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Abstract

In this paper we prove a functional equation for a certain class of
zeta functions attached to an arbitrary number field K. The proof
of the functional equation relies on the transformation formula of
a multivariables theta function. The techniques which are used are
classical and are due essentially to Riemann and Hecke. As a special
case, we obtain a functional equation for partial zeta functions of K
twisted by sign characters.
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1 Introduction

Let K be a number field of degree n over Q and let {σ1, . . . , σr1} be a

complete set of real embeddings of K where r1 + 2r2 = n. Let ω be a sign

character of K, i.e., a product over elements of a subset of the characters

sign ◦ σi : K
× → R× → {±1}.

∗The author is grateful to the MPIM for the financial support during the writing of
the paper.

1



Let V be a lattice of maximal rank of K and let

OV = {α ∈ K : αV ⊆ V }.

Note that OV is an order of K and V is an invertible OV -ideal with inverse

given explicitely by V −1 = {x ∈ K : xV ⊂ OV }. Let

V ∗ = {x ∈ K : TrK/Q(xv) ∈ Z for all v ∈ V },

be the dual lattice of V . Note that V ∗ is an invertible OV -module and that

V ∗∗ = V . For elements a, b ∈ K we define

Γa,b,V = {ϵ ∈ OV : σi(ϵ) > 0 ∀i, (ϵ− 1)a ∈ V, (ϵ− 1)b ∈ V ∗, (ϵ− 1)ab ∈ d−1
K },

(1.1)

where d−1
K = (OK)

∗ = {x ∈ K : TrK/Q(xy) ∈ Z, for all y ∈ OK } is the

inverse of the different ideal of K. One can verify that Γa,b,V = Γ−b,a,V ∗ is a

subgroup of finite index in O×
K . For the set of data (a, b, ω, V ) we define a

partial zeta function twisted by an additive character as

ΨV (a, b, ω, s) := [OK : V ]s
∑
v∈R

a+v ̸=0

ω(a+ v)
e2πiTrK/Q(b(a+v))

|NK/Q(a+ v)|s
,(1.2)

where [OK : V ] is a positive rational number which plays the role of an index

(see Definition 3.3) and R = {vi ∈ V }i∈I is a complete set of representatives

of {a + V }/Γa,b,V in the sense that every element 0 ̸= (a + v) ∈ a + V can

be written uniquely as ϵ(a + vi) for some vi ∈ R and ϵ ∈ Γa,b,V . It is easy

to see that (1.2) doesn’t depend on the set of representatives R and that it

converges absolutely for any complex number s such that ℜ(s) > 1.

Let p = {pi}r1i=1 be the signature of ω, i.e., ω =
∏r1

i=1(sign ◦ σi)
pi where

pi ∈ {0, 1}. Then we define

F p
V (s/2) := |dK |s/2π−ns/2

r1∏
i=1

Γ

(
s+ pi
2

) r2∏
i=1

(
21−sΓ(s)

)
,

where NK/Q(dK) = dK is the discriminant of K and Γ(x) stands for the

usual gamma function evaluated at x.

We can now state the main theorem which is proved in this paper.

Theorem 1.1 Let

ZV (a, b, ω, s) = F p
V (s/2)ΨV (a, b, ω, s)

be the completed zeta function of ΨV (a, b, ωp, s). Then ZV (a, b, ω, s) admits

an analytic continuation to C\{0, 1} and has at most a pole of order one at
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s ∈ {0, 1}. A pole of order one at s = 0 occurs exactly when pi = 0 for all

i and a ∈ V . Similarly, a pole of order one at s = 1 occurs exactly when

pi = 0 for all i and −b ∈ V ∗. Moreover, ZV (a, b, ω, s) satisfies the following

functional equation

(−i)Tr(p)e−2πiTrK/Q(ab)ZV (a, b, ω, s) = ZV ∗(−b, a, ω, 1− s).(1.3)

The ideas which are used in the proof of Theorem 1.1 are due for the

large part to Riemann and Hecke. Let ζQ(s) =
∑

n≥1
1
ns =

∏
p

1
1− 1

ps
be the

Riemann zeta function. The idea of using the transformation formula of

the one variable theta function θ(z) =
∑

n∈Z e
πin2z to prove the functional

equation

π−s/2Γ(s/2)ζQ(s) = π−(1−s)/2Γ((1− s)/2)ζQ(1− s),(1.4)

is due to Riemann, see [Rie90]. Its generalization to an arbitrary number

field K of degree n over Q, namely

AsΓ(s)r2Γ(s/2)r1ζK(s) = A1−sΓ(1− s)r2Γ((1− s)/2)r1ζK(1− s),(1.5)

where ζK(s) =
∑

a⊴OK

1
NK/Q(a)s

=
∏
p

1
1− 1

NK/Q(p)s
and A = 2−r2π−n/2

√
|dK | is

due to Hecke, see [Hec59b].

The functional equation (1.3) can be viewed, in some sense, as a natural

generalisation of (1.4) and (1.5). However, there is one important aspect

in which the zeta function ΨV (a, b, ω, s) differs from ζK(s), namely that in

general, ΨV (a, b, ω, s) doesn’t have any Euler product. The latter observa-

tion might be a reason why Hecke never published the functional equation

(1.3).

It is clear that Hecke had at its disposal all the necessary tools to prove

Theorem 1.1. In fact, in [Hec59a], Hecke proves a functional equation for

the most general class of zeta functions which admit a degree one Euler

product, namely for

ζK(λ, s) =
∑
a⊴OK

λ(a)

NK/Q(a)s
=

∏
p

1

1− λ(p)
NK/Q(p)s

(1.6)

where λ is a so-called Größencharakter. It would be fair to say that the

proof of the functional equation of ζK(λ, s) requires more ideas than the

proof of Theorem 1.1. For example, Hecke introduced the notion of “idealer

Zahlen 1 ”(see p.255 of [Hec59a]) in order to work with complex numbers

1The english translation of idealer Zahlen is ideal numbers. These ideal numbers,
which have the drawback of not being defined in a canonical way, can be viewed in
some sense as a precursor notion to the notion of idèles introduced by Chevalley in the
mid-1930s
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rather than ideals. These “idealer Zahlen”allowed him in particular to define

certain Gauss sums (depending on λ) which play a crucial role in the proof

of the functional equation of ζK(λ, s).

The zeta function ΨV (a, b, ωp, s) arose naturally in some of the previous

work of the author, see for example section 2 of [Cha07]. Let us explain

in more details the context in which the zeta function ΨV (a, b, ωp, s) arose.

Let K be a totally real number field and let V = a
fdK

where a, f are integral

ideals which are coprime. Assume that the sign character ωp is chosen so

that ωp = 1 or ωp = sign ◦NK/Q. In section 2.3 of [Cha07], it is explained

how the special values at negative integers of

ΨV ∗(1, 0, ωp, s) = NK/Q(f)
s

 ∑
{0̸=µ∈1+fa−1}/Γa

ωp(µ)

|NK/Q(µa)|s

(1.7)

(see equation (5.1) for more details) can be related to special values at

negative integers of classical partial zeta functions, namely

ζ(a, f∞, s) := NK/Q(a)
−s

∑
Γa\{λ∈a−1,λ≡1(mod fa−1),λ≫0}

1

|NK/Q(λ)|s
(1.8)

=
∑
b⊆OK
b∼fa

1

NK/Q(b)s
,(1.9)

where b ∼f c means that b and c lie in the same narrow ray ideal class mod-

ulo f and Γa = OK(∞)× ∩ (1 + fa−1) where OK(∞)× denotes the group of

totally positive units of OK . Note that the summation in (1.8) is taken over

totally positive elements of a−1. Special values of ζ(a, f∞, s) at negative

integers turns out to be rational numbers, see [Kli62], [Sie69] and [Shi76].

These rational numbers satisfy many remarkable congruence relations which

have been exploited by many number theorists to construct various p-adic

objects. In particular, one can construct p-adic L-functions which inter-

polates these special values, see [DR80] and [CN79]. In the last section of

this paper we show essentially that unless K is a totally real number field

and ωp = 1 or sign ◦NK/Q then no such p-adic L-function exists since the

special values at negative integers of (1.7) are all equal to zero.

When the author wrote the paper, he was unaware that a special case of

the functional equation (1.3) had already appeared in a paper of Siegel (see

equation (10) of [Sie70]). In the paragraph below equation (10) of [Sie70],

Siegel writes

Es ist sonderbar, daß (10) bisher in der Literatur nicht erwähnt

worden ist. Auch wenn man die Funktionalgleichung der L-

Reihen im Auge hat, erscheint es übrigens durchsichtiger, zunächst
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die einfachere Formel (10) zu beweisen und erst nachher die

notwendigen algebraischen arithmetischen Sätze über Charak-

tere herzuleiten.

Thirty eight years later, the author of this paper shares the exact same

view.

Finally, let us mention some connection between the Lerch zeta function

and the zeta function ΨV (a, b, ω, s) in the case where K = Q. For real

numbers 0 < u, v ≤ 1 consider the Lech zeta function

φ(u, v, s) =
∞∑
n=0

e2πinv

|n+ u|s
, ℜ(s) > 1.

Let ω = 1, V = Z and a, b ∈ Q ∩ (0, 1). Then a direct computation shows

that

ΨV (a, b, ω, s) = e2πiab
∑
n∈Z

e2πibn

|n+ a|s

= e2πiab(φ(a, b, s) + φ(1− a, b, s)).

The contribution of this paper consists essentially in filling a gap in the

literature by providing a detailed proof of the functional equation (1.3). In

writting the paper, we have decided to follow a more modern account of the

work of Riemann and Hecke on zeta functions: namely we borrow most of

our notation from chapter 7 of Neukirch’s book on algebraic number theory,

see [Neu99]. The interested reader may consult as well this chapter in order

to find a proof of the functional equation for ζK(λ, s).

2 Notation

Let K be a number field of degree n over Q and let X = Hom(K,C) be a

complete set of embeddings of K into C.The set X can be written in the

following way

X = {σ1, . . . , σr1 , ρ1, ρ1, . . . , ρr2 , ρr2},(2.1)

where r1 + 2r2 = n, the σi’s are the real embeddings, the ρi’s are the

complex embeddings such that c ◦ ρi = ρi where c : C → C corresponds to

complex conjugation. Note that up to permutation there is still a choice in

our way of writting the set X which corresponds to a choice of a privileged

representative ρi for every pair of complex embeddings of K. Usually for an

element a ∈ C we will denote its complex conjugate c(a) by a. Note that X

is naturally a left Gal(C/R)-set. For τ ∈ X we will also denote c ◦ τ by τ .
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We consider the n-dimensional C-algbera attached to X

CX :=
∏
τ∈X

C

of all tuples z = (zτ )τ∈X , zτ ∈ C with componentwise addition and multipli-

cation. Since the subset X is fixed from the beginning we will denote CX

simply by C.

For the sequel we will use the set of notations attached to C which is

introduced on pages 444 and 445 of [Neu99]. The C-algebra C is endowed

with three involutions. For every element z = (zτ )τ∈X ∈ C we define the

elements z∗, ∗z, z ∈ C as

(z∗)τ = zτ , (∗z)τ = (zτ ) and (z)τ = (∗z∗)τ = (zτ ).

The C-algebra C is equiped with certain distinguished subsets namely

(1) R = {z ∈ C : z = z},

(2) R± = {x ∈ R : x = x∗},

(3) R×
+ = {x ∈ R± : x > 0},

(4) H = R± + iR×
+.

If δ ∈ R the notation x > δ means that xτ > δ for all τ ∈ X. By definition

we have the following inclusions

H ⊆ C ⊇ R ⊇ R± ⊇ R×
+.

Note that subset R is naturally an R-subalgebra of the C-algebra C.

For every infinite place ν of K there exists a unique field inclusion ιν :

R → Kν . Because of the uniqueness of ιν we can view the set R as being

naturally included in Kν . We thus have a natural isomorphism K ⊗Q R →∏
ν|∞ Kν given by α ⊗ β 7→ (αβ)ν|∞. Our choice of a complete set of

pairwise non conjugate complex embeddings {ρi}r2i=1 gives rise to a natural

ismomorphism
∏

ν|∞ Kν → R given by (xν)ν|∞ 7→ (yτ )τ∈X where yτ = xν

if τ is the real embedding corresponding to the real place ν, yτ = xν (resp.

yτ = xν) if τ = ρi (resp. τ = ρi) is a complex embedding corresponding

to the complex place ν. In this way we obtain a natural isomorphism of

R-algebras

ι : K ⊗Q R ∼→ R.

From now on we will think of the number fieldK as being naturally included

in the R-algebra K ⊗Q R via the natural map α 7→ α⊗ 1.
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The C-algebra C and certain of its subsets are equipped with various

maps. For the additive group C (resp. multiplicative group C×) we have

the homomorphisms

Tr : C → C, T r(z) =
∑
τ

zτ ,

N : C× → C×, N(z) =
∏
τ

zτ .

We have on C an hermitian scalar product

⟨x, y⟩ =
∑
τ

xτyτ = Tr(x(∗y)) and ||z|| =
√
⟨z, z⟩.

It is invariant under conjugation, i.e., ⟨x, y⟩ = ⟨x, y⟩ and restricting it, yields

a euclidian metric on the R-vector space R. If z ∈ C, then ∗z is the adjoint

element i.e., ⟨xz, y⟩ = ⟨x, ∗zy⟩. For two tuples z = (zτ )τ , (pτ )τ ∈ C the

power

zp = (zpττ ) ∈ C where zpττ = epτ log zτ ,

is well defined if we agree to take the principal branch of logarithm and

assume that the zτ ’s move only in the plane cut along the negative real

axis. Finally we define

|| || : R× → R×
+, x = (xτ )τ 7→ ||x|| = (|xτ |)τ ,

log : R×
+

∼→ R±, x = (xτ )τ 7→ log x = (log xτ )τ .

3 Multivariables θ-function and Γ-function

Definition 3.1 We say that a tuple p = (pτ )τ∈X of non-negative inte-

gers is admissible (resp. strictly admissible) if pτ ∈ {0, 1} when τ = τ and

pτpτ = 0 (resp. pτ = pτ = 0) if τ ̸= τ .

Definition 3.2 Let V ⊆ R be a lattice of maximal rank, a, b ∈ R and

let p ∈
∏

τ∈X Z be admissible. We define the theta series

θpV (a, b, z) =
∑
v∈V

N((a+ v)p)eπi⟨(a+v)z,(a+v)⟩e2πi⟨b,a+v⟩

which converges absolutely for every z ∈ H.

Remark 3.1 Note that our definition of θpV (a, b, z) is slightly different

from the one appearing on the bottom of page 450 of [Neu99].
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Definition 3.3 Let V be a lattice of maximal rank inK. Let {e1, . . . , en}
be a Z-basis of OK and let {e′1, . . . , e′n} be a Z-basis of V . Let M ∈ Mn(Q)

be the matrix which sends the ordered basis (ei)
n
i=1 to the ordered basis

(e′i)
n
i=1. Then we define the index [OK : V ] to be the rational number

|det(M)|.

It is easy to see that [OK : V ] is well defined positive rational number

independent of the choice of the bases. It is also convenient to define the

positive rational number

dV = [OK : V ]2|dK |,

where dK is the discriminant of K. The quantity
√
dV can be interpreted

as the covolume of the lattice ι(V ) ⊂ R with respect to the Haar measure

dx on (R, ⟨ , ⟩) which ascribes the volume 1 to the cube spanned by an

orthonormal basis.

The key ingredient to prove the functional equation appearing in Theo-

rem 1.1 is the following transformation formula for the theta function.

Theorem 3.1 (theta transformation formula) Let a, b ∈ R and let

p ∈
∏

τ Z be admissible. Then one has

θpV (a, b,−1/z) = (iTr(p)e−2πi⟨a,b⟩
√

dV )
−1N((z/i)p+

1
2
·1)θpV ∗(−b, a, z) for all z ∈ H,

where 1 is the unit element in R and V ∗ is the dual lattice of V i.e.,

V ∗ = {v′ ∈ R :< v′, v >∈ Z for all v ∈ V }.

Proof See equation (19) on p. 264 of [Hec59a] or (3.6) on page 454 of

[Neu99]. □

We have

R×
+ =

∏
ν|∞

R×
+,ν and R×

± =
∏
ν|∞

R×
±,ν(3.1)

where R×
+,ν = R×

+ (resp. R×
±,ν = R×

±) if ν is real and R×
+,ν = {(y, y) :

y ∈ R×
+} (resp. R×

±,ν = {(y, y) : y ∈ R×
±}) if ν is complex. We define

isomorphisms R×
+,ν → R×

+ given by y 7→ y if ν is real and (y, y) 7→ y2 is ν

is complex. We thus obtain an isomorphism R×
+ →

∏
ν|∞ R×

+. We denote

by dy
y

the Haar measure on R×
+ which corresponds to the pull back of the

product measure
∏

ν
dt
t
where dt

t
is the usual Haar measure on R×

+. The Haar

measure thus defined is called the canonical measure on R×
+. Consider the

isomorphism

R×
+

log→ R±
j→
∏
ν|∞

R
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where j : R±,ν → R is given by xν 7→ xν (resp. (xν , xν) 7→ 2xν) if ν is real

(resp. if ν is complex). Then the canonical Haar measure dy
y
pushes forward

to the Lebesgue measure on
∏

ν|∞ R.

Definition 3.4 For s = (sτ )τ ∈ C such that ℜ(sτ ) > 0 and p = (pτ )τ an

admissible tuple we define the gamma function associated to the Gal(C/R)-
set X as

Γp
X(s) =

∫
R×

+

N(e−yys+
1
2
p)
dy

y
,

where y = (yτ )τ ∈ R×
+, e

−y = (e−yτ )τ and ys+
1
2
p = (e(sτ+

1
2
pτ ) log yτ )τ .

Using (3.1) we can write Γp
X(s) as

Γp
X(s) =

∏
ν|∞

Γpν
ν (sν)

where sν = sσi
(pν = pσi

) if ν is the real place corresponding to σi and

sν = (sρi , sρi) (pν = (pρi , pρi)) if ν is the complex place corresponding to ρi.

The factors are given explicitely by

Γpν
ν (sν) =

{
Γ(sν +

1
2
pν), if ν is real,

21−Tr(sν+
1
2
pν)Γ(Tr(sν +

1
2
pν)) if ν is complex,

where Γ(x) is the usual one variable gamma function.

4 Proof of the functional equation

Consider the multivariable gamma function

Γp
X(s) =

∫
R×

+

N(e−yys1+
1
2
p)
dy

y
,(4.1)

where s ∈ C,ℜ(s) > 0, 1 is the unit of C and p = (pτ )τ is an admissible

tuple. Let V be a lattice of maximal rank in K and let a, b ∈ R. In the

integral of (4.1) we substitute

y 7→ π|a+ v|2y/d1/nV

where | | denotes the map R× → R×
+, (xτ )τ 7→ (|xτ |)τ . We then obtain

∫
R×

+

e−π⟨(a+v)y/d
1/n
V ,(a+v)⟩N(ys1+

1
2
p)
dy

y

(4.2)

= π−Tr( 1
2
p)(|dV |1/n)Tr( 1

2
p)|dK |sπ−nsΓp

X(s)
[OK : V ]2s

|N((a+ v)p)|N(a+ v)|2s
, ℜ(s) > 1.
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Remember that OV = {α ∈ K : αV ⊆ V }. Let us denote by dK the

discriminant ideal of K i.e., d−1
K = {x ∈ K : TrK/Q(xy) ∈ Z, for all y ∈

OK}. From now on we identify V with ι(V ) ⊆ R. We define

Γa,b,V = {ϵ ∈ OV : σi(ϵ) > 0 ∀i, (ϵ− 1)a ∈ ι(V ), (ϵ− 1)b ∈ ι(V ∗), (ϵ− 1)ab ∈ ι(d−1
K )}.

(4.3)

One can verify that the subgroup Γa,b,V has finite index inO×
K . Let ϵ ∈ Γa,b,V

and let v ∈ V be such that a+v ̸= 0. Since ϵ ∈ Γa,b,V we have ϵ(a+v) = a+v′

for (a unique) v′ ∈ V . Assume furthermore that the tuple p = (pτ )τ is

strictly admissible. Then a direct computation shows that

N((a+ v)p)

|N((a+ v)p)|
e2πi⟨b,a+v⟩

|N(a+ v)|2s
=

N((a+ v′)p)

|N((a+ v′)p)|
e2πi⟨b,a+v′⟩

|N(a+ v′)|2s
.(4.4)

Note that x 7→ N(xp)
|N(xp)| is nothing else than a sign character of K i.e., a group

homomorphism ωp : (K ⊗Q R)× → {±1}.
Let R = {vi ∈ V }i∈I be a complete set of representatives of {a +

V }/Γa,b,V in the sense that every element 0 ̸= a+ v ∈ a+ V can be written

uniquely as ϵ(a + vi) for some vi ∈ R and ϵ ∈ Γa,b,V . Let ωp be the sign

character associated to the strictly admissible tuple p = (pτ )τ . Using (4.2)

and (4.4) we deduce that

1

C

∫
R×

+

(θ̃pV (a, b, iy/d
1/n
V )− cpV (a, b))N(ys+

1
2
p)
dy

y

= |dK |sπ−ns[OK : V ]2sΓp
X(s)

∑
v∈R

a+v ̸=0

ωp(a+ v)
e2πi⟨b,a+v⟩

|N(a+ v)|2s

= |dK |sπ−nsΓp
X(s)ΨV (a, b, ωp, 2s).(4.5)

where

θ̃pV (a, b, z/d
1/n
V ) =

∑
v∈R

a+v ̸=0

N((a+ v)p)eπi⟨(a+v)z/d
1/n
V ,(a+v)⟩e2πi⟨b,a+v⟩ for z ∈ H,

cpV (a, b) = lim
z→i∞

θ̃pV (a, b, z/d
1/n
V ) and C = π−Tr( 1

2
p)(|dV |

1
n )Tr( 1

2
p).

Note that cpV (a, b) = 0 unless pτ = 0 for all τ ∈ X and a ∈ V . In the latter

case we have cpV (a, b) = 1.

Definition 4.1 We define the completed zeta function ZV (a, b, ωp, 2s)

to be

ZV (a, b, ωp, 2s) := F p
V (s)Ψ(a, b, ωp, 2s).

where F p
V (s) = |dK |sπ−nsΓp

X(s).

10



The image of Γa,b,V under the mapping | | : R× → R×
+ is contained in the

norm-one hypersurface

S = {x ∈ R×
+ : N(x) = 1}.

We can write every y ∈ R×
+ in the form

y = xt1/n, , x =
y

N(y)1/n
, t = N(y).

We thus obtain a direct decomposition

R×
+ = S× R×

+.

We let d∗x be the unique Haar measure on the multiplicative group S such

that the canonical Haar measure dy
y
on R×

+ becomes the product measure

dy

y
= d∗x× dt

t
.

Proposition 4.1 The completed Zeta function ZV (a, b, ωp, 2s) is the

Mellin transform

ZV (a, b, ωp, 2s) = L(f, s)

=

∫ ∞

0

(f(t)− f(∞))ts
dt

t
, ℜ(s) > 1,

of the function

f(t) =
1

C

∫
F

θpV (a, b, ωp, ixt
1/n/d

1/n
V )N

(
(ixt1/n/d

1/n
V )

1
2
p
)
d∗x(4.6)

where F is a fondamental domain for the action of ι(Γa,b,V ) ⊆ S on S,

C = π−Tr( 1
2
p)(|dV |

1
n )Tr( 1

2
p) and f(∞) =

cpV (a, b)

C
vol(F).

Proof This is the same argument as the proof of Proposition (5.5) of

[Neu99]. □

Lemma 4.1 The fundamental domain F of S has the following volume

with respect to the measure d∗x:

vol(F) = [O×
K : Γa,b,V ]RK ,

where RK is the regulator of K.

Proof This is the same argument as Lemma (5.6) of [Neu99]. □
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Proposition 4.2 The function

t 7→ f(t) =
1

C

∫
F

θpV (a, b, ωp, ixt
1/n/d

1/n
V )N

(
(ixt1/n/d

1/n
V )

1
2
p
)
d∗x

for t ∈ R+ satisfies the following functional equation

f

(
1

t

)
= (iTr(p)e−2πi⟨a,b⟩)−1

√
tg(t),(4.7)

where

g(t) =
1

C

∫
F′
θpV ∗(−b, a, ωp, ixt

1/n/d
1/n
V ∗ )N

(
(ixt1/n/d

1/n
V )

1
2
p
)
d∗x,

and F′ is a fundamental domain for the action of ι(Γ−b,a,V ∗) on S and Γ =

Γa,b,V ∩ Γ−b,a,V ∗ . Morevoer, if we let

A0 =
cpV (a, b)

C

∫
F

N
(
(ixt1/n/d

1/n
V )

1
2
p
)
d∗x

which is equal to 0 unless cpV (a, b) = 1, in which case by Lemma 4.1 it is

equal to vol(F)
C

, and similarly if we let

B0 =
cpV ∗(−b, a)

C

∫
F′
N

(
(ixt1/n/d

1/n
V )

1
2
p
)
d∗x,

then

f(t) = A0 +O(e−αt1/n) and g(t) = B0 +O(e−βt1/n) for t → ∞ and suitable α, β > 0.

(4.8)

Proof The proof of (4.8) follows from easy estimates. Let us prove (4.7).

We have

f(1/t) =
1

C

∫
F

θpV (a, b, ωp, ixt
−1/n/d

1/n
V )N((ixt−1/n/d

1/n
V )

1
2
p)d∗x

=
1

C

∫
F

θpV (a, b, ωp,−1/(ix−1(dV t)
1/n))N((−1/(ix−1(dV t)

1/n)
1
2
p)d∗(x−1)

=
1

C

∫
F−1

θpV (a, b, ωp,−1/(ix(dV t)
1/n))N((−1/(ix(dV t)

1/n)
1
2
p)d∗x

=
1

dV tC

∫
(dV t)1/nF−1

θpV (a, b, ωp,−1/(iy))N
(
(−1/iy)

1
2
p
)
d∗y where y = x(dV t)

1/n.

The second equality uses the fact that the transformation x 7→ x−1 fixes

the Haar measure d∗x. The third equality uses the fact that 1
dV t

d∗y = d∗x

where d∗y is the corresponding measure on (dV t)
1/nF−1 where the set F−1 =

12



{x−1 ∈ S : x ∈ F}. Now applying Theorem 3.1 to the last equality we find

that

f(1/t) =
(iTr(p)e−2πi⟨a,b⟩

√
dV )

−1

dV tC

∫
(dV t)1/nF−1

N(yp+
1
2
1)θpV ∗(−b, a, ωp, iy)N

(
(−1/iy)

1
2
p
)
d∗y

=
(iTr(p)e−2πi⟨a,b⟩

√
dV )

−1

dV tC

∫
(dV t)1/nF−1

N(y
1
2
1)θpV ∗(−b, a, ωp, iy)N

(
(iy)

1
2
p
)
d∗y

= (−i)Tr(p) (e
−2πi⟨a,b⟩√dV dV ∗)−1

dV dV ∗C

√
t

·
∫
(dV dV ∗ )1/nF−1

θpV ∗(−b, a, ωp, iut
1/n/d

1/n
V ∗ )N

(
(iut1/n/d

1/n
V ∗ )

1
2
p
)
d∗u

where y = ut1/n/d
1/n
V ∗ and dy∗ = t

dV ∗
d∗u where d∗u is the corresponding

measure on (dV /dV ∗)1/nF−1. A direct compuation shows that dV dV ∗ = 1

and that F−1 is a fundamental domain for the action of ι(Γa,b,V ) on S. We

can thus rewrite the last equality as

f(1/t) =
(−i)Tr(p)e2πi⟨a,b⟩

C

√
t

∫
F−1

θpV ∗(−b, a, ωp, iut
1/n/d

1/n
V ∗ )N

(
(iut1/n/d

1/n
V ∗ )

1
2
p
)
d∗u.

(4.9)

Note that F−1 is also a fundamental domain for the action of ι(Γ−b,a,V ∗) =

ι(Γa,b,V ) on S. Therefore using (4.9) we deduce that

f(1/t)

=
(iTr(p)e−2πi⟨a,b⟩)−1

C

√
t

∫
F′
θpV ∗(−b, a, ωp, iut

1/n/d
1/n
V ∗ )N

(
(iut1/n/d

1/n
V ∗ )

1
2
p
)
d∗u.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 Assume that ℜ(s) > 1. From Proposition 4.1

we get

ZV (a, b, ωp, 2s) =

∫ ∞

0

(f(t)− A0)t
sdt

t

=

∫ 1

0

(f(t)− A0)t
sdt

t
+

∫ ∞

1

(f(t)− A0)t
sdt

t

=

∫ ∞

1

f(1/t)t−sdt

t
+

∫ ∞

1

(f(t)− A0)t
sdt

t
− A0

s
.

Substituting (4.7) in the first integral of the last equality we get

ZV (a, b, ωp, 2s) = (−i)Tr(p)e2πi⟨a,b⟩
∫ ∞

1

(g(t)−B0)t
−s+1/2dt

t

(4.10)

+

∫ ∞

1

(f(t)− A0)t
sdt

t
− A0

s
− B0

−s+ 1
2

(−i)Tr(p)e2πi⟨a,b⟩.
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The two integrals of the last equality converge for all complex number s ∈ C.
It follows from this that ZV (a, b, ωp, 2s) admits an analytic continuation to

all s ∈ C\{0, 1
2
}. This proves the first part of Theorem 1.1. The equality

(4.10) can be rewritten as

iTr(p)e−2πi⟨a,b⟩ZV (a, b, ωp, 2s) =∫ ∞

1

(g(t)−B0)t
−s+1/2dt

t
+ e−2πi⟨a,b⟩

∫ ∞

1

(f(t)− A0)t
sdt

t
(4.11)

− B0

−s+ 1
2

− A0

s
iTr(p)e−2πi⟨a,b⟩.

In the exact same way as we obtained (4.10) one has that

ZV ∗(−b, a, ωp, 2s) = (−i)Tr(p)e−2πi⟨a,b⟩
∫ ∞

1

(f(t)− A0)t
−s+1/2dt

t
(4.12)

+

∫ ∞

1

(g(t)−B0)t
sdt

t
− A0

−s+ 1
2

(−i)Tr(p)e−2πi⟨a,b⟩ − B0

s

Substituting s by −s + 1/2 in (4.11) and comparing it with (4.12) reveals

that

(−i)Tr(p)e−2πi⟨a,b⟩ZV (a, b, ωp, 2(−s+ 1/2)) = ZV ∗(−b, a, ωp, 2s).

This concludes the proof. □

5 Partial zeta functions twisted by sign char-

acters

Let K be a number field of degree n = r1 + 2r2 over Q with different ideal

dK . Let f be an integral ideal of OK . Choose an integral ideal b which is

prime to f and consider the lattice V = b
fdK

. Note that V ∗ = fb−1. Let

a = 0, b = −1 and p = (pτ )τ be a strictly admissible tuple corresponding to

a sign character ωp : (K ⊗Q R)× → {±1}. By definition we have

Γ0,−1,V = OK(∞)× ∩ (1 + fb−1),

where OK(∞)× corresponds to the group of totally positive units of OK . A

direct computation shows that

ΨV (0,−1, ωp, s) = NK/Q

(
b

dKf

)s ∑
{
0̸=µ∈ b

fdK

}
/Γ

ωp(µ)
e2πiTrK/Q(µ)

|NK/Q(µ)|s
, ℜ(s) > 1,

where Γ = Γ0,−1,V . When ωp is trivial, the right hand side of the last

equality is an example of what we call a zeta function twisted by an additive
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character. Similarly one has

ΨV ∗(1, 0, ωp, s) = NK/Q
(
fb−1

)s ∑
{0̸=µ∈1+fb−1}/Γ

ωp(µ)

|N(µ)|s

= NK/Q(f)
s

 ∑
{0̸=µ∈1+fb−1}/Γ

ωp(µ)

|NK/Q(µb)|s

 ℜ(s) > 1.(5.1)

The right hand side of the last equality is an example of what we call a

partial zeta function twisted by a sign character. From Theorem 1.1 we

deduce that

(−i)Tr(p) F p
V (s/2)

F p
V ∗((1− s)/2)

ΨV (0,−1, ωp, s) = ΨV ∗(1, 0, ωp, 1− s),(5.2)

where
F p
V (s/2)

F p
V ∗ ((1−s)/2)

is given explicitely by

F p
V (s/2)

F p
V ∗((1− s)/2)

=
|dK |s/2π−ns/2

|dK |(1−s)/2π−n(1−s)/2

∏r1
i=1 Γ

(
s+pi
2

)∏r2
i=1(2

1−sΓ(s))∏r1
i=1 Γ

(
1−s+pi

2

)∏r2
i=1(2

sΓ(1− s))
.

(5.3)

For any s ∈ Z≥1 the function ΨV (0,−1, ωp, s) is holomorphic at s (for s = 1

this uses the fact that f ∤ b). From (5.2) and (5.3) we deduce that for

s ∈ Z≥1 the value

ΨV ∗(1, 0, ωp, 1− s) ̸= 0

only when

(1) r2 = 0, s ≡ 0 (mod 2) and pi = 0 for all i

or

(2) r2 = 0, s ≡ 1 (mod 2) and pi = 1 for all i,

holds true.

For a given totally real number field K, the relationships between spe-

cial values at negative integers of ΨV ∗(1, 0, ωp, s) and classical partial zeta

functions as in (1.8) was treated in section 2 of [Cha07].

Remark 5.1 In [Del79], Deligne introduced the notion of critical inte-

gers for an L-function L(M, s) attached to a motive M . In the absence of

a Motive associated to the zeta function ΨV (a, b, ω, s), it seems to be still

useful to introduce the notion of critical integer. We will say that an integer

n is critical for the zeta function ΨV (a, b, ωp, s) if and only if

F p
V (n/2) ̸= ∞ and F p

V ∗((1− n)/2) ̸= ∞ ⇐⇒ F p
V (n/2)

F p
V ∗((1− n)/2)

̸= 0,∞.

15



Let S be the set of critical integers of ΨV (a, b, ωp, s). A direct calculation,

similar to the one we did previously, shows that

S =


2Z≥1 ∪ (1 + 2Z≤−1) if r2 = 0, ωp = 1,
(1 + 2Z≥0) ∪ 2Z≤0 if r2 = 0, ωp = sign ◦NK/Q,
∅ otherwise
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ceedings of Symposia in Pure Mathematics, 33, part 2:313–346,

1979.

[DR80] P. Deligne and K.A. Ribet. Values of abelian L-functions at neg-

ative integers over totally real fields. Inventiones Math., 59:227–

286, 1980.

[Hec59a] E. Hecke. Mathematische Werke, Eine Neue Art von Zeta-

funktionen und ihre Beziehungen zur Verteilung der Primzahlen

zweite Mitteilung, pages 249–289. Vandenhoeck and Ruprecht,

Göttingen, 1959.

[Hec59b] E. Hecke. Mathematische Werke, Über die Zetafunktion be-
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