear forms with coefficients

in ℤ of differentially closed cycles of dimension 𝑚 over  . With this last concept, we can define the following
group of integrals

ΛEis ∶=
{

∫𝐶
ΩEis for all 𝐶 ∈ 𝐶0

𝑔 ()
}

⊂ ℂ

It is remarkable that the group ΛEis satisfies the following statement that will imply (proven in Section 2), that
for any totally real quadratic extension 𝐾∕𝐹 , the values of the lattice zeta functions are always rationals.

Proposition 1.19. Assuming that the determinant of a certain square matrix (see (23) below) is non-vanishing,
the group ΛEis is a lattice of rank one inside 𝜋2𝑔 ⋅ℚ ⊆ ℂ.

We warn the reader that this proof has a level of complexity slightly higher than the rest of the document and we
do not introduce from scratch all the concepts we use. However, the author considers that this is an interesting
result that should be proven.

Proof. In this proof we will denote Γ = Γ1(�̃�) and  = Γ
\𝔥 𝑔. This group acts on the left of ℙ1(𝐹 ) = {𝑎

𝑐
} by

Mobius transformations and its orbit corresponds to the so-called cusps of  . Let  ∶= {1, 2,… , 𝑝∗ ∶= 𝑝−1
2 }.

A set of representatives of cusps of Γ is given by

 ∶=
{

[𝑘
1

]

,
[

�̃�
𝑘

]

∶ 𝑘 ∈ 
}

, (14)

which is a set of cardinality 𝑝 − 1. To each of these cusp we shall associate a holomorphic Eisenstein series of
parallel weight 2 relative to Γ. If 𝑐 =

[

�̃�
𝑘

]

∈  we associate the lattice Eisenstein series 𝐸∗
2 (𝑘; 𝑧) given by the

expression (4) in the introduction. If 𝑐 =
[

𝑘
1

]

we associate the lattice Eisenstein series

𝐺2(𝑘; 𝑧) ∶= 𝐸∗
2

(

𝑘; −�̃�
𝑧

)

= “
∑

(𝑚,𝑛)∈
(

𝐹 × �̃�𝐹
/

+
𝑘,0,𝐹

)

(𝑚,𝑛)≠(0,0)

𝑒2𝜋 i Tr(−𝛿𝑘𝑛)

𝐍 (𝛿(𝑚𝑧 + 𝑛)2
” (15)

where the second equality comes from a direct computation or from the transformation formulas given in
[Cha19] for the lattice Eisenstein series. Note that 𝐸∗

2 (𝑘; 𝑧) = 𝐸∗
2 (−𝑘; 𝑧) and 𝐺2(𝑘; 𝑧) = 𝐺2(−𝑘; 𝑧).
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For each 1 ≤ 𝑘 ≤ 𝑝 − 1, we choose a matrix 𝛼𝑘 =
(

∗ 𝑏𝑘
∗ 𝑑𝑘

)

∈ Γ0(�̃�) such that 𝑑𝑘 ≡ 𝑘 (mod �̃�) (recall

𝑏𝑘 ≡ 0 (mod 𝜛)) and we let 𝑆 ∶=
(

0 �̃�
−1 0

)

∈ Γ0(�̃�) which is an involutive automorphism of 𝔥𝑔. Note

that conjugation by 𝑆 normalizes the set {𝛼𝑘}1≤𝑘≤𝑝−1 modulo Γ. Now note that the subgroup

 ∶= ⟨{𝛼𝑘Γ, 𝑆Γ ∶ 1 ≤ 𝑘 ≤ 𝑝 − 1}⟩∕Γ ≤ 𝑁(Γ)∕Γ

is of size 2(𝑝−1) and that it normalizes the group Γ. Here 𝑁(Γ) is the normalizer of Γ inside 𝑆𝐿2(ℝ)𝑔. It is clear
that the action of 𝛼𝑘 on  depends only on 𝑘 and not on the special choice of the matrix 𝛼𝑘 itself. In particular,
the group  acts on the modular variety  = Γ

\𝔥𝑔 and therefore on the homology groups, cohomology groups
and also on differential forms associated to  . Note that by construction  acts transitively on the set of cusps
.
Now let

Ω𝐸𝑖𝑠[𝑘] ∶= 𝐸∗
2 (𝑘; 𝑧)𝑑𝑧1 ∧… ∧ 𝑑𝑧𝑔 and Ω∗

𝐸𝑖𝑠[𝑘] ∶= 𝐺2(𝑘; 𝑧)𝑑𝑧1 ∧… ∧ 𝑑𝑧𝑔 (16)

Since these differential forms are holomorphic they are closed and they thus give rise to cohomology classes in
𝐻𝑔( ,ℂ). However, these cohomology classes could be potentially trivial. In order to ensure their non-triviality
we need to make sure that there exists at least one period over a non-trivial 𝑔-cycle which is nonzero.
We now view  as a Riemannian manifold using the Poincare metric which makes 𝑋 a Kähler manifold. Let
us fix 𝑔 positive real numbers 𝑌1, 𝑌2,… 𝑌𝑔 ∈ ℝ>0 and consider the horizontal line 𝐿𝑗 ⊆ 𝔥𝑗 (1 ≤ 𝑗 ≤ 𝑔) which
is placed at the imaginary part of height 𝑌𝑗 . Consider now the following real analytic manifold (which is not
totally geodesic) of real dimension 𝑔 inside 𝔥𝑔:

𝑅∞ = 𝐿1 ×…𝐿𝑔.

If we let Γ∞,1 ∶=
{(

1 𝑥
0 1

)

∶ 𝑥 ∈ �̃�𝐹

}

≤ Γ we see that 𝑅∞ is stable, as a set, under Γ∞,1. The quotient

𝑅∞∕Γ∞,1 is a 𝑔-cycle which is homeomorphic to (𝑆1)𝑔. Moreover one can check that this quotient injects inside
 ; let us denote this image by 𝐷∞. However, this 𝑔-cycle 𝐷∞ inside  could potentially be trivial (i.e. a 𝑔-
boundary). In order to make sure that it is no trivial we look at the periods generated by this 𝑔-cycle when
integrated against the lattice Eisenstein series. Note that the Riemannian volume of 𝐷∞ is 𝑝

√

𝑑𝐹 and therefore

∫𝐷∞

Ω𝐸𝑖𝑠[𝑟] = 𝑝
√

𝑑𝐹 ⋅𝑍𝛿𝐹
(0, 0, 𝟙; 2) (17)

where 𝟙 ∶ 𝐹 × → {±1} is the trivial sign character (i.e. for all 𝑥 ∈ 𝐹 ×, 𝟙(𝑥) = 1). In particular, note that the
right-hand side of (17) does not depend on 𝑟. It follows from the Euler product (or the mere fact that the under-
lying Dirichlet series of the value 𝑍𝛿𝐹

(0, 0, 𝟙; 2) is a sum of strictly positive numbers) that 𝑍𝛿𝐹
(0, 0, 𝟙; 2) ≠ 0

which simultaneously shows that the closed differential form Ω𝐸𝑖𝑠[𝑟] is not exact and that the cycle 𝐷∞ is not a
boundary in  .
Using the Poincare duality and the well-known fact that the universal and cuspidal part of the cohomology of
 are orthogonal to the Eisenstein part (under the Riemannian metric) we find that

Λ𝐸𝑖𝑠 ⊆
⟨{

∫𝐶
𝜔𝐸𝑖𝑠 ∶ [𝐶] ∈ 𝐻𝑔,𝐸𝑖𝑠( ,ℤ)

}⟩

ℤ
(18)

where 𝜔𝐸𝑖𝑠 is the differential form which appears in the statement of the proposition. However, it is not clear
if one can generate 𝐻𝑔,𝐸𝑖𝑠( ,ℤ), up to a finite index, using only 𝐷∞ and the action of . In order to guarantee
that this is indeed the case we shall impose that a certain period matrix has a non-zero determinant.
Let 𝑐 be a cusp either of the form 𝑐 =

[

�̃�
𝑘

]

or 𝑐 =
[

𝑘
1

]

, for some 𝑘 ∈ , and choose matrices 𝛾𝑘 =
(

𝑎𝑘 𝑏𝑘
𝑐𝑘 𝑑𝑘

)

, 𝜂𝑘 =
(

𝑒𝑘 𝑓𝑘
𝑔𝑘 ℎ𝑘

)

∈ 𝑆𝐿2(𝐹 ) such that 𝛾𝑘∞ =
[

�̃�
𝑘

]

or 𝜂𝑘∞ =
[

𝑘
1

]

. Let us fix an 𝑟 ∈ .
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Using the modularity property of 𝐸∗
2 (𝑟; 𝑧) one finds that that

∫(𝛾𝑘)∗𝐷∞

Ω𝐸𝑖𝑠[𝑟] = 𝑝
√

𝑑𝐹 ⋅𝑍𝛿𝐹
(0, 𝑘𝑟, 𝟙; 2), (19)

and

∫(𝜂𝑘)∗𝐷∞

Ω𝐸𝑖𝑠[𝑟] = 𝑝
√

𝑑𝐹 ⋅𝑍𝛿𝐹
(0, 𝑟, 𝟙; 2) (20)

where we see that the last integral is independent of 𝑘 ∈ . In a similar way a direct computation shows that

∫(𝛾𝑘)∗𝐷∞

Ω∗
𝐸𝑖𝑠[𝑟] = 𝑝

√

𝑑𝐹 ⋅𝑍𝛿𝐹

(

0,−
𝑑𝑘𝑟
𝜛

, 𝟙; 2
)

(21)

and

∫(𝜂𝑘)∗𝐷∞

Ω∗
𝐸𝑖𝑠[𝑟] = 𝑝

√

𝑑𝐹 ⋅𝑍𝛿𝐹

(

0,−
ℎ𝑘𝑟
𝜛

, 𝟙; 2
)

. (22)

Consider now the period matrix of size (𝑝 − 1) × (𝑝 − 1) given by

 ∶=

(

∫(𝛾𝑘)∗𝐷∞
Ω𝐸𝑖𝑠[𝑟] ∫(𝜂𝑘)∗𝐷∞

Ω𝐸𝑖𝑠[𝑟]
∫(𝛾𝑘)∗𝐷∞

Ω∗
𝐸𝑖𝑠[𝑟] ∫(𝜂𝑘)∗𝐷∞

Ω∗
𝐸𝑖𝑠[𝑟]

)

𝑟,𝑘∈

(23)

It follows from the the functional equation of𝑍𝛿𝐹
(𝑎, 𝑏, 𝟙; 𝑠) (which relates in particular the value𝑍𝛿𝐹

(0, 𝑏, 𝟙; 2)
to 𝑍𝐹

(−𝑏, 0, 𝟙; −1) ) and the main result proved in [Shi76] that the entries of  has are in 𝜋2𝑔 ⋅ ℚ. We now
make the following key assumption: det() ≠ 0.
Under this assumption, one can show the following

Lemma 1.20. The ℂ-span of the cohomology classes generated by the differential forms {Ω𝐸𝑖𝑠[𝑘],Ω∗
𝐸𝑖𝑠[𝑘] ∶

𝑘 ∈ } is of dimension 𝑝−1. Moreover, the ℚ-span generated by the 𝑝-cycles {(𝛼𝑘)∗𝐷∞, (𝛼𝑘𝑆)∗𝐷∞ ∶ 𝑘 ∈ }
is of dimension 𝑝 − 1.

In particular, it follows from this lemma that the set of 𝑝-cycles {(𝛼𝑘)∗𝐷∞, (𝑆𝛼𝑘)∗𝐷∞ ∶ 𝑘 ∈ } are ℚ-linearly
independent homology classes which generate the “Eisenstein part” of the homology group 𝐻𝑔( ,ℚ). Since
Ω𝐸𝑖𝑠 = Ω𝐸𝑖𝑠[𝑟] for some 𝑟 ∈  it follows that

Λ𝐸𝑖𝑠 ⊆
⟨{

∫𝐶
Ω𝐸𝑖𝑠[𝑘],∫𝐶

Ω∗
𝐸𝑖𝑠[𝑘] ∶ 𝑘 ∈ , [𝐶] ∈ 𝐻𝑔,𝐸𝑖𝑠( ,ℤ)

}⟩

ℤ
⊆ 1

𝑁
⋅ 𝜋2𝑔ℤ. (24)

for a large enough integer 𝑁 . The second inclusion follows from the already proven fact that the ℚ-span gener-
ated by the 𝑝-cycles

{(𝛼𝑘)∗𝐷∞, (𝛼𝑘𝑆)∗𝐷∞ ∶ 𝑘 ∈ }

is of dimension 𝑝−1 and that the period matrix  has entries in 𝜋2𝑔 ⋅ℚ. All of this shows that Λ𝐸𝑖𝑠 has a ℤ-rank
at most one. Finally, the fact that Ω𝐸𝑖𝑠 is of rank one follows from the already proven fact that ∫𝐷∞

Ω𝐸𝑖𝑠 ≠ 0.

2 Totally Real Quadratic Extensions

Before proving the theorem that supports the Charollois-Darmon conjecture, which gives an analytic expression
of the Stark Numbers for Almost Totally Real extension 𝐾 , we will consider an easier example where 𝐾 is a
totally real number field (i.e. all its places are real).
Since 𝐾 is a totally real quadratic relative extension of 𝐹 all these places will split into two real places in 𝐾 that
we will denote as 𝑣𝑗 and 𝑣′𝑗 . Given an ideal class [𝔞] ∈ Cl+𝜛(𝐾), since the narrow class field of 𝐹 is trivial, we
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can find a representative of
[(

𝔞−1
)∗] of the form 𝜈(𝐹 + 𝜏𝐹 ), with 𝜈 ∈ 𝐹 (∞) and 𝜏 ∈ 𝐾 , as a basis. We

will denote the different images of 𝜏 through the places of 𝐾 as

(𝜏𝑗 , 𝜏′𝑗) ∶=
(

𝑣𝑗(𝜏), 𝑣′𝑗(𝜏)
)

∈ ℝ2, 𝑣𝑗 ∈ 𝑆𝐹
∞

We denote Υ𝑗 as the totally geodesic real analytic submanifold of 𝔥𝑔 that goes through the point 𝜏𝑗 and 𝜏′𝑗 with
orientation from 𝜏′𝑗 to 𝜏𝑗 . These curves generate the following subset of 𝔥𝑔

𝑅𝜏 = Υ1 ×⋯ × Υ𝑔 ⊆ 𝔥𝑔

that is isomorphic to a subspace of ℝ𝑔 with the natural orientation induced by the one of Υ𝑗 . The subgroup
Γ𝜏 ≤ Γ1(𝜛) ≤ Γ is defined as the collection of matrices that fix 𝜏 through the Moebius transformation. This
subgroup induces an action, by applying the Mobius transformation in each coordinate, in 𝑅𝜏 . The quotient
 ∶= Γ𝜏

\𝑅𝜏 is compact and isomorphic to a real torus of dimension 𝑛. Given a fundamental domain for the
action of Γ𝜏 in 𝑅𝜏 , we identify its image in the quotient as Δ𝜏 , which will be a closed cycle. The cycle Δ𝜏
induces an analytic expression for the value of the zeta function, for a given class [𝔞] ∈ Cl+𝜛(𝐾), in 𝑠 = 0.

Theorem 2.1. Given a class [𝔞] ∈ Cl+𝜛(𝐾) and its associated element 𝜏 ∈ 𝐾 , the following equations is satisfied

∫Δ𝜏

ΩEis =
𝐍𝐾∕ℚ(𝜈)

𝑑𝐹
√

𝑑𝐹
𝑍𝜛

𝔞 (𝑏; 0)

Proof. The statement is a direct consequence of the Corollary in section 7 of this document. Since in this case,
we are considering a totally real extension 𝐾∕𝐹 , and therefore all the places are real (𝑟 = 𝑛), of a totally real
number field 𝐹 , the first condition of the corollary implies

𝐍𝐾∕ℚ(𝜈)

𝑑𝐹
√

𝑑𝐹
𝑍𝜛

𝔞 (𝑏; 0) =
𝐍𝐾∕ℚ(𝜈)

𝑑𝐹
√

𝑑𝐹
𝑍𝜛𝔞−1(0, 𝑏, 0) = ∫Δ𝜏

𝜕𝑔ℎ̃
𝜕𝑧1⋯ 𝜕𝑧𝑔

𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑔

Using one of the properties of the function ℎ̃ specified in Proposition 1.3. we have

𝐍𝐾∕ℚ(𝜈)

𝑑𝐹
√

𝑑𝐹
𝑍𝜛

𝔞 (𝑏; 0) = ∫Δ𝜏

(− i)𝑔Ω𝐸∗
2
(𝑏∕𝜈; 𝑧)

For the case where 𝑔 ≥ 3 the statement will already be proven with this last equation. In the case 𝑔 = 2, we will
also have the equation with 𝜔𝐸𝑖𝑠 because the integrals over 𝑑𝑧1 ∧ 𝑑�̄�1 and 𝑑𝑧2 ∧ 𝑑�̄�2 are zero

𝐍𝐾∕ℚ(𝜈)

𝑑𝐹
√

𝑑𝐹
𝑍𝜛

𝔞 (𝑏; 0) = ∫Δ𝜏

[

−𝜔𝐸2
+

𝑅𝐹
2

(

𝑑𝑧1 ∧ 𝑑�̄�1
𝑦21

−
𝑑𝑧2 ∧ 𝑑�̄�2

𝑦22

)]

= ∫Δ𝜏

𝜔Eis

In the cases where the zeta function does not vanish at 𝑠 = 0, we will have an analytic expression for the first
value of the Taylor expansion at 𝑠 = 0. The main idea of the following chapter is to generalize a similar analytic
expression when 𝐾 is an Almost Totally Real Field. Before, however, we can introduce a corollary to this
theorem that brings up an interesting fact.

Corollary 2.2. Given any class [𝔞] ∈ Cl+𝜛(𝐾) the value 𝜋−2𝑔𝑍𝜛
𝔞 (𝑏; 0) of the lattice zeta function is rational.

Furthermore, there exists an integer 𝑝𝐹 ∈ ℤ only depending of the field 𝐹 such that

𝑝𝐹𝜋
−2𝑔𝑍𝔞(𝑎, 𝑏; 0) ∈ ℤ

Proof. Using the last theorem and the fact, proven in Proposition 1.3.4., that ΛEis ⊆ (2 i𝜋)𝑔ℚ and ΛEis has rank
one. These last two facts directly imply the statement of the corollary.
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3 ATR Quadratic Extensions

As we pointed out at the end of the last section, we are going to prove a similar statement to Theorem 2.1 for
Almost Totally Rael extensions in order to give some heuristic argument to the generalisation of the Charollois-
Darmon Conjecture specified in the following section.
In this case, all the places in 𝐹 will split into two real places except for the first one will ramify into a complex
place. Furthermore, since the narrow class field of 𝐹 is trivial, given any class [𝔞] ∈ Cl+𝜛(𝐾) we have a
representative of the form 𝜈(𝐹 + 𝜏𝐹 ) for the class

[(

𝔞−1
)]

, with 𝜈 ∈ 𝐹 (∞) and 𝜏 ∈ 𝐾 . We denote the
different images of 𝜏 ∈ 𝐾 through the different places of 𝐾 as

𝜏1 ∶= 𝑣1(𝜏) ∈ 𝔥

(𝜏𝑗 , 𝜏′𝑗) ∶=
(

𝑣𝑗(𝜏), 𝑣′𝑗(𝜏)
)

∈ ℝ2 for 𝑗 = 2, ..., 𝑔

For 2 ≤ 𝑗 ≤ 𝑔, we can define as Υ𝑗 the totally geodesics real analytic submanifold of 𝔥𝑔 that go through 𝜏𝑗 and
𝜏′𝑗 with orientation from 𝜏𝑗 to 𝜏′𝑗 . These curves, together with the value 𝜏1 induce the subspace

𝑅𝜏 = {𝜏1} × Υ2 ×⋯ × Υ𝑔 ⊂ 𝔥𝑔

which is isomorphic to a subspace of ℝ𝑔−1 with an orientation induced by the ones in Υ𝑗 . The subgroup Γ𝜏 ,
defined in the last section, acts on 𝑅𝜏 by applying the Mobius transformation in all coordinates. Furthermore,
the quotient  ∶= Γ𝜏

\𝑅𝜏 is isomorphic to a real torus of dimension 𝑔 − 1. Giving a fundamental domain of
the action Γ𝜏 over 𝑅𝜏 , we identify Δ𝜏 as its image on the quotient which will be a closed cycle of dimension
𝑔 − 1. We introduce the following lemma that will be essential for the proof of the main result of this section.

Lemma 3.1. The class of Δ𝜏 in 𝐻𝑔−1( ,ℤ) is of torsion. In particular, there exists an 𝑔-differentiable chain
𝐶𝜏 of coefficients inside of ℚ such that

𝜕𝐶𝜏 = Δ𝜏

Proof. Considering the natural map 𝐻𝑔−1( ,ℤ) → 𝐻𝑔−1( ,ℚ) and the Theorem 6.3. in [Fre90, p. 185], we
have that if 𝑔 is even the homology group is trivial

𝐻𝑔−1( ,ℤ) ⊆ 𝐻𝑔−1( ,ℚ) = 0

On the other hand, when 𝑔 is odd the rational homology group is 𝐻𝑔−1( ,ℚ) = 𝐻𝑔−1
univ( ,ℚ). Since Δ𝜏 has

dimensions one or two in the projection of 𝑅𝜏 , consequently, the image of Δ𝜏 in 𝐻𝑔−1
univ( ,ℚ) is zero.

Using the form Ω+
Eis = (𝑈𝑣𝑗 +𝑇 ∗

𝑣1
)ΩEis∕2, which is the projection of the differential form ΩEis to the space of 𝑇 ∗

𝑣1
associated to the eigenvalue 1 (i.e. can be thought as the real part of the form ΩEis), we can introduce a similar
Theorem to the one stated in the last section.

Theorem 3.2. Given a class [𝔞] ∈ Cl+𝑓 (𝐾) associated to a 𝜏 ∈ 𝐾 , the following equation is satisfied

∫𝐶𝜏

Ω+
𝐸𝑖𝑠 =

(

𝐍𝐾∕ℚ(𝜈)
√

𝜋

𝑑𝑓
√

𝑑𝐹

)

𝜕
𝜕𝑠

𝑍𝜛
[𝔞](𝑏; 0)

Proof. This statement is a consequence of the Corollary proven at the end of this document. Remembering that
in Lemma 1.3. we proved that 𝜔+

Eis is exact and that is equal to 𝑑𝜂∕2 and using the Stokes theorem, we have

∫𝐶𝜏

Ω+
Eis =

1
2 ∫Δ𝜏

𝜂 = 1
2 ∫Δ𝜏

𝜕𝑛−1ℎ̃(𝑧1, ..., 𝑧𝑔)
𝜕𝑧2⋯ 𝜕𝑧𝑛

𝑑𝑧2 ∧⋯ ∧ 𝑑𝑧𝑛

If 𝑔 > 2, we can directly apply the first part of Corollary 7. since we have 𝑐 = 1 and 𝑟 = 𝑔−1 ≥ 2, and conclude

∫𝐶𝜏

Ω+
Eis =

1
2 ∫Δ𝜏

𝜕𝑛−1ℎ̃(𝑧1, ..., 𝑧𝑔)
𝜕𝑧2⋯ 𝜕𝑧𝑛

𝑑𝑧2 ∧⋯ ∧ 𝑑𝑧𝑛 =

(

𝐍𝐾∕ℚ(𝜈)
√

𝜋

𝑑𝑓
√

𝑑𝐹

)

𝜕
𝜕𝑐

𝑍[𝔞](𝑏; 0)
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In the case where 𝑔 = 2 we have one real and one complex places, therefore, we have to use the second part of
the Corollary 7. Using the fact that the second-term integral of the equation given by the corollary is zero, we
can conclude

∫𝐶𝜏

Ω+
Eis =

1
2 ∫Δ𝜏

𝜕ℎ̃(𝑧1, ..., 𝑧𝑔)
𝜕𝑧2

𝑑𝑧2 =
1
2 ∫Δ𝜏

(

𝜕ℎ̃(𝑧1, ..., 𝑧𝑔)
𝜕𝑧2

−
4𝑅𝐹

𝑧2 − �̄�2

)

𝑑𝑧2 =

(

𝐍𝐾∕ℚ(𝜈)
√

𝜋

𝑑𝑓
√

𝑑𝐹

)

𝜕
𝜕𝑠

𝑍𝜛
[𝔞](𝑏; 0)

As we pointed out after the enunciation of the Stark Conjecture, with this theorem we are giving an analytic
expression of the first derivative of the zeta function in 𝑠 = 0 but does not help in computing the Stark Number,
since it can be complex and therefore we lose information by computing its norm.

4 Abel-Jacobi Map and the Charollois-Darmon Conjecture

Assuming that the Stark Conjecture is true, the Theorem 3.0.2. gives us an analytic expression of the norm
associated with the element of a given element [𝔞] ∈ Cl+𝐹 (𝐾) and the elements 𝜈 ∈ 𝐹 (∞) and 𝜏 ∈ 𝐾 such
that

[

𝜈(𝐹 + 𝜏𝐹 )
]

=
[(

𝔞−1
)∗]

𝑒𝐻 ∫𝐶𝜏

Ω+
𝐸𝑖𝑠 = −2

(

𝐍𝐾∕ℚ(𝜈)
√

𝜋

𝑑𝑓
√

𝑑𝐹

)

log |𝑣1(𝑢[𝔞])|

where 𝑒𝐻 denotes the number of roots of units in the field 𝐻 . By definition, we have that log |𝑣1(𝑢[𝔞])| =
ℜ

(

log
(

𝑣1(𝑢𝜏)
))

. The conjecture that we are going to present in this section proposes an analytic expression
of the complex value 𝑣(𝑢[𝔞]) using the integral of ΩEis that its real part the integral of 𝜔+

Eis and, therefore, will
satisfy the last equation.
For all 𝑚 ≥ 0, we denote the group formed by linear combinations of differential chains of real dimension 𝑚
in  with coefficients in ℤ, as 𝐶𝑚(). We define the subgroups 𝐶0

𝑚() and 𝐶00
𝑚 () of 𝐶𝑚() generated by the

closed cycles and homologous to zero, respectively

𝐶0
𝑚() ∶=

{

Δ ∈ 𝐶𝑚() s.t. 𝜕Δ = 0
}

𝐶00
𝑚 () ∶=

{

Δ ∈ 𝐶𝑚() s.t. ∃𝐶 ∈ 𝐶𝑚+1() with 𝜕𝐶 = Δ
}

After defining these subgroups, we can introduce the Abel-Jacobi application which will be essential for the
generalised statement of the Charollois-Darmon Conjectures specified at the end of this section.

Definition 4.1 (Abel-Jacobi application). Using the differential form ΩEis, we can define the application of
Abel-Jacobi

Φ ∶ 𝐶00
𝑔−1 →

ℂ
/

ΛEis

as
ΦEis(Δ) = ∫𝜕𝐶=Δ

ΩEis (mod ΛEis)

It is remarkable that this last integral is well defined because of Proposition 1.19. We also define the subgroup

𝐶00
𝑚 () ∶=

{

Δ ∈ 𝐶𝑚() s.t. ∃𝐶 ∈ 𝐶𝑚+1(𝑋)⊗ℚ with 𝜕𝐶 = Δ
}

It is known that the quotient 𝐶0
𝑔−1()∕𝐶00

𝑔−1 = 𝐻𝑔−1( ,ℤ) is a finite group, which has a torsion subgroup
defined with 𝐶0

𝑔−1()∕𝐶00
𝑔−1() =. Let 𝑛𝐹 the exponent of this finite group, and let

Λ′
Eis ∶= 𝑛−1𝐹 ΛEis

26



Charollois-Darmon Algorithm Carlos Caralps

If we change the residue of the definition in the Abel-Jacobi application from ΛEis to Λ′
Eis, we can understand

ΦEis over the subgroup 𝐶00
𝑚 (𝑋) and its expression as

ΦEis(Δ) = 𝑛−1𝐹 ∫𝜕𝐶=𝑛𝐹Δ
𝜔Eis (mod Λ′

Eis)

Since in the proof of the Lemma 3.1 we proved that the 𝑔-differentiable chains 𝐶 of 𝑋 that satisfy 𝜕𝐶 = Δ𝜏 , for
a 𝜏 ∈ 𝐾 , will be equivalent mod Λ′

Eis, we can understand

𝐽𝜏 ∶= 𝑒𝐻ΦEis(Δ𝜏)

as an element in ℂ∕Λ′
Eis.

Defining ΛEis′′ as the reminder of (i)−𝑔ℝ given by ΛEis′ and (i)−𝑔ℤ. After fixing one of the splits 𝑣1 ∈ 𝑆𝐻
∞ of

𝑣1 ∈ 𝑆𝐾
∞, we are in the position of giving the generalization of the Charoillois-Darmon Conjecture for Zeta

Functions associated to a Ray Class Field.
Conjecture 4.2 (Generalization Charollois-Darmon Conjecture). For all 𝐾 -module 𝔫 with associated ele-
ments 𝜈 ∈ 𝐹 (∞) and 𝜏 ∈ 𝐾 , that satisfy

[

𝜈(𝐹 + 𝜏𝐹 )
]

=
[(

𝔫−1)∗], the Stark number 𝑢𝜏 ∈ 𝐻 of 𝑍𝜛
[𝔫](𝑏; 𝑠)

satisfies the equation

𝐽𝜏 = −2

(

𝐍𝐾∕ℚ(𝜈)
√

𝜋

𝑑𝑓
√

𝑑𝐹

)

log
(

𝑣1(𝑢𝜏)
)

(mod Λ′′
𝐸𝑖𝑠)

5 Charollois-Darmon Algorithm

In this section, we will describe the algorithm proposed by P. Charollois and H. Darmon [CD08, pp. 673–677]
to give computational examples, for 𝑔 = 2, of their conjecture for the zeta functions when 𝐿(𝔞, 𝐼, ; 𝑠) described
at the beginning of this document. In their paper, instead of using the form ΩEis, they use the following form

ΩCD
Eis ∶=

⎧

⎪

⎨

⎪

⎩

(2𝜋 i)2
√

𝑑𝐹
Ω𝐸CD

2
+ 𝑅𝐹

2

(

𝑑𝑧1∧𝑑�̄�1
𝑦21

− 𝑑𝑧2∧𝑑�̄�2
𝑦22

)

if 𝑔 = 2
(2𝜋 i)𝑔
√

𝑑𝐹
Ω𝐸CD

2
if 𝑔 > 2

where
𝐸CD
2 (𝑧) = 𝜁𝐹 (−1) + 2𝑔

∑

𝜇∈𝐹 (∞)
𝜎1(𝜇)𝑒

2𝜋 i𝐓𝐫
(

𝜇
𝛿 𝑧

)

and 𝜎𝑘(𝜇) =
∑

(𝜈)|(𝜇)
|𝐍(𝜈)|𝑘

In order to compute the invariant 𝐽𝜏 of the Charollois-Darmon conjecture, in the case where 𝑔 = 2, we need to
compute the image of the Abel-Jacobi map for Δ𝜏 mod Λ′

Eis where

Λ′′
Eis ∶=

1
𝑛𝐹

{

∫𝐶
Ω𝐸CD

2
for 𝐶 ∈ 𝐶0

𝑔 (𝑋)
}

where 𝑋 is constructed similarly to our case but taking the Hiblert Group Γ instead of Γ1(𝑓 ). Given a matrix
𝐴 ∈ Γ and a point 𝑃 ∈ 𝔥2, we can define the image of the geodesic joining 𝑃 and 𝐴𝑃 in 𝑋 as 𝑆𝑃 (𝐴). From
Lemma 3.1. in [CD08, p. 670] we know that 𝐻1(𝑋,ℚ) = 0 and, consequently, there exists a differentiable
2-chain 𝐷𝑃 (𝐴) in 𝑋 with rational coefficients satisfying

𝜕𝐷𝑃 (𝐴) = 𝑛𝐹𝑆𝑃 (𝐴)

It is useful for this section to introduce a notation for the integral of ΩCD
Eis over 𝐷𝑃 (𝐴) modulus Λ′

Eis

𝜌𝑃 (𝐴) ∶=
1
𝑛𝐹 ∫𝐷𝑃 (𝐴)

ΩCD
Eis (mod Λ′

Eis)

P. Charollois and H. Darmon prove in Proposition 5.2. [CD08, p. 674] that this last function of a matrix 𝛾𝜏 ∈ Γ,
that fixes 𝜏, is equivalent to ΦEis(Δ𝜏) for any given point 𝑃 ∈ 𝔥2

ΦEis(Δ𝜏) = 𝜌𝑃 (𝛾𝜏) (mod Λ′
Eis)

In the following subsection, we will specify how to compute the value 𝜌𝑃 (𝛾𝜏).
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5.1 Computation of the Rho Function

In this subsection, we will specify how to compute the image of the function 𝜌 of a given 𝜏 ∈ 𝐾 and its associated
matrix 𝛾𝜏 ∈ Γ. From the definition of 𝑑𝜌 and the expression at the end in Lemma 5.1. [CD08, p. 674], we have
that for all 𝐴,𝐵 ∈ Γ and 𝑃 ∈ 𝔥2

𝜅𝑃 (𝐴,𝐵) = 𝑑𝜌𝑃 (𝐴,𝐵) = 𝜌𝑃 (𝐴) − 𝜌𝑃 (𝐴𝐵) + 𝜌𝑃 (𝐵) ⟺ 𝜌𝑃 (𝐴𝐵) = 𝜌𝑃 (𝐴) + 𝜌𝑃 (𝐵) − 𝜅𝑃 (𝐴,𝐵), (mod Λ′
Eis)

where the function 𝜅𝑃 (𝐴,𝐵), for a given 𝐴,𝐵 ∈ Γ and a fixed point 𝑃 ∈ 𝔥2, is defined as

𝜅𝑃 (𝐴,𝐵) ∶= ∫△𝑃 (𝐴,𝐵)
ΩCD

Eis where △𝑃 (𝐴,𝐵) is the triangle between the points {𝑃 ,𝐴𝑃 ,𝐴𝐵𝑃 }

Since the image of the identity matrix is zero [CD08, p. 677], using the last expression, we have that for any
ℎ ∈ Γ the image of 𝜌 can be related to the 𝜅 function

𝜌𝑃 (ℎ) + 𝜌𝑃 (ℎ−1) − 𝜅𝑃 (ℎ, ℎ−1) = 𝜌𝑃 (𝐼𝑑2) = 0 ⟺ 𝜌𝑃 (ℎ) + 𝜌𝑃 (ℎ−1) = 𝜅𝑃 (ℎ, ℎ−1), (mod Λ′
Eis)

If we consider a commutator [ℎ, 𝑘] = ℎ𝑘ℎ−1𝑘−1 of elements ℎ, 𝑘 ∈ 𝛾 , we can use these two last equations to
give a general expression of the image of the 𝜌 function of this commutator

𝜌𝑃 ([ℎ, 𝑘]) = 𝜌𝑃 (ℎ) + 𝜌𝑃 (ℎ−1) + 𝜌𝑃 (𝑘) + 𝜌𝑃 (𝑘−1) − 𝜅𝑃 (ℎ, 𝑘ℎ−1𝑘−1) − 𝜅𝑃 (𝑘, ℎ−1𝑘−1) − 𝜅𝑃 (ℎ−1, 𝑘−1) =

= 𝜅𝑃 (ℎ, ℎ−1) + 𝜅𝑃 (𝑘, 𝑘−1) − 𝜅𝑃 (ℎ, 𝑘ℎ−1𝑘−1) − 𝜅𝑃 (𝑘, ℎ−1𝑘−1) − 𝜅𝑃 (ℎ−1, 𝑘−1), (mod Λ′
Eis)

As P. Charollois and H. Darmon point out in [CD08, p. 677], since we are assuming that the narrow class group
of 𝐹 is trivial, the Hilbert Group Γ will be generated by the fundamental matrices

𝑆 =
(

0 −1
1 0

)

, 𝑈 =
(

𝜀 0
0 𝜀−1

)

, 𝑇𝜇 =
(

1 𝜇
0 1

)

, 𝜇 ∈ 𝐹

We also have that for all matrix 𝐴 ∈ Γ its power 𝛾𝑝 with 𝑝 = 4𝐍(𝜀2 − 1), where 𝜀 generates the subgroup of
integer units of 𝐹 , can be written as a product of commutator [CD08, p. 677]. Therefore, for the matrix 𝛾𝑟𝜏 ,
which can be expressed as a product of the fundamental matrices, one can use the following expressions (that
come from a trivial computation) and the Euclidean Algorithm to find an expression of commutators of 𝛾𝑟𝜏

𝑈𝑇𝜇𝑈
−1𝑇 −1

𝜇 = 𝑇𝜇(𝜀2−1), 𝑆𝑈𝑆−1𝑈−1 = 𝑈−2, 𝑆𝑈−1𝑆−1𝑈 = 𝑈 2

Using the first property of 𝜌𝜏 we have shown in this subsection and the fact that 𝛾𝑟𝜏 can be expressed as a product
of commutator, that we will denote as [ℎ𝑗 , 𝑘𝑗], we can give a general expression for 𝜌𝑃 (𝛾𝑟𝜏 )

𝜌𝑃 (𝛾𝑟𝜏 ) =
∑

(

𝜌𝑃 ([ℎ𝑗 , 𝑘𝑗]) − 𝜅𝑃

(

[ℎ𝑗 , 𝑘𝑗],
∏

𝑡>𝑗
[ℎ𝑡, 𝑘𝑡]

))

, (mod Λ′
Eis)

Since 𝛾𝑟𝜏 is also a product of matrices, we can use the same property to give a general expression of 𝜌𝑃 (𝛾𝜏) with
𝜌𝑃 (𝛾𝑟𝜏 ) and values of the 𝜅𝑃 function

𝜌𝑃 (𝛾𝑟𝜏 ) = 𝑟𝜌𝑃 (𝛾𝜏) −
𝑝−1
∑

𝑗=1
𝜅𝑃 (𝛾𝜏 , 𝛾𝑗𝜏 ) ⟺ 𝜌𝑃 (𝛾𝜏) =

1
𝑟

(

𝜌𝑃 (𝛾𝑟𝜏 ) +
𝑝−1
∑

𝑗=1
𝜅𝑃 (𝛾𝜏 , 𝛾𝑗𝜏 )

)

, (mod Λ′
Eis)

The function 𝜅𝑃 is defined as an integral of 𝜔Eis over a triangle [CD08, p. 673]. Using the expressions of 𝜌𝑃 (𝛾𝑟𝜏 )
and 𝜌𝑃 (𝛾𝜏), we can obtain an expression of 𝜌𝑃 (𝛾𝜏) with images of commutators through the 𝜌𝑃 function, which
we know how to compute, and the 𝜅𝜏 function

𝜌𝑃 (𝛾𝜏) =
1
𝑟
∑

(

𝜌𝑃 ([ℎ𝑗 , 𝑘𝑗]) − 𝜅𝑃

(

[ℎ𝑗 , 𝑘𝑗],
∏

𝑡>𝑗
[ℎ𝑡, 𝑘𝑡]

))

+
𝑝−1
∑

𝑗=1
𝜅𝑃 (𝛾𝜏 , 𝛾𝑗𝜏 ), (mod Λ′

Eis)
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5.2 Computation of the Kappa Function

The algorithm is based on the ability to compute the integral of the differential form 𝜔Eis over a triangle defined
over a point 𝑃 ∈ 𝔥2 and two matrices 𝐴,𝐵 ∈ Γ as △𝑃 (𝐴,𝐵) = △ (𝑃 ,𝐴𝑃 ,𝐴𝐵𝑃 ). We will denote this integral
as a function, which we will denote as 𝜅𝑃 (𝐴,𝐵)

𝜅𝑃 (𝐴,𝐵) ∶= ∫△𝑃 (𝐴,𝐵)
ΩCD

Eis

The proposition 5.3. proven on the paper from P. Charollois and H. Darmon [CD08, p. 675] assures that if we
assume 𝑃 ∈ {𝜏1} × 𝔥 then

𝜅𝑃 (𝐴,𝐵) = 𝜅𝑃 (𝐴,𝐵) ∶= 𝜅□
𝑃 (𝐴,𝐵) + i𝜋𝑅𝐹

(

area(𝐴2, 𝐵2) − area(𝐴1, 𝐵1)
)

, (mod Λ′
Eis)

where the area is defined as area(𝑀,𝑁) ∶= − sign(𝑚2,1𝑛2,1(𝑚𝑛)2,1) and 𝜅□
𝑃 (𝐴,𝐵) is the integral of the differ-

ential form 𝜔𝐸𝑖𝑠 over the rectangle □𝑃 (𝐴,𝐵) = Υ[𝑃1, 𝐴1𝑃1] × Υ[𝐴2𝑃2, 𝐴2𝐵2𝑃2]

𝜅□
𝑃 (𝐴,𝐵) = ∫□𝑃 (𝐴,𝐵)

ΩCD
Eis

The computation of the function 𝜅□
𝑃 (𝐴,𝐵) will depend on the integration of the Fourier expansion terms of the

Eisenstein series

𝜅□
𝑃 (𝐴,𝐵) = ∫□𝑃 (𝐴,𝐵)

[

(2𝑖𝜋)2
√

𝑑𝐹
𝜔𝐸2

+
𝑅𝐹
2

(

𝑑𝑧1 ∧ 𝑑�̄�1
𝑦21

−
𝑑𝑧2 ∧ 𝑑�̄�2

𝑦22

)]

Since we are computing the integral over two geodesics, we can immediately conclude that the second and third
terms of the integral will be zero. We have that the integral of the first coefficient, using the Fourier expansion
described before, is

𝜅□
𝑃 (𝐴,𝐵) = −4𝜋2

√

𝑑𝐹
𝜁 (−1)𝐴□𝑃 (𝐴,𝐵)+4

√

𝑑𝐹
∑

𝜇∈𝐹 , 𝜇>>0

𝜎1(𝜇)
𝐍 (𝜇)

(

𝑒2𝜋 i 𝜇1
𝛿1
𝐴1𝑃1 − 𝑒2𝜋𝑖

𝜇1
𝛿1
𝑃1

)(

𝑒2𝜋 i 𝜇2
𝛿2
𝐴2𝐵2𝑃2 − 𝑒2𝜋 i 𝜇2

𝛿2
𝐴2𝑃2

)

where the coefficient 𝐴□𝑃 (𝐴,𝐵) is described as

𝐴□𝑃 (𝐴,𝐵) =
(

𝐴1𝑧1 − 𝑧1
) (

𝐴2𝐵2𝑧2 − 𝐴2𝑧2
)

This last expression is not the best one to compute numerical approximation since the apportion of the coeffi-
cients associated to a 𝜇 ∈ 𝐹 will not be related to its norm or trace. Instead, we will use a method proposed by
Henri Darmon and Adam Logan in [DL04, p. 2176] where we compute the last summation over all the ideals
 ∈ (𝐾), where (𝐾) is the collection of all the ideals in 𝐾 and 𝜇 is a totally positive generator of a given
ideal  (the narrow class field is trivial)

−4𝜋2
√

𝑑𝐹
𝜁 (−1)𝐴□𝑃 (𝐴,𝐵)+4

√

𝑑𝐹
∑

∈(𝐹 )

𝜎1( )
|𝐍 ( ) |

∑

𝑗∈ℤ

(

𝑒2𝜋 i
𝜇1
𝛿1

𝜀2𝑗𝐴1𝑃1 − 𝑒2𝜋𝑖
𝜇1
𝛿1

𝜀2𝑗𝑃1

)(

𝑒2𝜋 i
𝜇2
𝛿2

𝜀2𝑗𝐴2𝐵2𝑃2 − 𝑒2𝜋 i
𝜇2
𝛿2

𝜀2𝑗𝐴2𝑃2

)

With this last expression and the definitions of the area, we can compute the value of the kappa function modulus
of the lattice Λ′

Eis. H. Darmon and A. Logan point out in their paper that the minimum norm we have to take to
compute 𝑀 digits of 𝜅□

𝑃 (𝐴,𝐵) is

𝑀
/

min
(

|

|

ℑ(𝑃1𝐴1𝑃1)|| , ||ℑ((𝐴2𝐵2𝑃2)(𝐴2𝑃2))||
)
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5.3 Computation of Narrow Ray Class Groups

To compute the narrow class group we will use the code language Magma. Magma will give us integer repre-
sentatives of all the classes of 𝐾 and, to find an associated element 𝜏 ∈ 𝐾 of a given [𝔞] ∈ Cl+(𝐾), we will
consider its 𝐹 -basis {𝜔1, ..., 𝜔𝑛}

𝔞 = 𝜔1𝐹 + 𝜔2𝐹 +⋯ + 𝜔𝑛𝐹

Since the integer ring of 𝐾 is a 2-module of the integer rings of 𝐹 , we know that given two elements in 𝐾 there
exists a linear combination that lies in 𝐹 . Using this facts we can find 𝜔′

2, ..., 𝜔
′
𝑛 ∈ 𝐹 such that {𝜔1, 𝜔′

2, ..., 𝜔
′
𝑛}

is a basis of 𝔞
𝔞 = 𝜔1𝐹 + 𝜔′

2𝐹 +⋯ + 𝜔′
𝑛𝐹

The lattice 𝜔′
2ℤ+⋯+𝜔′

2𝑔ℤ is a fractional ideal of 𝐹 . Since we are supposing that the narrow class field of 𝐹
is trivial, this last fractional ideal is a fully positive principal ideal of 𝐹 and, consequently, there exists a fully
positive element 𝛿 >> 0 such that

𝔞 = 𝜔1𝐹 + 𝛿𝐹

Since 𝛿 is a fully positive element, we know that the lattice 𝐹 + 𝜏𝐹 , where 𝜏 = 𝜔1∕𝛿, represents the same
class as 𝔞.

5.4 Computation of Fixed Matrices

After computing the associated 𝜏 of every class in Cl+(𝐾) we have to find a matrix 𝛾𝜏 ∈ Γ that fixes the element
𝜏 through the Mobius transformation. To obtain this matrix we will consider a non-trivial two-degree in 𝐹 [𝑥]
that has 𝜏 as a root

𝐴𝑥2 + 𝐵𝑥 + 𝐶, 𝐴,𝐵, 𝐶 ∈ 𝐹

The coefficients of all the Hilbert group matrices that fix 𝜏 through the Mobius transformation will satisfy the
following equations

𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑

= 𝜏 ⟺ 𝑐𝜏2 + (𝑑 − 𝑎)𝜏 − 𝑏

This polynomial must be a multiple of the minimum polynomial expressed at the beginning of this subsection,
we have that there exists a 𝜆 ∈ 𝐹 such that

𝑐 = 𝜆𝐴, 𝑏 = −𝜆𝐶, 𝑑 − 𝑎 = 𝜆𝐵

Using this equation and the determinant condition that all the matrices in Γ satisfy, we have

⎧

⎪

⎨

⎪

⎩

𝑎𝑑 − 𝑏𝑐 = 1
𝑐 = 𝜆𝐴
𝑏 = −𝜆𝐶

𝑑 = 𝑎 + 𝜆𝐵

⟺

⎧

⎪

⎨

⎪

⎩

𝑎2 + 𝑎𝜆𝐵 + 𝜆2𝐶𝐴 − 1 = 0
𝑐 = 𝜆𝐴
𝑏 = −𝜆𝐶

𝑑 = 𝑎 + 𝜆𝐵

By choosing 𝜆 ∈ 𝐹 such that the two-degree equation has a solution in 𝐹 , we would have found all the
coefficients in a matrix of Γ that fixes 𝜏 through the Mobius transformation.

5.5 Generalization for Lattice Zeta Functions

We shall discuss the generalization of the algorithms expressed in the last subsection to the zeta functions
associated to a ray class field case. The general algorithm proposed by P. Charollois and H. Darmon can be
easily generalized, however, the difficulty rise from the basic algorithms that we use along the way.
Using the same process as in Section 5.3, given a class [𝔞] ∈ Cl+𝜛(𝐾) we can find a representative of the dual
class of the form

𝜈
(

𝐹 + 𝜏𝐹
)

, 𝜈 ∈ 𝐹 (∞), 𝜏 ∈ 𝐾

30



Periods of Eisenstein Series Carlos Caralps

We need to find an efficient algorithm to compute a matrix 𝛾𝜏 ∈ Γ1(𝜛) that fixes 𝜏 ∈ 𝐾 . We could work out
when the expression given in Section 5.4 lies in the subgroup Γ1(𝜛) ⊆ Γ, however, it might be more useful
using the fact that the subgroup of matrices that fix 𝜏 in Γ and Γ1(𝜛) have dimension one and consequently,
given the generator of ⟨𝛾⟩ = Γ𝜏 (the subgroup of matrices that fix 𝜏) there exists 𝑛 ∈ ℤ such that

⟨𝛾𝑛⟩ = Γ𝜏 ∩ Γ1(𝜛)

Another problem we face is that we do not know the generators of Γ1(𝜛). We shall generalize the work of
Leonid Vasertin [Vas72] to find the generators of such group and also generalize the algorithms presented by
Xavier Guitart and Marc Masdeu [GM12, p. 2] to compute the decomposition of a given matrix in Γ1(𝐾 ).
Both papers shall be generalized for any ideal 𝐼 ⊂ 𝐾 , immediately giving us the generators of Γ1(𝜛).
Finally, we shall also generalize the work of H. Darmon and A. Logan to the the integration of Eisenstein series.
To generalize such work it will probably be necessary to find expressions similar to the ones proportionated by
[Cha16] that take under consideration ideals instead of values of summations over quotients of elements which
will be more efficient computationally.

6 Periods of Eisenstein Series

In this section, we will prove special formulas between the Eisenstein series and the lattice zeta functions at
𝑠 = 0 essential for the main theorems in sections 2 and 3. P. Charollois worked out similar expressions in his
PhD thesis [Cha04] for the Hecke L-functions, we will give similar proofs as the ones expressed in [CD08,
pp. 683–687] but adapted to our zeta functions.
Giving a totally real number field 𝐹 (all its places are real) with a trivial narrow class group and degree 𝑔 =
[𝐹 ∶ ℚ], we denote its collection of places as

𝑆𝐹
∞ = {𝑣1, ..., 𝑣𝑔}

We define, for any 𝑛 ∈ ℕ, over any vector 𝑧 = (𝑧1, ..., 𝑧𝑛) over 𝔥𝑛 ⊂ ℂ𝑛, their imaginary part 𝑦 = (ℑ𝑧1, ...,ℑ𝑧𝑛),
their norm 𝐍(𝑧) = 𝑧1⋯ 𝑧𝑛 and their trace 𝐓𝐫(𝑧) = 𝑧1 +⋯ + 𝑧𝑛. During this chapter when we talk about the
summation 𝑧+ 𝑣 and the product 𝑧𝑣 of vectors over their components (𝑧1 + 𝑣1, ..., 𝑧𝑛 + 𝑣𝑛) and (𝑧1𝑣1, ..., 𝑧𝑛𝑣𝑛),
respectively. Considering the elements of 𝐹 as vectors in ℝ𝑔 through the places of 𝐹 , we can define the
Analytic Eisenstein Series, for ℜ(𝑠) > 1, as

𝐸(𝑏; 𝑧, 𝑠) =
∑

(𝑚,𝑛)∈
(

+
𝑏,0,𝐾

\𝐹 × 𝐹
)

𝐍(𝑦)𝑠

|𝐍(𝑚𝑧 + (𝑛 − 𝑏))|2𝑠
, 𝑏 ∈ 𝐾, 𝑧 ∈ 𝔥𝑔

Given a relative quadratic extension 𝐾∕𝐹 , we can define the variables 𝑔 = [𝐹 ∶ ℚ] = 𝑟 + 𝑐 where 𝑟 is the
number of places in 𝐹 that split into two real places in 𝐾 and 𝑐 is the number of places of 𝐹 that ramify in 𝐾 .
We will suppose that the first 𝑐 places of 𝑆𝐹

∞ are the ones that will ramify to complex places to 𝐾 , which will
also be denoted as 𝑣𝑗 , 𝑗 = 1, .., 𝑐, the rest o the places will split into to real places which will be denoted as 𝑣𝑗
and 𝑣′𝑗 for 𝑗 = 𝑐 + 1, ..., 𝑛.
For any class ideal [𝔞] ∈ Cl+𝜛(𝐾), since the narrow class field of 𝐾 is trivial, we know there exist 𝜈 ∈ 𝐹 (∞)
and 𝜏 ∈ 𝐾 such that 𝜈

(

𝐹 + 𝜏𝐹
)

is a representative of the class [𝔞]. We define the following notations for
the images of 𝜏 through the different places of 𝐾

𝜏𝑗 ∶= 𝑣𝑗(𝜏) ∈ 𝔥 for 𝑗 = 1, ..., 𝑐

(𝜏𝑗 , 𝜏′𝑗) ∶=
(

𝑣𝑗(𝜏), 𝑣′𝑗(𝜏)
)

∈ ℝ2 for 𝑗 = 𝑐 + 1, ..., 𝑛

For all 𝑗 ∈ {𝑐 +1, ..., 𝑛}, we denote Υ𝑗 as the totally geodesic real analytic submainfold of 𝔥𝑔 linking the points
𝜏𝑗 and 𝜏′𝑗 , with orientation from 𝜏𝑗 to 𝜏′𝑗 . We define the region 𝑅𝜏 as

𝑅𝜏 = {𝜏1} ×⋯ × {𝜏𝑐} × Υ𝑐+1 ×⋯ × Υ𝑛 ⊂ 𝔥𝑔
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which is an orientated subspace congruent to a subspace inℝ𝑐+2𝑟. We define the abelian subgroup Γ1
𝜏(𝑓 ) of range

𝑟 inside Γ1(𝜛) that identifies with the subgroup 1 of + the 𝐹 units of relative norm 1. This subgroup acts over
𝑅𝜏 through homographies (applying the Moebius action in each coordinate), and the quotient  ∶= Γ1

𝜏(𝑓 )
\𝑅𝜏

is compact. Considering a fundamental domain over the action of Γ1
𝜏(𝑓 ) over 𝑅𝜏 , we identify Δ𝜏 as the image

of such domain inside  , which is a closed cycle of dimension 𝑟 inside the quotient Γ1
𝜏(𝑓 )

\𝑅𝜏 .

Theorem 6.1. Given any class [𝔞] ∈ Cl+𝑓 (𝐾), we consider the elements 𝜈 ∈ 𝐹 (∞) and 𝜏 ∈ 𝐾 such that the
dual of the class [𝔞] can be represented as 𝜈

(

𝐹 + 𝜏𝐹
)

and an element 𝑏 ∈
(

𝔑−1)∗, where 𝔑 is the integer
representation of the class, and we have

∫Δ𝜏

𝜕𝑟𝐸(𝑏∕𝜈; 𝑧, 𝑠)
𝜕𝑧𝑐+1⋯ 𝜕𝑧𝑔

𝑑𝑧𝑐+1 ∧⋯ ∧ 𝑑𝑧𝑔 =

(

−
Γ( 𝑠+1

2
)2

2Γ(𝑠)

)𝑟
(𝐍𝐾∕ℚ(𝜈)

𝑑𝐹

)𝑠 𝑍𝔞(0, 𝑏; 1 − 𝑠)
𝜑(1 − 𝑠)

Proof. We associate, for a complex number 𝑠 ∈ ℂ such that ℜ(𝑠) > 1, the differentiable 𝑟-form Γ1
𝑓 (𝐹 )-invariant

over 𝑔 copies of the upper half plane 𝔥𝑔 ⊆ ℂ𝑔

Ω𝑟
Eis(𝑠) ∶=

𝜕𝑟𝐸(𝑏∕𝜈; 𝑧, 𝑠)
𝜕𝑧𝑐+1⋯ 𝜕𝑧𝑔

𝑑𝑧𝑐+1 ∧⋯ ∧ 𝑑𝑧𝑔

We explicitly compute the derivative with respect to the variable 𝑧𝑗 of the term defined by these variables in the
products defining 𝐍(𝑦) and 𝐍(𝑚𝑧 + (𝑛 − 𝑏)).

𝜕
𝜕𝑧𝑗

⎛

⎜

⎜

⎜

⎝

𝑦𝑠𝑗
|

|

|

𝑚(𝑗)𝑧𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
)

|

|

|

2𝑠

⎞

⎟

⎟

⎟

⎠

= 𝑠
2𝑖

𝑦𝑠−1𝑗

(

𝑚(𝑗)𝑧′𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
)

)2

|

|

|

𝑚(𝑗)𝑧𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
)

|

|

|

2𝑠+2

We can use this last derivative to give a general expression of the Ω𝑟
Eis(𝑠) integral with respect to Δ𝜏

∫Δ𝜏

Ω𝑟
Eis(𝑠) =

( 𝑠
2 i

)𝑟

∫Δ𝜏

∑

(𝑚,𝑛)∈
(

+
−𝑏∕𝜈,0,𝐾

\

2
𝐹

)

⎛

⎜

⎜

⎜

⎝

𝑐
∏

𝑗=1

(ℑ𝜏𝑗)𝑠

|

|

|

𝑚(𝑗)𝜏𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
)

|

|

|

2𝑠

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑔
∏

𝑗=𝑐+1

𝑦𝑠−1𝑗
(

𝑚(𝑗)�̄�𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
))2

|

|

|

𝑚(𝑗)𝑧𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
)

|

|

|

2(𝑠+1)

⎞

⎟

⎟

⎟

⎠

𝑑𝑧𝑐+1 ∧⋯ ∧ 𝑑𝑧𝑔

We remember that the norm of 𝔞 = 𝐹 + 𝜏𝐹 can we expressed as

𝐍(𝔞) = 𝑑𝐹
𝑐

∏

𝑗=1
ℑ𝜏𝑗

𝑔
∏

𝑗=𝑐+1
(𝜏′𝑗 − 𝜏𝑗)

We define the natural action of 𝐾× over (ℝ+)𝑟 as

𝛼 ∙ (𝑡𝑐+1, ..., 𝑡𝑔) ∶=

(

|

|

|

|

|

𝛼𝑐+1
𝛼′𝑐+1

|

|

|

|

|

𝑡𝑐+1, ...,
|

|

|

|

|

𝛼𝑔
𝛼′𝑔

|

|

|

|

|

𝑡𝑔

)

We state the measure canonic of Haar in the compact set Γ1
𝜏(𝑓 )

\𝑅𝜏

𝑑×𝑡 =
𝑑𝑡𝑐+1
𝑡𝑐+1

∧⋯ ∧
𝑑𝑡𝑔
𝑡𝑔
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We make the change of variable 𝑡𝑗 = − i(𝑧𝑗−𝜏′𝑗)∕(𝑧𝑗−𝜏𝑗) to obtain a parametrization 𝑡𝑗 ∈ ℝ+ of the geodesic Υ𝑗

which allow us to identify the quotient Γ1
𝜏(𝑓 )

\𝑅𝜏 with a collection of 𝑟 real torus 𝑇 𝑟. Considering the variable
𝛽 = 𝑚𝜏 + (𝑛 − 𝑏∕𝜈), we have

𝑔𝛽(𝛽 ∙ 𝑡) =
𝑔
∏

𝑗=𝑐+1

(𝛽 ∙ 𝑡)𝑠𝑗
(

−𝑖(𝛽 ∙ 𝑡)𝑗 + sign(𝛽𝑗𝛽′𝑗)
)2

(

(𝛽 ∙ 𝑡)2𝑗 + 1
)𝑠+1

=

=
𝑔
∏

𝑗=𝑐+1

𝑖𝑠−1(𝑧𝑗 − 𝜏′𝑗)𝑦
𝑠−1
𝑗

(

𝑚(𝑗)�̄�𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
))2

|𝛽𝑗𝛽′𝑗|
2𝑠

(𝑧𝑗 − 𝜏𝑗)(𝜏′𝑗 − 𝜏𝑗)
|

|

|

𝑚(𝑗)𝑧𝑗 +
(

𝑛(𝑗) − 𝑏(𝑗)∕𝜈(𝑗)
)

|

|

|

2(𝑠+1)

Which, since 𝔞∗∕𝜈 is generated by {1, 𝜏} and consequently 𝛽 will go over the quotient +
−𝑏∕𝜈,0,𝐾

\
(

𝔞∗−𝑏
𝜈

)

,

implies that the first expression is equivalent to

∫Δ𝜏

Ω𝑟
Eis(𝑠) =

( 𝑠
2

)𝑟
(

𝐍(𝔞)
𝑑𝐹

)𝑠
∑

𝛽∈

(

+
−𝑏∕𝜈,0,𝐾

\
(

𝔞∗−𝑏
𝜈

)
)

1
|

|

|

𝐍𝐾∕ℚ (𝛽)||
|

𝑠 ∫𝑇 𝑟
𝑔𝛽(𝛽 ∙ 𝑡)𝑑×𝑡

We can identify all the non-zero classes of +
−𝑏∕𝜈,0,𝐾

\
(

𝔞∗−𝑏
𝜈

)

as {𝜖𝛽} where 𝛽 ∈
(

−𝑏∕𝜈,0,𝔞∗∕𝜈

\
(

𝔞−𝑏
𝜈

)
)

and 𝜖 ∈ 1∕{±1}. Consequently,

∫Δ𝜏

Ω𝑟
Eis(𝑠) =

( 𝑠
2

)𝑟
(

𝐍(𝔞)
𝑑𝐹

)𝑠
∑

𝛽∈

(

+
−𝑏∕𝜈,0,𝔞∗∕𝜈

\
(

𝔞∗−𝑏
𝜈

)
)

|

|

|

𝐍𝐾∕ℚ (𝛽)||
|

−𝑠

∫+
\

(ℝ+)𝑟
∑

1∕{±1}
𝑔𝜖𝛽(𝜖𝛽 ∙ 𝑡)𝑑×𝑡

=
( 𝑠
2

)𝑟
(

𝐍(𝔞)
𝑑𝐹

)𝑠
∑

𝛽∈

(

+
−𝑏∕𝜈,0,𝔞∗∕𝜈

\
(

𝔞∗−𝑏
𝜈

)
)

|

|

|

𝐍𝐾∕ℚ (𝛽)||
|

−𝑠

∫(ℝ+)𝑟
𝑔𝛽(𝛽 ∙ 𝑡)𝑑×𝑡

The change of variable 𝑢 = 𝛽 ∙ 𝑡 allows us to compute an expression for the 𝑟 integrals of this last equation

∫

∞

0

𝑢𝑠𝑗
(

− i 𝑢𝑗 + sign(𝛽𝑗𝛽′𝑗)
)2

(

𝑢2𝑗 + 1
)𝑠+1

𝑑𝑢𝑗
𝑢𝑗

= − i sign(𝛽𝑗𝛽′𝑗)
Γ
(

𝑠+1
2

)2

Γ(𝑠 + 1)

With this last integral, we can conclude the equation asked by the statement of the theorem

∫Δ𝜏

Ω𝑟
Eis(𝑠) =

⎛

⎜

⎜

⎜

⎝

𝑠Γ
(

𝑠+1
2

)2

2 i Γ(𝑠 + 1)

⎞

⎟

⎟

⎟

⎠

𝑟
(𝐍(𝔞∗)𝐍𝐾∕ℚ(𝜈)

𝑑𝐹

)𝑠
∑

𝛽′∈
(

+
−𝑏,0,𝔞∗

\𝔞∗ − 𝑏
)

𝜔(𝛽′)
|

|

|

𝐍𝐾∕ℚ (𝛽′)||
|

𝑠

=
(𝐍𝐾∕ℚ(𝜈)

𝑑𝐹

)𝑠 ⎛
⎜

⎜

⎜

⎝

𝑠Γ
(

𝑠+1
2

)2

2 i Γ(𝑠 + 1)

⎞

⎟

⎟

⎟

⎠

𝑟

𝑍𝔞(−𝑏, 0; 𝑠)

Using the functional equation of the lattice zeta function, we can conclude the statement

∫Δ𝜏

Ω𝑟
Eis(𝑠) = 𝑑−𝑠

𝐹

⎛

⎜

⎜

⎜

⎝

𝑠Γ
(

𝑠+1
2

)2

2 i Γ(𝑠 + 1)

⎞

⎟

⎟

⎟

⎠

𝑟

𝑍𝔞∗(−𝑏, 0; 𝑠) =

(

Γ( 𝑠+12 )2

2Γ(𝑠)

)𝑟
(𝐍𝐾∕ℚ(𝜈)

𝑑𝐹

)𝑠

𝜑(1 − 𝑠)𝑍𝔞(0, 𝑏; 1 − 𝑠)
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We will finish this section by proving a corollary of this theorem, that relates the function ℎ̃ defined in the
equation 13 and will be the main source for Theorem 2.1 and Theorem 3.2.

Corollary 6.2. Let 𝐾 be a quadratic extension of 𝐹 with the associated variables 𝑔 = [𝐹 ∶ ℚ] = 𝑟+ 𝑐 defined
before. Given a class [𝔞] ∈ Cl+𝜛(𝐾) with associated elements 𝜈 ∈ 𝐹 (∞) and 𝜏 ∈ 𝐾 (such that 𝜈

(

𝐹 + 𝜏𝐹
)

is a representative of the dual class), the lattice zeta function has a zero of order 𝑐 ≥ 0 at 𝑠 = 0 and the following
formulas will be satisfied

(i) If 𝑟 ≥ 2, then
𝑍(𝑐)

𝔞 (0, 𝑏; 0)
𝑐!

=
𝑑𝐹

𝐍𝐾∕ℚ(𝜈)

√

𝑑𝐹
𝜋𝑔−𝑟 ∫Δ𝜏

𝜕𝑟ℎ̃(𝑏∕𝜈, 𝑧)
𝜕𝑧𝑐+1⋯ 𝜕𝑧𝑔

𝑑𝑧𝑐+1 ∧⋯ ∧ 𝑑𝑧𝑔

(ii) If the field 𝐾 does not have more than one real place, then

𝑍(𝑔−1)
𝔞 (0, 𝑏; 0)
(𝑔 − 1)!

=
𝑑𝐹

𝐍𝐾∕ℚ(𝜈)

√

𝑑𝐹
𝜋𝑔−1 ∫Δ𝜏

(

𝜕ℎ̃(𝑧, 𝑠)
𝜕𝑧𝑔

−
22𝑛−2𝑅𝐹
𝑧𝑔 − �̄�𝑔

)

𝑑𝑧𝑔

Proof. The Eisenstein series 𝐸(𝑏∕𝜈; 𝑧, 𝑠) have an analytic continuation to ℂ, as shown on the paper [Cha16],
and satisfies the following equation

𝐺(𝑠, 𝑧)𝐸(𝑏∕𝜈; 𝑧, 𝑠) = 𝑒2𝜋 i𝐍𝐹∕ℚ(𝑎𝑏)𝐺(1 − 𝑠, 𝑧)𝐸∗(𝑏∕𝜈; 𝑧, 1 − 𝑠)

where
𝐺(𝑠, 𝑧) =

Γ𝑔(𝑠)
𝜋2𝑔

|𝐍(𝑦)|2𝑔−1

In the definition of the function ℎ, present in section 1., we stated a relation with 𝐸∗(𝑏∕𝜈; 𝑧, 1). Using this
equation, we can state the Taylor expansion of 𝐸∗ around 𝑠 = 1

𝐸∗(𝑏∕𝜈; 𝑧, 𝑠) = 2𝑔−2𝑅𝐹

( 1
𝑠 − 1

+ 𝛾𝐹 − log𝐍(𝑦) + ℎ(𝑏∕𝜈; 𝑧)
)

+ 𝑂(𝑠 − 1)

Using the functional equation of the Eisenstein series, this last statement and the Taylor expansion of the 1∕Γ(𝑠)
function, we can give the Taylor expansion of the function 𝐸 at 𝑠 = 0

𝐸(𝑏∕𝜈; 𝑧, 𝑠) = −2𝑔−2𝑅𝐹 𝑠
𝑔−1 + 2𝑔−2𝑅𝐹

(

𝛾𝐹 − log𝐍(𝑦) + ℎ(𝑏∕𝜈; 𝑧)
)

𝑠𝑔 + 𝑂(𝑠𝑔+1)

Remembering that ℎ̃ = 4𝑔−1𝑅𝐹ℎ. For 𝑟 ≥ 2, deriving this last expression and Theorem 7. we conclude
(

Γ(1 − 𝑠
2
)2

2Γ(1 − 𝑠)

)𝑟
(𝐍𝐾∕ℚ(𝜈)

𝑑𝐹

)1−𝑠 𝑍𝔞(0, 𝑏; 𝑠)
𝜑(𝑠)

= ∫Δ𝜏

𝜕𝑟𝐸(𝑏∕𝜈, 𝑧, 1 − 𝑠)
𝜕𝑧𝑐+1⋯ 𝜕𝑧𝑔

𝑑𝑧𝑐+1 ∧⋯ ∧ 𝑑𝑧𝑔 =

= 𝑠𝑔

2𝑔 ∫Δ𝜏

(

𝜕𝑟ℎ̃(𝑏∕𝜈; 𝑧)
𝜕𝑧𝑐+1⋯ 𝜕𝑧𝑔

+ 𝑂(𝑠)

)

𝑑𝑧𝑐+1 ∧⋯ ∧ 𝑑𝑧𝑔

Using the Taylor expansion of Γ( 𝑠+12 )2∕Γ(𝑠) around 𝑠 = 0, we obtain an expression of the zeta function with a
remaining of order 𝑔 − 𝑟 + 1.

𝑍[𝔞](0, 𝑏; 𝑠) =
𝑠𝑔−𝑟

√

𝑑3
𝐹

𝐍𝐾∕ℚ(𝜈)
√

𝜋𝑔−𝑟 ∫Δ𝜏

𝜕𝑟ℎ̃(𝑏∕𝜈; 𝑧)
𝜕𝑧𝑐+1⋯ 𝜕𝑧𝑔

𝑑𝑧𝑐+1 ∧⋯ ∧ 𝑑𝑧𝑔 + 𝑂(𝑠𝑔−𝑟+1)

The first expression of this corollary statement is a direct consequence of the last expression. For the case when
𝑟 = 1, deriving the expression that relates the function 𝐸 and ℎ, together with the Theorem 7. we can conclude

(

Γ(1 − 𝑠
2
)2

2Γ(1 − 𝑠)

)𝑟
(𝐍𝐾∕ℚ(𝜈)

𝑑𝐹

)1−𝑠 𝑍𝔞(0, 𝑏; 𝑠)
𝜑(𝑠)

= 𝑠𝑔

2𝑔 ∫Δ𝜏

(

𝜕ℎ̃(𝑏∕𝜈, 𝑧)
𝜕𝑧𝑔

+
4𝑔−1𝑅𝐹
𝑧𝑔 − �̄�𝑔

+ 𝑂(𝑠)

)

𝑑𝑧𝑔
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Using the Taylor expansion of the quotient of gamma functions computed on the last case, we can find an
expression for the zeta function with a remaining of order

𝑍[𝔞](𝑎, 𝑏; 𝑠) =
𝑑𝐹

𝐍𝐾∕ℚ(𝜈)

√

𝑑𝐹
𝜋𝑔−1

𝑠𝑔−1 ∫Δ𝜏

(

𝜕ℎ̃(𝑧, 𝑠)
𝜕𝑧𝑔

+
4𝑔−1𝑅𝐹
𝑧𝑔 − �̄�𝑔

)

𝑑𝑧𝑔 + 𝑂(𝑠𝑔)

The statement of the corollary for the case 𝑟 = 1 is a direct consequence of deriving the last expression 𝑔 − 1
times with respect to 𝑠.
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