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Lattice Eisenstein series

Lattice real analytic Eisenstein series

For z , s ∈ C, with Re(s) > 1, we define the lattice real analytic Eisenstein
series as

G (z = x + yi , s) :=
∑

(m,n)∈Z2\{(0,0)}

y s

|mz + n|2s

This function satisfies the functional equation

G (z , s) =
π−(1−s)Γ(1− s)

π−sΓ(s)
G (z , 1− s)

Completed Lattice Eisenstein series

For z , s ∈ C, with s ̸= 1, we define the Completed Lattice Eisenstein series
as

Ĝ (z , s) := π−sΓ(s)G (z , s)
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Fourier expansion of G (z , s)

The function G is 1-periodic and, therefore, it admits a Fourier expansion

G (z = x + yi , s) = a0(y , s) +
∑

ξ1∈Z\{0}

∑
ξ2∈Z\{0}

τ(s, s; ξ2, ξ1y)e
2πiξ1ξ2x

(i)
a0(y , s) = 2ζ(2s)y s + φ(s)2ζ(2s − 1)y1−s

φ(s) :=
π22−2sΓ(2s − 1)

Γ(s)2
=

π1/2Γ
(
s − 1

2

)
Γ(s)

(ii) For z ∈ C with Re(z) > 0, we define the Tricomi’s confluent
hypergeometric function as

U(β, α+ β; z) =
1

Γ(β)

∫ ∞

0
(u + 1)α−1uβ−1e−zudu

It can be proved that

τ(s, s; ξ2, ξ1y) = (2π)2s |ξ2|2s−1e−2π|ξ1ξ2y |Γ(s)−1U(s, 2s; |4πξ1ξ2y |)
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Defining the terms

an(y , s) = y s
(2π)2s

Γ(s)

 ∑
0 ̸=d |n

d2s−1

 e−2π|n|yU(s, 2s; 4π|n|y)

and regrouping the terms of the double sum in the G function, such that
ξ1ξ2 = n, we have

G (z , s) = a0(y , s) +
∑

n∈Z\{0}

an(y , s)e
2πinx

For z ∈ C we have, where Kµ(z) is the Bessel function of the second kind
(K-Bessel function)

U(s, 2s; 2z) =
(2z)

1
2
−s

√
π

ezKs− 1
2
(z)

We redefine the expression of an(y , s)

an(y , s) =
4|n|s−

1
2

π−sΓ(s)
σ1−2s(|n|)y1/2Ks− 1

2
(2π|n|y), σµ(|n|) =

∑
0<d |n

dµ
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Colmez’s Trick

A direct calculation shows that

G (γz , s) = G (z , s), γ ∈ SL2(Z)

From this last statement, and from defining R(z , s) = G (z , s)− a0(y , s),
we have

G (z , s)− G

(
−1

z
, s

)
= 0 ⇐⇒

a0(y , s)− a0

(
y

x2 + y2
, s

)
= −R(z , s) + R

(
−1

z
, s

)
= F (z , s)
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Colmez’s Trick

Considering two elements z1, z2 ∈ C we have

2M

(
ζ(2s)

φ(s)ζ(2s − 1)

)
=

(
F (z1, s)
F (z2, s)

)
With,

M =

(
(y s1 − Im(−1/z1)

s) (y1−s
1 − Im(−1/z1)

1−s)

(y s2 − Im(−1/z2)
s) (y1−s

2 − Im(−1/z2)
1−s)

)
Taking

z1 =
√
a−1 − 1 + i , z2 =

√
a−2 − 1 + i

It can be deduced that

ζ(2s) =
1

2

(1 + a1−s)F (z1, s)− F (z2, s)

a2s − as + a1−s − a
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Stark Conjecture

Conjecture

Giving an extension K = Q(
√
d)/Q, there exists an algebraic number a

such that

Z ′(0) = −i
|dk |1/2

2π
NOKZn(0, 1, p̄, 2s) = −1

2
log |a|

with

Zn(0, 1, p̄, 2s) = − signe(f (2))
∑

Ox
K (f∞)\{0̸=µ∈OK}

signe(µ(2))e
2πiTR

(
µ

f
√
d

)
|Nµ|2s
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Eisenstein series

Eisenstein Series

Giving two lattices n, m; a vector p ∈ Z2 and U ∈ M2(K ) we define the
following real analytic Eisenstein series

G (z , s)Q = G 0
(m,n)(U, p; z , s) =

=
∑
R

ωp((m + v1)z + (n + v2))e
2πiTr(u1(m+v1)+u2(n+v2))

|N((m + v1)z + (n + v2))|2s
y1·s

Since it is 1-periodic, we can consider its Fourier expansion

GQ(z = x + yi , s) = a0(y , s) +
∑
0̸=∈D

ad(y , s)e
2πiTr(dx)

with
a0(y , s) =

e1δm(v1)Z (v2, u2, ωp̄, 2s)N(y)s+Ωp(s)δn∗(u2)e2Z (v1, u2, ωp̄, 2s−1)N(y)1−s
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Comez’s Trick over a quadratic field

Since for S =

(
0 −1
1 0

)
∈ SL2(K ), we have

GQ(Sz , s) = ω−p(z)GQ∗(z , s)

Then we can define a similar equation as the one find it on the last scenario

M

(
Zn(0, 1, p̄, 2s)

W

)
=

(
T (z1, s)
T (z2, s)

)
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