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Annihilators of the Ideal Class Group of a
Cyclic Extension of an Imaginary Quadratic
Field

Hugo Chapdelaine and Radan Kucera

Abstract. The aim of this paper is to study the group of elliptic units of a cyclic extension L of an
imaginary quadratic field K such that the degree [L: K] is a power of an odd prime p. We construct
an explicit root of the usual top generator of this group, and we use it to obtain an annihilation result
of the p-Sylow subgroup of the ideal class group of L.

Introduction

This work was motivated by a series of papers [5,6,9] that studied annihilators of the
p-Sylow subgroup of the ideal class group of a cyclic abelian field L over QQ, whose
degree is a power of an odd prime p; these annihilators were obtained by means of
circular units. The goal of this paper is to study annihilators of the p-Sylow subgroup
of the ideal class group of a field L that is a cyclic extension over K, where K is an
imaginary quadratic field whose class number h = hg is not divisible by p. In this
new setting, the former role played by the circular units is now being played by the
so-called elliptic units. Similarly to the previous series of papers, certain annihilators
of the ideal class group of L are obtained by means of elliptic units above K. Recall
that, in essence, an elliptic unit above K is a unit that lives in an abelian extension of K
and is obtained by evaluating a certain modular unit (i.e., a modular function whose
divisor is supported at the cusps) at an element 7 € K n b, where hj corresponds to the
Poincaré upper half-plane. Depending on what applications one has in mind, different
choices of modular units have been considered in the literature. For this paper, we use
a slight modification of the group of elliptic units introduced by Oukhaba in [11]; the
only difference is that we do not raise the generators of the group of elliptic units
considered in [11] to the h-th power. The index of our group of elliptic units Cy, in the
group O7 of all units of L is given in Lemma 3.4. Then, starting from the group €, we
proceed to extract certain roots (where the root exponents are group ring elements) of
the generators of €y, that again lie in L. These roots of elliptic units allow us to define
an enlarged group of elliptic units €1, whose index in O} is given in Theorem 5.2. This
enlarged group C; forms an important ingredient of the main result of this paper: any
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annihilator of the p-Sylow part of the quotient O} /€, must annihilate a certain (very
explicit) subgroup of the p-Sylow part of the ideal class group of L; see Theorem 7.5.

We would like to emphasize that many of the techniques used in this paper borrow
heavily from the ones introduced in [5] and [9]. In order to keep the paper within a
reasonable size, we faced the problem of choosing which proofs to present in full detail
and which to only sketch (or omit). For each of the proofs, we have decided to distin-
guish whether the needed modifications are straightforward or not. Of course, such
choices are subjective but we hope that our chosen style clarifies the overall presenta-
tion, and, at the same time, has the effect of highlighting the new ideas. For example,
in the construction of nontrivial roots of elliptic units given in Sections 4 and 6, we
decided to give all the details, whereas the necessary modifications of Theorem 7.4 in
the style of Rubin are left to the reader.

Finally, it does not seem that there is any overlap between the main result of this
paper and the current literature. For example, in [10], Ohshita studies the higher Fit-
ting ideals of Iwasawa modules associated with a given Z,- or Zf,—extension Koo /Ko,
where K is an abelian extension of an imaginary quadratic number field K whose
degree [Kp:K] is not divisible by p. As usual, such an Iwasawa module is defined as
the projective limit of the p-parts of the ideal class groups of finite subextensions of
Koo /Kp. In particular, our field L can never be a subfield of Ohshita’s field Ko, be-
cause L/K is unramified at all the primes above p and is of p-power degree. In [1],
Bley constructs generalized roots of elliptic units (in Solomonss style, via Hilbert’s The-
orem 90) in the layers of a Zj,-extension of an abelian extension N of an imaginary
quadratic number field K. He then uses these roots to construct certain elements in
the p-adic completion of the group of p-units of N, where p is a prime of K above
p. In [2], he uses these elements to prove the p-part of the Equivariant Tamagawa
Number Conjecture (ETNC) in the aforementioned setting. Even though our field L
could play the role of the field N of Bley, there is no connection, a priori, between his
p-units and our units obtained as roots of elliptic units. Of course, thanks to Burns,
we know that the validity of ETNC has a lot of consequences (see [3]), but even in the
situation when the results of Bley could be used (in our setting this would impose the
additional assumptions that p splits in K/Q and that there exists a prime p of K above
p which splits in L/K), it does not seem that the general machinery of Burns can be
used to derive the main result of this paper.

Notation and Preliminaries

Let K be an imaginary quadratic number field, let H = Hg be the Hilbert class field
of K, let h = hg = [H:K] be the class number of K, and let L/K be a cyclic Galois
extension of degree p¥ where p is an odd prime and k is a positive integer. We let
[ = Gal(L/K) = (o) where o is a fixed generator. We suppose that p + h and that
there are exactly s > 2 ramified primesin L/K. It follows from the first assumption that
LnH =K. Letgpy, ..., p; beall the (pairwise distinct) prime ideals of K that ramify in
L/K. Foreach jeI={l,...,s} we choose a generator 77; € Ok of the principal ideal
p?, and we let q; € Z be the only rational prime number in ;. We suppose that p is
unramified in L/Q and that each q; is unramified in K/Q. In particular, this implies
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that p + || and that p # q; for all j € I. Here ur denotes the group of roots of unity
of a field F.

For each j € I let us fix an arbitrarily chosen prime ideal °3; of L above ;. Let t;
be the ramification index of *3; over p; b and let #; be the 1ndex of the decomposmon
group of B in T. It follows that ¢;n; | p* and that {‘}3“ s "is the full set of distinct
prime ideals of L above ;. In particular, we have the decomposmon

nj—1 tol
io
00 =[] %/
i=0

We consider the completion Q, € K, € Lys; of Q@ € K < L. Since the extension of
local fields Ly / K, has a ramification index equal to ¢, it follows from local class field
theory that the group O of units of O Ko, _has a closed subgroup of index ¢;, namely
the subgroup Niy /K, ( ) Tt is well known that O Ke, is the direct product of the
group of principal un1ts u ={eec 0 ;e=1(modp J)} and of the subgroup of

roots of unity of orders coprime to g;, wh1ch is a finite cyclic group isomorphic to
(OK@j /KJJOK@}- )= (Ox/p;)*, whose order is |Og /pj| -1 = Ng/g(g;) — 1. Moreover,
it is well known that if the index of a closed subgroup of U; is finite, then this index
is a power of g, and so it is coprime to ¢; (a power of p). Therefore, we must have
NK/Q(P]) =1 (mod tj).

Since g1, .. .,ps are all the prime ideals that ramify in L/K and there is no real
embedding of K we see that the conductor of L/K is [T, p;j for some positive in-
tegers a; > 1. Since tamely ramified extensions have square-free conductors (see, for
example, [4, I1.5.2.2(ii), p. 151]), we must have a; = 1forall j e I.

The Distinguished Subfields F;

For each non-zero ideal m € Ok, let us denote by K(m) the ray class field of K of
modulus m. For any subset @ # J € I = {1,...,s}, wealso let m; = [];; ;. In the
previous section we showed that L € K(m;). In fact, more is true. A simple exercise in
class field theory shows that the index [K(m;): [T;e; K(g;)] divides a power of [uk],
where the product is meant for the compositum of the fields K(p;)’s. Since p + |ux|,
it follows that L € IT;¢; K(g;)-

We would now like to introduce, for each index j € I, a distinguished subfield
F; € K(g;). The following elementary lemma will be used in the definition of F; and
also in Definition 6.1.

Lemma 2.1 Let T be an abelian group (written additively and not necessarily fi-
nite) and let n be a positive integer. If T/nT = Z[nZ, then T admits a unique sub-
group of index n, namely nT. Let (T, S, n) be a triple such that T is an abelian group,
S < T is a subgroup of finite index [T:S], and n is a positive integer. Assume that
ged(n,[T:S]) = L. Then the natural map n: S/nS — T[nT is an isomorphism.

Proof The elementary proof is left to the reader. ]
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From class field theory we have a canonical isomorphism Gal(K(p;)/H) =
(Ok/pj)*/im ug, which is a cyclic group of order divisible by ¢;. Since p + h, we
can apply Lemma 2.1 to the triple (Gal(K(p;)/K), Gal(K(p;)/H), t;) and define F;
as the unique subfield of K(p;) such that [F;:K] = t;. One can check that the ex-
tension F;/K satisfies the following properties: F; n H = K and F;/K is unramified
outside of g ; and totally ramified at .

Forany@ # J € I={1,...,s},itis convenient to introduce the shorthand notation
Ky = K(my) and Fy = [];; F; € Kj. Note that the conductor of F; over K is m;.
It follows from the definition of F; that Gal(F;/F;_;y) is the inertia subgroup of a
prime of F; above p; (note that I — {j} # &, since |I| > 2). In particular, for each
j €J,|Gal(F1/Fi_¢jy)| = t;. The next lemma gives the main properties of the Galois
extension F;/K.

Proposition 2.2 For each j € I, we have F;K;_jy = LK;_¢jy. The Galois group
(2.0) G = Gal(F;/K) = [ Gal(Fi/Fi_j3)
JjeI

is the direct product of its inertia subgroups. Moreover, L C Fi.

Proof Recall that the conductor of L over K is m;, and hence L € K. For any j € I,
the inertia group of a prime of K; above g ; is Gal(K;/K;_(; ), and so the inertia group
of a prime of L above g is Gal(L/LNK;_¢ 1) (the restriction of Gal(K;/K;_¢;j;) to L).
Hence Gal(LK;_gj3/Ki—¢j3) 2 Gal(L/L N K;_¢;;) is of order ¢;. An easy ramification
argument shows that

(22) F]ﬂKI_{J} :K

Indeed, F; n Kj_;y is an unramified abelian extension of K, so that F; n K_¢j; €
Hn F; = K, where the last equality follows from the fact that p + h. Therefore,
Gal(F;K;_{j1/Ki—j;) = Gal(F;/K) is also of order t;. We have thus proved that the
two subgroups Gal(K/F;K;_(;y) and Gal(K;/LK;_;;) have the same index inside
Gal(K;/K;—gjy)- Since K1 /K;_yjy is totally tamely ramified at each prime of K; above
;s it follows that Gal(K;/K;_(;y) is cyclic, which forces the group equality

In particular, it follows from (2.3) that F;K;_(;, = LK;_(j;, which proves the first
claim. Let us now show (2.1). An argument similar to the proof of (2.2) implies
that Nje; Fr_j3 = K, and thus G is generated by Uje; Gal(Fr/Fp_gjy). Also, since
Fi_(jyFj = Fr, we have Gal(F;/F;_yjy) n Gal(F;/F;) = {id}, and therefore G is the
direct product of the groups Gal(F;/F;_(;;)’s, which gives (2.1).

It remains to show that L € Fy. Set M = MNje; FjKj_¢j;. Note that L ¢ M (by the
first part of Proposition 2.2) and that F;H ¢ M.

We claim that FH = M; in particular, this will imply that L € F;H. Let us prove
it. The inertia group of each prime of M above g; is of order at most ¢; since the
ramification index of p; in F;K;_;;;/K is equal to t;. On the one hand, since the
maximal unramified subextension of M /K is H/K, it follows that (i) [M: H] < [T ;; t;.
On the other hand, since Gal(F;/K) is a p-group and p + h = [H:K], we have Hn
F; = K, so that Gal(F;H/H) = Gal(F;/K), and thus from (2.1), we deduce that (ii)
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[FiH:H] = [F;:K] = [Tjes tj- Combining (i) and (ii) with the inclusion FiH ¢ M, we
obtain that F;H = M.

The paragraph above just proved that L € F{H = M. Since p + h = [F{H:F[] and
Gal(F;/K) is a p-group, it follows that Gal(F;H/F;) is the smallest subgroup of the
abelian group Gal(F;H/K) whose index is a power of p, which implies that L ¢ Fj.
This concludes the proof. u

Corollary 2.3 (i) Foreachindex j € I, the inertia subgroup of a prime of L abovep ;
isGal(L/LnFp_¢jy) = (apk/tf); moreover, Fi_\L = Frand [LnF_;j,:K] = %.
(i) F;/L is an unramified abelian extension.
(ili) There exists at least one index jo € I such that tj, = p* so that the abelian Galois
group G = Gal(F;/K) has exponent p*.

Proof Recall that Gal(F;/F;_jy) is the inertia subgroup of a prime of F; above g ;.
We have L ¢ F; by Proposition 2.2, and so Gal(L/L n Fy_¢},) is the inertia subgroup
of a prime g)f L above p;. Since both of these inertia subgroups have the same order
t;, and (o® /%) is the only subgroup of T of order ¢;, we get (i) and we see that F;/L
is unramified at each prime of L above ;. But F;/L can be ramified only at primes
above gy, ..., @5, because the conductor of Fr over K is my, and (ii) follows. By (2.1),
the exponent of G is the maximum of all ¢;s, and so it divides p¥. But since I is a
cyclic quotient of G of order p¥, we obtain (iii). ]

Introducing the Group of Elliptic Units

For the rest of the paper, we fix once and for all an embedding Q ¢ C. In particular,
the inclusion K ¢ C singles out one of the two embeddings of K into C. For any subset
@ # ] € I, we let f; be the least positive integer in my,

(3.1) wy = |{{ € ux;{=1(modm;)}

so that w; divides wg := |ux/|, and we let

>

(3.2) ny = NK,/F,(SDm,)WKfI/(W’f’) € OF,

where ¢y, is defined as in [11, Definition 2, p. 5]. We would like to point out that the
definition of ¢, as a complex number, uses implicitly the fact that K is included in

C.

For a finite abelian extension ]\l/\I// F and a prime ideal p of F that is unramified in
M/F, we use the Artin symbol ( %) € Gal(M/F) to denote the Frobenius auto-
morphism of p in the relative extension M/F.

For any j € I, welet A; € G = Gal(F;/K) be the unique automorphism such that

_(Frp/K ~
A]'|p1_{j} _(TJ) and Aj|Fj_1'

The next lemma will be used in the proof of Theorem 4.2 as well as in Section 5.
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Lemma 3.1 For each j € I, choose a prime *B; of L above g ;. Then the inertia group
of Pj is (apk/tf) = Gal(L/L n Fy_¢;,) and the decomposition group of B is (o"i) =
il o?'15).

Proof The first part was proved in Corollary 2.3(i). It thus follows that the maximal
subextension of L/K which is unramified at p; is L n F;_;;/K. In particular, the
Frobenius automorphism of p; in L n F;_(;;/K is equal to

LnF (/K
(E il

j| LOFgj

and thus (A;;, of ¥/ 7} is equal to the decomposition group of B3;. Moreover, by defi-
nition of 1, we have [I': (A1, Upk/’f)] = n;j. Finally, since (¢"/) is the only subgroup
of T of index ;, this forces (0"/) = (A;]L, a?* /4y, [

The algebraic numbers #; defined in (3.2) satisty the following norm relations

which can be derived from [11, Proposition 3, p. 5]: for each J € I and each j € I
such that {j} ¢ J,

1-17t

(3.3) NFI/FI—U)(W) = ’11*{11'}’
and for each j e I,
A(OK) fr
Ng,/k(n1¢j3) =N >
Fi/K\T{j} H/K( A(pj))

where A is the discriminant Delta function that appears in [11, Section 2.1]. It follows
from [11, Proposition 1, p. 3] that Ng, /x (7,1 ) generates the ideal p?hﬁ = (1;0)21,
hence

(3.4) Niy(niy) = &,

for some &; € uk.
The next lemma gives an exact description of the roots of unity in F;. In particular,
it will allow us to replace yp by pk for any subfield K ¢ F C F; in the sequel.

Lemma 3.2 We have g, = pk.

Proof We do a proof by contradiction. Let { be a root of unity in F; that is not in
K. In particular, we must have 2|[Q({):Q] and [K({):K] > 1. Using the fact that
p is odd, we see that [K({):Q] is equal to twice a power of p, which implies that
K is the only quadratic subfield of K({). Since Q({) < K({) and Q({) contains at
least one quadratic subfield, we also deduce that (i) K is the only quadratic subfield
of Q(¢) and (ii) K({) = Q({). From (i), it follows that there is exactly one prime,
say ¢, which ramifies in Q({)/Q and that its ramification is total. In particular, since
K ¢ Q({) < Frand [Q({):K] > 1, the prime ¢ must also ramify in [F;:K]. From
Corollary 2.3(ii), we know that F;/L is unramified, and therefore, £ must also ramify in
L/K. We thus have shown the existence of a rational prime ¢ that ramifies in both K/Q
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and L/K; this contradicts our initial assumptions on the ramification of the extension

L/Q. =

Definition 3.3 We define the group of elliptic numbers P, of F; to be the Z[ G]-sub-
module of F[* generated by the group of roots of unity up, (= px by Lemma 3.2)
and by #; for all @ # J € I. The group of elliptic units Cg, of F; is defined as the
intersection Cp, = Pp, N OF, . The group of elliptic numbers Pr, of L is defined as the
Z[T']-submodule of L* generated by the group of roots of unity y; (= pk) and by
N, /p,nz(117) for all @ # J € 1. Finally, the group of elliptic units €y of L is defined as
the intersection €y, = P, n OF.

Let M be a finite abelian extension of K. In [11, Definition 3, p. 7], Oukhaba in-
troduced a group of units in Oy, which we denote by Cy. The groups Cp, and €|,
that appear in Definition 3.3 differ slightly from the groups Cr, and Cy, respectively.
Using the key fact that F; n H = K one can check that Cr, = (ux U {€" : € € Cp, }).
Similarly, since L n H = K, one can also check that C; = (ux U {e" : € € C1}). The
two previous equalities will be used in the proof of the following lemma.

Lemma 3.4 (i) The indices of Cp, in Of, and Cy in O are finite and are given
explicitly by
: h
[OF, : Ck] = (2w fr)lFreI %,
: h
OX:(‘E = (12w [L.K]71'7L~,
[Or:CL] = 12wk f1) hLT)

where hg,, hy, and h are the class numbers of Fj, L, and K, respectively, and L is a
maximal subfield of L containing K such that LK is ramified in at most one prime ideal
of K. Note that such a field T is unique (and thus well defined), since T = Gal(L/K) is
a cyclic group of a prime power order.

(ii) For any B € Pr,, we have 3 € Cf, if and only if Ng, /x(B) € pk.

Proof It follows from [11, Theorem 1] that Oukhaba’s group of elliptic units is of
finite index in the full group of units, and so, from the discussion before Lemma 3.4,
we obtain that [Cp,:Cp,] = hlF*KI"  and [@,:C,] = kI KI-1, For a finite abelian
extension F/K, an index formula for [O%: Cr] is given in [11, Theorem 1]. It is formed
by the product of four quotients, which we write here, using Oukhaba’s notation:

(2w fih)F K0 i TI,[FnKp=:FNH] (Rp:Ug)
WF/WK h [FFQH] d(F)

The two formulae in (i) follow from Lemma 3.2 and an explicit computation of the
third and the fourth quotient in (3.5) when F = Fy and F = L. Let us start by com-
puting the third quotient. The product is taken over all prime ideals p of K, and Ky~
means the union of the ray class fields of K of modulus p” for all positive integers #.
Since [F;:K] and [L:K] are powers of p and p + h, wehave FFnH = LnH = K.
Moreover, by definition of Fy, we have F; n Ky = Fyjy if p = pj and F; n Ky =
FinKp~nH=Kifp ¢ {p1,...,ps}. Combining the previous two observations with

(35) [05:CF] =
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Proposition 2.2, we obtain that the third quotient is equal to 1 when F = F;. In the
case where F = L, the definition of L readily implies that [T,[L N Ky=:K] = [L:K],
so that the third quotient is equal to 1/[L:L]. Let us now handle the fourth quotient
in (3.5). It follows from [14, Theorem 5.4] and Proposition 2.2 that (Rg:Ur) = 1if
F = F}. Similarly, it follows from [14, Theorem 5.3] that (Rp: Ur) = 1if F = L. Finally,
d(Fy) =d(L) =1by [11, Remark 2].

Let us prove (ii). Let f € Pr,. By [11, Corollary 2, p. 5] we know that #; € O if
7l > 1, and by (3.4) we know that 7, € Op, is a generator of a power of the only
prime of F;j above g, which ramifies totally in F;/K. Hence for any 7 € Gal(F;/K),

111{;}’ € O;j. Therefore, there is y € Cg, and ¢y, ..., ¢s € Z such that B =y - H;:1 ng.}.
Since gy, . . ., ; are different prime ideals, the elliptic numbers 7y}, . . ., 774, are mul-
tiplicatively independent. Hence, € Cp, ifand only if ¢; = -+ = ¢; = 0. Using (3.4)
we see that

S .n. )
Ng,x(B) = &- H H;ZfI[Fz.FJ]CJ
j=1
for some & € g and the lemma follows due to the fact that 7y, . . ., 71, are multiplica-
tively independent. ]

Recall that G = Gal(F;/K). In [7], a Z[G]-module U was introduced that de-
pended solely on the following set of parameters: T3, ..., T, and Ay, ..., A,. (Warn-
ing: here the module U has a different meaning than in the proof of Lemma 3.4,
where we used the notation of [11,14].) In our situation we put v = s, and we set
T; = Gal(Fi/F_¢j3) and A; € G to be the automorphism defined in the beginning
of Section 3 for each j = 1,...,s. For our purpose, it is enough to recall that U was
defined explicitly as a certain Z[ G]-submodule of Q[G] & Z°, with the following set
of Z[G]-generators U = (pj; ] € I)z[]. Here each Z summand in Q[G] & Z° is
endowed with the trivial G-action and each element of the standard basis of Z° is de-
noted by e; (for j € I). Note that by construction U is a finitely generated Z-module
with no Z-torsion, which implies that U is a free Z-module of finite rank.

The next lemma describes the Z[G]-module structure of Pf, in terms of the
Z[G]-module U. For any subset A € G, we let s(A) = Y4 a € Z[G].

Lemma 3.5 The Z|G]-modules Pr,[ux and U[(s(G)Z) are isomorphic. More pre-
cisely, if we set Y(n;) = pr_jforeach J] € I, ] # &, and ¥Y(ug) = 0, then it de-
fines a Z|G]-module homomorphism ¥: Pr, — U, which satisfies ker ¥ = ug and
U=Y(Pg,) o (s(G)Z).

Proof It follows from the Z[G]-module presentation of U given in [7, Corol-
lary 1.6(ii)] and the observation that the generator p; = s(G) does not appear in the
relation [7, (1.10)] that U = (py; J ¢ I)z(6] ® (s(G)Z). Hence, there exists an embed-
ding of Z[G]-modules :: U/(s(G)Z) — U such thatim¢ = (py; ] ¢ I)z¢]. In order
to define the map W: P, — U, it is preferable to start by defining its “inverse”. We
define a map ®: U — Pg, by setting

®(py) = ny-y foreach J ¢ I and ®(p;) = 1.
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We claim that @ is a well-defined Z[G]-module homomorphism whose image to-
gether with px generates Pr,. Indeed, this follows directly from the Z[G]-module
presentation of U given in [7] and the norm relation (3.3). Since s(G) € ker ¥ and
(®(U), pux) = Pg,, it follows that @ induces a surjective Z[G]-module homomor-
phism ®: U/(s(G)Z) — Pg,/ux. Note that U (so a fortiori U/(s(G)Z), which is
embedded in U via 1) and P, / ux have no Z-torsion. Therefore, in order to show that
@ is a Z[ G]-module isomorphism, it is enough to prove that

(3.6) rankz(U/(s(G)Z)) = ranky (P, [uk).

Letus prove (3.6). Since the primeideals gy, . . . , g, are distinct, the numbers 7y, . . . , 775
are multiplicatively independent over Z, and Lemma 3.4 implies that

(3.7)  rankz(Pp,) = s +rankz(Cp,) = s + rankz (Opx) =s + 3 J[FrQl -1

Moreover, it follows from [7, Remark 1.4] that rankz(U) = |G| + s, which, when
combined with (3.7), proves (3.6). Finally, we define the map ¥ as the composition of
the three maps

ot !
Pp, — Pp,/ux — U/s(G)Z — U,

where the first map is the natural projection. This proves the existence of ¥ with the
desired properties. ]

A Nontrivial Root of an Elliptic Unit

We call the element

(4.1) 1 =Ng, (1)

the top generator of both the group of elliptic numbers Py of L and of the group of
elliptic units C; of L. The aim of this section is to take a nontrivial root “y/%7 ™ of 5
(where the root exponent y is a group ring element in Z[T']) such that /77 € L. We
define B = Gal(F;/L) ¢ Gal(F;/K) = G,so thatT = (0) = G/B.

Lemma 4.1  An elliptic number 8 € Pr, belongs to L if and only if ¥ () is fixed by B,
ie, W(Pr,)® = ¥(P, N L), where ¥ is the Z[ G]-module homomorphism introduced
in Lemma 3.5.

Proof Let 8 € Pp. On one hand, if f € L, then 7! = 1forall 7 € B, and so
(r- 1)‘I’(ﬂ) = 0, which means W(B) € W(Pg,)%. On the other hand, if ¥(B) ¢
¥ (Pg,)B , then, for any 7 € B, we have (r-1)¥(B) =0andso /3’ ! fe ker(¥) = pk.
Note that 77" = 1 and & = &. Therefore, applying 1+ 7+ --- + 7"~1 to the equality
B! = Ewefind that1 = g, Finally, since p + |px|, we must have & = 1, and therefore
BelL. ]

Recall from Section 1, that n; was defined as the index of the decomposition group
of the ideal 13; € L in T'. Without lost of generality, we can suppose that

(4.2) nm<ny<---<ng, andwesetn=n;=max{n;;iel}.
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Since p|t, we have n|p*~! and it follows from Corollary 2.3(iii) that we can suppose
that t; = p¥ and so n; = 1. Let L’ be the unique subfield of L containing K such that
[L':K] = n. Note that (¢") = Gal(L/L") and that g, splits completely in L' /K.

We can now state the main result of this section.

Theorem 4.2 There is a unique « € L such that Ny, («) = 1and such that the elliptic
unit n defined by (4.1) satisfies = o, where y = [[i3(1 - ™) (if s = 2, the empty
product is taken to mean 1). This « is an elliptic unit of Fy, so that « € Cp, N L. Moreover,
there is y € L* such that « = y'~7".
Remark 4.3 Colloquially, we can say that Theorem 4.2 proves the existence of a
y-th root of the top generator # of C; which lies in Cr, n L, where the root exponent
y is an element of the group ring Z[T']. In general, even though y is not an integer,
it is still possible to compute « explicitly as a p-power root of a specific elliptic unit
constructed from the conjugates of 7. Indeed, for each j = 1,...,s, define the group
ring elements
pe/nj (P /-1
Ny, = > o' and Apy= . io™,
i=1 i=1

In particular, we have (1~ 0"/)N,, =0and (1- 0" )A,, = N, - Z—j.

Note also that the relative norm operator N ;- corresponds to the group ring el-
ement N,. From Theorem 4.2, we know that # = a”. Moreover, for all j € {1,...,s},
we also have a™" = 1, since 1 = N s (@) = a™". Consequently, we find that

(4.3) T 0, = QTN =0 /m0)) (1 TG ) — o (1)'r)

k
where r = [[52) % is a power of p, and therefore

(4.4) o = ,1(—1)’ ITi5 Aw
To prove Theorem 4.2, we use the following proposition.

Proposition 4.4  Let f be a polynomial in Z[X], f ¢ {0,+1}, and let A =
ZIX]/fZ[X]. Let M be a finitely generated A-module without Z-torsion. Then the
following hold.
(i) Exty (M, A)=0.
(ii) Let y be a nonzerodivisor in A, and let x € M. Then x € yM if and only if for all
¢ € Homy (M, A) we have ¢(x) € yA.

Proof This is [8, Proposition 6.2]. ]

Proof of Theorem 4.2 If s = 2, then y = 1, and therefore the equality # = a” trivially
holds true with a = 7. If s > 2, we always have that y is a zerodivisor in Z[T], so
that one cannot apply directly Proposition 4.4; hence we shall work in an appropriate
quotient of Z[ '] where the image of y is a nonzerodivisor. Let N,, = Zle/ "o, so that
N, can be understood as the norm operator from L to L’. Let R = Z[T]/N,Z[I'] and
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lety: R - (1- ¢")Z[T] be the isomorphism of Z[T'|-modules given by the multipli-
cationby1-¢",i.e, y(x + N,Z[T]) = (1- 0")x. Let

M = {x e ¥(Pg,)% Nyx =0},

where ¥ is the map that appears in Lemma 3.5. It is an R-module, and since M ¢ U,
it has no Z-torsion. Using both (4.1) and the norm relation (3.3), we obtain

(4.5) () = Y(Ng,y (1)) = s(B)¥ (n1) = s(B)pg,
where s(B) = ¥ ,.5 T € Z[G] and
(4.6) Nijw (1) = Npyue (1) = Npg 0 (141, cp)' =1,

where the last equality follows from the fact that the restriction of A to L’ is trivial
since g; splits completely in L’/K. In particular, it follows from (4.5) and (4.6) that
() = s(B)po € M.

Note that the natural Z[I']-module structure on M is compatible with its R-module
structure via the natural projection map Z[['] — R. In particular, since (from
Lemma 3.5) UB = ¥(Pf,)® @ (s(G)Z), we can view M as a Z[T']-submodule of U®.
We claim that U® /M has no Z-torsion. Indeed, suppose that x € U® satisfies cx € M
for a positive integer c. Then ¢(N,x) = N,(cx) = 0. Since U has no Z-torsion, this
implies that N,,x = 0, and hence x € M.

With each R-linear map v € Hompg (M, R) we can associate the Z[T']-linear map
yoy € Homyr1(M, Z[T']). Now we fix such a y. We aim at proving that y(s(B)pg) €
¥R (see relation (4.9)). Note that it makes sense to apply y to s(B)pgy, since it was
proved earlier that s(B)pg € M.

Now, set f = X" ~1in Proposition 4.4, so that A = Z[X]/fZ[X] = Z[T].
Since U2/M has no Z-torsion, it follows from Proposition 4.4(i) that
Extlz[r] (UB/M,Z[T]) = 0. In particular, the vanishing of this Ext' implies the ex-
istence of ¢ € Homyr)(U®, Z[I']) such that ¢|y = y o y. For each x € U®, we define
v(x) = (1-0)¢(x), so that v € Homyr)(U®, Z[T']). We now want to specialize the
formula that appears in [7, Corollary 1.7(ii)] to the present situation in order to obtain
the non-trivial relation

(4.7) u(s(B)pg) € 11(1_ o")Z[T].

Relation (4.7) is a direct consequence of the formula in [7, Corollary 1.7(ii)] and the
following two observations:

(i) Forallie I, v(t;e;) = 0, where t; = |T;| with T; = Gal(F;/F;_;;). (Note that it
makes sense to apply the map v to ¢;e;, since t;e; € UB)

(ii) It follows from Lemma 3.1 that the element 1 — A;|; lies in the principal ideal
(1- ¢™)Z[T]. Similarly, for each 7 € T; we have that 7| € (crpk/t") by Corol-
lary 2.3(i), and therefore 1 - 7|, € (1- ¢™)Z[T].

Since the multiplication by 1 — ¢ is injective on (1 - ¢")Z[T], it follows from (4.7)
that

(4.8) yoy(s(B)pg) = 9(s(B)pg) € ,-liz(l_ o")Z[T].
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Furthermore, it follows from (4.8) and the fact that y is an R-module isomorphism
that

s—1
(4.9) ¥(s(B)po) € [ (1-0")R = yR,

where y = [T325(1 - ¢""). We have thus proved that for each v € Hompg (M, R) the
relation (4.9) holds true.

Now set f = Zf:l/" X007 Since n|p*L, it follows that f ¢ {0,1,-1}; we can thus
apply Proposition 4.4 with f so that A = Z[X]/fZ[ X] 2 R. Combining (4.9) with the
observation that y is a nonzerodivisor in R (since the roots of X” — 1 are distinct from
the roots of f), it follows from Proposition 4.4(ii) that there exists an element § € M
such that y8 = s(B)pg = ¥(#). In particular, since § € M, we have 8 € ¥(P,)® and
N, =0.

By Lemma 4.1, there exists a’ € Pg, N L (uniquely defined modulo ug) such that
d="¥(a"). Wehave ¥ (N, 1/ (a’)) = N,¥(a') = N,6 = 0,and so N 1/ (') = & € ke
by Lemma 3.5. Since p + |uk/, thereis & € p such that Ny 1/ (&) = &' Now if we set
a = '’ € Pp,n L weobtain Ny () = 1, while still keeping the condition 6 = ¥ («).
Hence, ¥(a”) = y6 = ¥(#) and &’ = a™Vn € ker(¥) = pug. We claim that &’ =1
so that «” = 7. Indeed, it follows from (4.6) that 1 = N ;. (a™%) = (f”)Pk/" and
consequently & =1 (since p + |ux|). Moreover, since Ny x(«) = 1, it follows from
Lemma 3.4(ii) that « is an elliptic unit of F;. Notice that « is uniquely determined
by the three conditions (i) & € L, (ii) N1/ («) = 1, and (iii) «” = #. Indeed, if there
were two such o’s, their quotient § € L would satisfy 37 = 1. Similarly to what we did
in (4.3), we can apply the group ring element Hj-;; Ay, to the equality ¥ = 1to find
that 1 = 8" (this uses (ii)) where r is some power of p. Since p + |y |, this implies that
B=1

Finally, applying Hilbert’s Theorem 90 to the cyclic extension L/L’ implies that
there exists a y € L*, well defined up to a multiplication by numbers in (L")*, such
that a = y'=7". This concludes the proof. ]

Enlarging the Group C of Elliptic Units of L

We keep the same notation as in the previous sections, and we introduce some new
one. Let us label each subfield of L containing K as follows:

(5.1) K=Lo¢Li L&+ ¢Li=L.
In particular, we must have [L;:K] = p’. For each i = 1,..., k we define
(5.2) Mi={je{l,....s}st;>p*"}.

It follows from the definition of M; that M; € M, € --- € My = {1,...,s}, and from
the discussion below (4.2) that 1 € M;. One can also check using Corollary 2.3(i) that
j € M; if and only if o ; ramifies in L;/K; in particular, the conductor of L;/K is equal
to myy, and so L; C Fyy, by Proposition 2.2 applied to L;/K instead of L/K. We define

(5.3) i =Npy, 1, (nm;) forie{l,... .k},
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so that, for example, 77; = 1 € L = Ly is the top generator of €y, the group of elliptic
units of L. Using the norm relation (3.3) one can check that Cy, is the Z[I']-module
generated by px and by 3, ..., 7.

Before defining the extended group of elliptic units (see Definition 5.1 below), we
need to fix some more notation. We fix an index j € {1,...,s}, and we let L; be the
largest subfield of L that appears in the tower (5.1) where g is unramified; the index
i is determined by the condition t; = p*~*. Using Lemma 3.1, it makes sense to define
c; as the smallest positive integer such that 0=%"|;, = 1j|,. Indeed, it follows from

the group equality (¢"/) = (A;]1, Upk/’f) in Lemma 3.1 that
(5.4) (") /(0”"111) = (A, 07 1) (0" 11).

Note that the quotient group in (5.4) can also be interpreted as the restriction of (¢"/)
to L;. It follows from (5.4) that p; splits completely in L;/K if and only if % = nj;
in particular, if p; splits completely in L;/K, then ¢; = 1, since ¢/ lies already in the
inertia group of ;. If p; does not split completely in L;/K, then it follows again from
(5.4) that n; < p*/t; and thus {(o|z,)™) = ((Aj|r,)). In particular, independently of
the splitting behavior of g in L;, we always have that p + ¢; and hence 1 - "/ and
1— o™ are associated in Z[T], i.e., each of them divides the other.

Recall that we had chosen an ordering of the ramified primes gy, ..., in the
relative extension L/K in such a way that1 = nj < n, < --- < n,, and that this ordering
was implicitly assumed in the statement of Theorem 4.2. For each index i € {1,...,k}
such that |M;| > 1, Theorem 4.2, when applied to the extension L;/K, implies the
existence of an elliptic unit «; € Cp, N L; and of a number y; € L} such that:

(i) the elliptic unit #; defined in (5.3) satisfies #; = ocf y

(i) o = 7
where z; = 1 - g=Mi"mx and y; = [Ticpr,, 1<jemaxm; (1= 09"). In particular, if
|M;| = 2, we find that y; = 1and a; = #;, since the product is empty. If i € {1,...,k}
is such that |M;| = 1, then we set y; = 7; and a; = 7} 7.

Definition 5.1 We define the extended group of elliptic units C, to be the Z[T']-sub-
module of OF generated by g and by the units a;, .. ., a.

Repeating the arguments of [9] we can show the following theorem.

Theorem 5.2 The group of elliptic units Cr, of L is a subgroup of Cy, of index [@L : GL] =
p”, where

k
v=2, X m
j=1 ieM;
I<i<max M;

Moreover, if we let o1 = ([Tj_; ") - H;’C:l "M which is a power of p, then
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where L has the same meaning as in Lemma 3.4 and

X .0 - h —
55) [07:€1] = (2w -5 -0,

where hy, is the class number of L. In particular, if p > 3 then p + 12wk f1, and thus it
follows from (5.5) that ¢ | hy.

Proof The proof goes along the same lines as in [9, Theorem 3.1]. The reason why the
same algebraic manipulations are possible here (for elliptic units) and in [9] (for cir-
cular units) is given by the fact that in both cases we work with a module isomorphic
to U/(s(G)Z) (compare Lemma 3.5 with [9, Lemma 1.1]). [ |

Remark 5.3 'The divisibility statement ¢; | hy is stronger than what one can get
from the mere fact that F;/L is an unramified abelian extension, see Corollary 2.3(ii).
Indeed, [9, Proposition 3.4] states that we always have [F;:L] | ¢ and that ¢ =
[Fr:L]ifand onlyifn; =---=ns_; =1.

Semispecial Numbers

We keep the same notation as in the previous sections. In particular, I' = Gal(L/K)
7,/p*7 and s is the exact number of prime ideals of K that ramify in L. For the rest of
the paper, we fix m, a power of p, such that p** | m. For a prime ideal q of K, recall that
K(q) denotes the ray class field of K of modulus q. From Artin’s Reciprocity Theorem
we know that

(6.1) Gal (K (q)/H) = (Ox/q)*/im(ux),

where H is the Hilbert class field of K. In particular, Gal(K(q)/H) is a cyclic group.
We are now ready to define a family of distinguished abelian extensions over K that
have a cyclic Galois group of order m.

Definition 6.1 To each prime ideal q of K such that |Ox/q| = 1 (mod m) we
define the field K[g] to be the (unique) subfield of K(q) containing K such that
[K[q]:K] = m. Moreover, given a finite field extension M/K we also define M[q]
to be the compositum of M with K[q].

Note that since |Ox/q| = 1 (mod m) and p + |px|, the group Gal(K(q)/H)
is cyclic of order divisible by m. Therefore, since p + h, the existence and the
uniqueness of the field K[q] follows directly from Lemma 2.1 applied to the triple
(Gal(K(q)/K),Gal(K(q)/H), m). It is clear that Gal(K[q]/K) = Z/mZ and one
can also check that K[q]/K is ramified only at q and that this ramification is total and
tame.

Definition 6.2 Let Q,, be the set of all prime ideals q of K such that

(i) qis of absolute degree 1, so that g = |Ox/q]| is a prime number;
(ii) g=1+m (mod m?);
(iii) q splits completely in L;
(iv) foreach j=1,...,s, the class of 7j is an m-th power in (Og/q)*.
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Let us make a few observations about the field K[q] and also about the fourth
condition of Definition 6.2. Note that Artin’s Reciprocity Theorem gives slightly more
information concerning the isomorphism (6.1): the class of « € Ox — ¢ is mapped to
the automorphism given by the Artin symbol ( K(q)/ K ) Since HNK[q] = K, we have
Gal(H[q]/H) = Gal(K[q]/K) where the 1som0rphlsm is given by restriction, and so
factoring out the m-th powers in (6.1), we get the following sequence of isomorphisms:

(6.2) (Ox/a)*/m —> Gal(H[q]/H) — Gal(K[a]/K),

where the first map takes the class of « € Og — q to ( H[?D],/( K) and the second map

takes ( Hlg o]/ K) to its restriction ( Kg (;I/( K) Hence combining the observations that

Ok = = p" i» P+ h, with the sequence of isomorphisms appearing in (6.2), we see that
the fourth condition (iv) is equivalent to the statement that

(6.3) (%1/1():1 foreach j=1,...,s

Definition 6.3 A number ¢ € L™ is called m-semispecial if for all but finitely many
q € O, there exists a unit ¢q € Oy satisfying

(i) Nipqyeleq) =5
(ii) if q is the product of all primes of L[q] above ¢, then € and ¢, have the same

image in (Oyq)/)*/(m/p*eD).

Let us make a few basic observations about the field L[] that appears in Definition
6.3. For each q € Q,,, we have that Gal(K[q]/K) 2 Z/mZ, that q is totally ramified in
K[q]/K and that it splits completely in L/K. In particular, we must have that L[q]/L
is totally ramified at each prime above q and that L n K[q] = K. Since L and K[q]
are linearly disjoint over K, it follows that the two restriction maps Gal(L[q]/L) —
Gal(K[q]/K) and Gal(L[q]/K[q]) — Gal(L/K) are isomorphisms.

Theorem 6.4  The elliptic unit o« € Cp, N L described in Theorem 4.2 is m-semispecial.

Proof Recall that the elliptic unit « € Cg, N L was obtained in Theorem 4.2 as a y-th
root of the top generator # of Cr. In order to show that « is m-semispecial, we need
to show that for almost all primes g € Q,, there exists a unit £q € O7 ) which satisfies
conditions (i) and (ii) of Definition 6.3 for ¢ = «. In order to show that such an ¢
exists, we use an approach similar to the one used in the proof of Theorem 4.2. But
this time, the role played by # in Theorem 4.2 will be played by 7 = Ng,1q1/141(71")
where 771 (to be defined below) is the top generator of Py, [

For the rest of the proof we fix a prime q € Q,, unramiﬁed in K/Q, which does
not divide g - - - g5. To simplify the notation, we let psy; = ¢, Foy1 = K[q], and I’ =
{1,...,s+1}. Again, for any subset J ¢ I’ with ] + @&, we set F; = [Ty Fjsmy = Tljes00;
(the conductor of F;), and

(64) ’};I’] = NK(m])/FI(gonll)WKfI,/(Wlfl))

where f; and wj are defined as in (3.1) and ¢y, is defined as in [11, Definition 2, p. 5].
If J ¢ I, this definition does not change the previous meaning of F; while 7j; = 17;1,
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where q = |Ok/q| = fr/f1. It follows also from the definitions that F;[q] = Fy and
mp = qmy. By the same reasoning as in Lemma 3.2 we find that ug,[q] = k.

Let Gy = Gal(F;[q]/K) and let Pg,[q] be the group of elliptic numbers of Fi[q],
i.e., P[q] is the Z[G,]-module generated in Fi[q]* by ux and by 7y forall J ¢ I',
J #+@. Let Uy € Q[Gq] ®Z**! be the Z[ G4 ]-module defined in [7] with the following
parameters: v = s + 1, for each j € {1,...,v}, Tj = Gal(Fy/Fp_g;;) (the inertia group
of p;jin Gg), and A; € G is such that the restrictions

Fr-3/K )
£j
Now, in order to simplify the notation, we choose to make some natural identifica-

tions between certain objects: “the old ones” that have already appeared in the proof
of Theorem 4.2 and “the new ones” that appear in this proof. Consider the sequence

(6.5) Gal ( Fi[q]/K[q]) € Gq — G = Gal(Fi/K),

where the arrow is given by the restriction map. We decide to identify
Gal(F;[q]/K[q]) with G via the above diagram. In particular, the new groups T;
defined in the paragraph just above, for i # s + 1, are identified to the old ones, and
if we set B = Gal(F;[q]/L[q]), it is also identified with the old B. The assumption
that q € Q,, also implies that the new elements A;, for i € I, are identified to the old
ones (by (6.3)) and that A4, € B (since q splits completely in L). However, the Z[G]-
generators of U € Z[G] @ Z° cannot be identified, in any meaningful way, to a subset
of the Z[G4]-generators of U € Z[G4] ® Z**"; so we need to distinguish between
these two sets of generators. Recall, in the notation of [7], that U = (p; ; ] € I)z[6]s
that the standard basis of Z° is denoted by ey, . .., e, and that n: Q[G] @ Z° - Q[G]
is the projection onto the first summand. We set U’ = 7(U) so that U’ is gener-
ated by p} = 7(py). We choose to denote the Z[ G, ]-generators of Uy by p; so that
Uq = (P 5 ] € I')z(6,]> and the standard basis of Z**! by @,..., €. The next
lemma gives precise relationships between the modules U, U’ and Uy; for its proof,
see [9, Lemma 2.1]).

/\j|p}. =1 and /11'|F1L{j} = (

Lemma 6.5 Recall that G is viewed as a subgroup of G, via (6.5). There are injective
Z[G]-homomorphisms y: U — Uq and x': U' — Uy defined by
X(pr) =pjugsry  and  x'(p)) =Py
for each ] < 1. Moreover, Uy = U® Z & (U')™ " as Z[G]-modules.
We can apply Lemma 3.5 to our present situation, which gives us a homomorphism

¥y Prq] = Uq of Z[G4]-modules defined by W, (7;) = prr—j foreach J € I', ] # @,
and Wy (uk) = 0; where ker ¥y = g and Uq = Wy (Pr,[q]) ® (s(Gq)Z). Let us define

(6.6) 7= Ng,[q)/21a1(71)-
Then we have
(6.7) ¥y (7) = s(B)¥q(71r) = s(B)pg>

and Wq(Pr,q) N L[q]) = ¥q(Pr,[q))®, where the last equality can be proved along
the same lines as Lemma 4.1. As in (4.2), we let n = max{n; ; i € I}, and as in the
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proof of Theorem 4.2 we also let N, = 7/ s ",and R = Z[T']/N,Z[T], where now
[ = Gal(L[q]/K[q]) = (o) (here the new o restrlcts tothe old one). Wealsolety: R —
(1-0™)Z[T] be the isomorphism of Z[I']-modules induced by the multiplication by
1-0". Note that the group ring element N,, € Z[I'] corresponds to the norm operator
of L[q]/L'[q], where L’ is the field defined just before Theorem 4.2.

One can also check that the set

Mg = {x € ¥q(Pr[q])" s Nux = 0}

is again an R-module (so also a Z[I']-module) without Z-torsion such that Uf /M
has no Z torsion. In particular, we can apply Proposition 4.4 with the polynomial

f= X?" ~1to deduce that Eth (UB/J\/[q, Z[T]) = 0. We also have the equalities

(6.8) ﬁ”:NL i) () = Ngayyvpa () = 1

where 7] is defined in (6.6) and 7 in (6.4). Indeed, the first equality follows from the
definition of N, and the second one follows from (6.6). For the third equality, note
that since p; splits completely in L’ (by definition of L") and also in K[q] (by (6.3)),
then it must also split completely in L'[q], and therefore, from the norm relation (3.3),
the third equality follows. Combining (6.8) with (6.7), we obtain

(6.9) s(B)py € M.

To each R-linear functional y € Homg (Mg, R), we can associate the map y o y
that can be viewed naturally as an element of Homy (Mg, Z[T]). Hence, because
of the vanishing of the Ext', for any given y € Homg (Mg, R), there exists a ¢ ¢
Homyr1(UZ, Z[T]) such that g|5¢, =y o y.

The restrlctlon of the projection 7: Q[G] @ Z°* - Q[G] to U gives a surjective
map 7|y U — U’, which can be composed with the map x’ of Lemma 6.5, to give
rise to the Z[G]-linear map y’ o 71|U U — U,. Restricting further the previous map
to U, we obtain the two maps y’ o 7|ys € HomZ 1(UP,UZ)and g oy omt|ys €
Homy1(U?, Z[T]).

We have the relation

(610) P(s(B)Fa) = 9§’ o 7(s(B)po) € Ij(l iy

= (1-0)y(1-d")Z[T],

where y = [T525(1 - 0™) is defined as in the statement of Theorem 4.2. Indeed, the
first equality follows from the facts that x’' o 7(py) = py and x’ o 7 is Z[G]-linear.
The membership relation follows from [7, Corollary 1.7(ii)] and the observation that
n(tje;) =0 for all j € J in the same way as (4.7).

It follows from (6.9) that the evaluation y(s(B)py) makes sense for any y «
Hompg (Mg, R); and it follows from (6.10) and the injectivity of y that

¥(s(B)B) € (1- 0)yR.

Since y was arbitrary, Proposition 4.4 implies that there exists § € M, such that

(1-0)y-8=5s(B)pg =¥ (7)-
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Since § € M,, there exists a B’ € Pgq) N L[q] such that § = ¥(B’) and
Yq(Niq1/1q1(B)) = 0. In partlcular, we have that £ = Nyq1/0141(B') € ker(‘P ) =
yK Since Nypqy/q)(§) = & “/n and p + |ukl| there is & € pug such that
a/ra(§) = & 1 We set f = p'&, so that § satisfies the norm relation
NL 1/1'1q1(B) = 1 while still keeping the equality 6 = ¥4(f). Since ¥, G(B7) =
(1- 0)y6 ¥, (7), it follows that & = B~1=7 € ker(¥,) = Hi- We claim that
§" = 1. Indeed, from (6.8) we have I = Npq/0[q1(§") = (§")? “/n_ and therefore
&’ = 1. We thus have constructed an elliptic number B € Pg,rq1 N L[q] wh1ch satisfies
the equality f(1-9)7 = 7.
Now, we would like to show that the elliptic number 8 constructed in the above
paragraph is a unit that satisfies the additional condition Ny 47/, () = 1. By a similar
computation as the one done in Remark 4.3, we find that

-1 s—1 pk
(6.11) ﬁr(l"’) :71\( D'z e where 1= I P
i=2 1

In particular, applying A; on each side of the first equality in (6.11) and using the norm
relation Ny [q1/1/[q)(B) = B~ =1, we find that

(612) /3"1’ _ 77\( )s+l I—[s IA
We have
(6.13) Ni(q1/2 (1) = Npy[q172 (1) = Ngy1 () =1,

where the first equality follows from the definitions of 77 and %/, the second equality
from the norm relations (3.3), and the last equality from the fact that g splits com-
pletely in L/K. Combining (6.12) and (6.13) with the fact that p + |ux|, we deduce
that Ny 41/, (B) = 1. From the previous equality we get that N, q/x(B) = 1, and
therefore, applying Lemma 3.4(ii) we deduce that 8 is a unit.

In order to finish the proof that « is m-semispecial, we need to construct a unit
g4 € L[q] that satisfies conditions (i) and (ii) of Definition 6.3 for ¢ = a. We set
€q = 7. So far, from what has been proved on f3, we know that &4 is a unit that
satisfies the norm relation (i). By means of the next proposition (see Proposition 6.6)
we will prove that &4 and « also satisfy the congruence relation (ii).

Let us recall some of the notation that was fixed at the beginning of Section 6.
The integer m is a fixed power of p, such that p*¢|m, q is a prime ideal of K that lies
in the special set Q,,. In particular, it follows from the definition of Q,, that q splits
completely in L/ K, that the extension L[q]/L is cyclic of degree m, and that it is totally
ramified at each prime above q.

Proposition 6.6  Let q € Q,, be the prime that was fixed during the course of the proof
of Theorem 6.4, and let § denote the product of all the primes of L[q] above q. Then
there exists a rational prime £ =1 (mod m) such that the following congruence holds:

(6.14) 7070 = (") % (mod ),

where q = |Ok/dq|, n is the top generator of the group Cy and 7 is defined in (6.6).
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The proof of Proposition 6.6 is given further below. Assuming Proposition 6.6, we
can now finish the proof of Theorem 6.4 by proving the congruence relation (ii) in
Definition 6.3. Using (6.11), (6.14), and (4.4) successively we find that

lgf(l—o)zf = (e 15 An, = (-1 2 e(1-0) 1523 A,

n

= o t0-0) (mod 7),

where r is the power of p defined in (6.11). Applying A; to each side of the previous
equality and using the facts that a™ =1 (since 1 < n and a™* = 1), that (1 - ¢)A; =
Nj - p*, and that (¢ —1)N; = 0, we obtain

(6.15) =0t = PR (1m0d ).

Because '%1 =1=¢ (mod m), it follows from (6.15) that ﬁpkr(l"’) and a?"" have the
same image in (Op[q1/q)*/m. Moreover, since r | p¥6=2) it also follows that 81~ and
o must have the same image in (OL[q]/ﬁ)X/(m/pk(s‘l)). We thus have shown that

both & = a and &5 = '~ satisfy the congruence relation (ii). This completes the proof
of Theorem 6.4. u

Proof of Proposition 6.6 The proof will follow essentially from an idea of Rubin;
see [13, Theorem 2.1]. Let 7 € Ok be such that 7Ok = q". Let K,,, = K({,,) where {,,,
denotes a primitive m-th root of unity. Since Ok = ux, p + |pux| and K,, contains a
primitive p-th root of unity, the field M = K,,, (7"/?) does not depend on the chosen
generator 7 of q" and on the chosen p-th root of 7. One can also check that M/K
is a Galois extension. Furthermore, we claim that 7 cannot be a p-th power in K,,.
Indeed, if it were the case then, since p + h, this would imply that the ramification
index of q in K,/ K would be divisible by p; but this is impossible since K,,, /K ramifies
only at primes above p. Since 7 is not a p-th power in K,,, it follows that M/K,, is a
cyclic extension of degree p.

In order to finish the proof of Proposition 6.6, we need the following technical
lemma.

Lemma 6.7 Let q be as in Proposition 6.6 and recall that o is the unique genera-
tor of Gal(L[q]/K[q]), which restricts to the initial generator of Gal(L/K) (which was
also denoted by ¢). Then there exists a prime | of K of absolute degree 1 satisfying the

following three conditions:
(i) Ifwelet€=|0k/l|, then £=1 (mod m) and € is unramified in K/Q.
(ii) The prime | is unramified in L[q] and the Artin symbol ( M) =0l
(iii) The prime q is inert in K[[]/K (note that this is equivalent to say that q is unram-

ified in K[1] and that { (XLJX) ) = Gal(K[1]/K)).

Recall here that the fields K[q], K[[], and L[q] were introduced in Definition 6.1.
Note that since q € Q,, and o acts as the identity on K[q], it follows from the above
condition (ii) that [ splits completely in K[q]/K into m distinct primes that stay inert
in L[q]/K[q]- Moreover, the fields L[q] and K[[] are linearly disjoint over K, since
is unramified in L[q] and [ is totally ramified in K[[].
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We find it more convenient to prove Lemma 6.7 first and then finish the proof of
Proposition 6.6 afterwards.

Proof of Lemma 6.7 As the maximal abelian subextension of M/K is K,,/K and
L[q]/K is abelian, we have L[q] n M = L[q] n K,,. Since L[q]/L is totally ramified at
each prime above q and q is unramified in K,,, /K, we have that L[q] n K,,, = L N K,,,.
As p is unramified in L/Q and each prime above p is totally ramified in K, /K, we
also have that L n K,,, = K, and therefore, L[q] n M = K. Now, since L[q] and M
were shown to be linearly disjoint over K, there exists a 7 € Gal((L[q] - M)/K) that
restricts to 0~ € Gal(L[q]/K) and to a generator of Gal(M/K,,) < Gal(M/K).

By the Cebotarev’s Density Theorem, there are infinitely many primes of K of ab-
solute degree 1 whose Artin symbol is the conjugacy class of 7. We can choose among
them a prime [ not dividing 64 - q; .. . g5 (here g = |Ok/q|) such that £ = |Ok/| is un-
ramified in K/Q. Since 7 acts as the identity on K, it follows that ¢ splits completely
in Q({,)/Q. It is now clear that the first two conditions of the lemma are satisfied.

It remains to prove the third condition. Let £ be a prime of K,, above I. Since [
splits completely in K, /K, it follows that Ok, /£ = Ok/l. Moreover, because (7|y) =
Gal(M/K,,) = Z/pZ, £ must be inert in M/K,,. From these observations, it follows
that the element 7 cannot be a p-th power in (Og/0)*.

Recall that from Artin’s Reciprocity Theorem and the fact that p 4 |ux|, we have
(Ok/1)*/m = Gal(K[[]/K) (see (6.2)). Since 7 was shown to be a non p-th power in

(Ok/1)*, it follows that ( K[! ]Z(K) = ( %) " isnota p-th power in Gal(K[[]/K).
Finally, since Gal(K[[]/K) is a cyclic group of order m (a power of p), it follows that
( %) must generate Gal(K[[]/K), i.e., q is inert in K[[]/K. This concludes the
proof of Lemma 6.7. u

We can now finish the proof of Proposition 6.6. Recall that q is a fixed prime in
Q. Let [ be a prime that satisfies the three conditions in Lemma 6.7. As in the proof
of Theorem 6.4, we let pg11 = q, Fsy1 = K[q] and I’ = {1, ..., s +1}. We introduce two
auxiliary elliptic units:

M= NK([mz)/L ((mel)
’7[ NK([m,/)/L [q1] (¢[m,r) K,

where L{gl] means the compositum of L[] and L[q] (for the definition of ¢y, and
@im,, see [11, Definition 2, p. 5]). Since [ + 6, we have for any { € ux — {1} that { #1
(mod I). Combining the previous observation with the norm relation (3.3), and the
fact that ( M) = 07!, we can deduce that

(6.16) N gque0q () = ,14(1 Frob(q)~ )
(6.17) N_(qt1/2a](7T0) = Fé(1-Frob(1) )_71\[(1 o).
(6.18) Nypg/(no) = pt - Frob () D= 70,

where g = |Og/q|, € = |Ok/l], Frob(q) = ( [T) and Frob(l) = ( ]/K) . In
order to compare the different units 77, 71, 77 and #, we will work in O[] modulo the
product of all the primes of L[] above ¢, which we denote by §. Since q € Q,,, q splits
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completely in L/K, and by the third condition of Lemma 6.7, the primes of L above q
are inert in L[[]/L. Therefore, each prime of L[q] above ¢ is inert in L[q[]/L[q], and
0 q = qOp[q1), where as before § corresponds to the product of all primes of L[q]
above q. We therefore have the following isomorphisms of rings:

Or[q/d2 Or/q0L = (Fy)P,
o k
Or1qq/dO11q = Orp/a0, = (Fgm)? .

Since L[q] and L[[] are linearly disjoint over L, it makes sense to extend Frob(q) €
Gal(L[l]/K) to L[q[] in such a way that Frob(q) is the identity on L[q], and we still
denote this extension by Frob(q). In particular, Frob(q) generates Gal(L[q(]/L[q]).

It follows from the discussion above that Frob(q) acts as raising to the g-th power
on O1[q1/40L[qr)> and that Gal(L[ql]/L[[]) (the inertia group at q) acts trivially on
O1[q11/0[q]- From these two observations, it follows that the norms Ny 4(1/.[(] and
Ni[qi)/L[q] act on the ring Opq1/O[q1 as raising to the m-th power and as raising
to the ( Yt qi) -th power, respectively. Since g =1 (mod m), there exists a positive
integer r such that 7' g' = mr.

Combining (6.17), (6.16), and (6.18), we find that

—~ r(1-Fro -1 r(g— a1
(6.19) 70-0) = gpmr o parQoFrob(@)) o () o (mry

= ’1«?(170)%1

(mOd ’CTOL[q[] )
Finally, since the natural map Op[q1/q = Or[q11/GOL[qq is injective, it follows from

(6.19) that 7°(1-9) = 4¢(1=9) o (mod q). This completes the proof of Proposition 6.6.
|

Annihilating the Ideal Class Group

For this section we keep the same notation and assumptions as in the previous sec-
tions. In particular, Gal(L/K) = T = (0) = Z/p*Z and the extended group of elliptic
units €y is defined as the Z[T']-submodule of O} generated by ux and by the units
a1, ..., ak; see Definition 5.1.

For each j € {1,...,s}, recall that n; (a power of p) was defined as the index of
the decomposition group of *B3; (a prime of L above ;) in I (see Section 1) and that
ny < ny <--- < ng (see (4.2)). Foreachi € {1,...,k}, we define

(7.1) KHi = Nmax M;>

where M; ¢ {1,...,s} is the set defined in (5.2). In particular, y; is always a power
of p (possibly trivial). Since M; S M;,;, we always have that y; < p;.;. Let us call
anindexie€ {1,...,k—1} ajump if y; < ;1. Furthermore, we declare the indices 0
and k to be jumps and we set 4y = 0. Using the notion of jumps, one can write down
a Z-basis of €1 /ux using only conjugates of the generators aj, . . ., a; whose indices
correspond to jumps.

Lemma 71 Let0 =sg < s; <--- < s, = k be the ordered sequence of all the jumps.
Note that k > 1. Then the set U’;:l{oc;’!x ;0 < i< p* — pi-1} gives a Z-basis of Cp [ ux.
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Proof 'This is proved along similar lines to [9, Lemma 5.1]. Let us just point out the
two main ideas. For each 1 < i < k one can show that
(72) Np/r,, (@) € (aiz)zr)
and furthermore, for each 0 < u < v < k such that y,, = y,, one can prove the stronger
result that

(Ny, /1, (a))zrr) = @)z
This concludes the sketch of the proof. ]

From the explicit Z-basis for C; /ux, which appears in Lemma 7.1, we easily deduce
the following lemma.

Lemma 7.2  Let r be the highest jump less than k, i.e., r = s,_; and Pr < Pre = 1
where ny is defined in (4.2). Let us assume that p € Z[T] is such that af, € Cr,. Then

(73) (1-0”)p=0.

Proof There is a unique polynomial f € Z[x] with deg f < p*, such that p = f(0).
Let¢ = xP*=P" 4.+ x2P 4 xP + 1. From the euclidean division of f by ¢ there exist
polynomials Q, g € Z[x] such that f = ¢-Q+g where deg g < p* - p”. By assumption,
we have of € Cp, and from (7.2) we know that oc;f(a) =Ny, /1, (ak) € €, ; combining
these two relations we obtain that

o]

" o f00@ ©

CL..

Since {a, ay,..., oc,fpkipril} is a part of the Z-basis given in Lemma 7.1, and the rest
of this Z-basis, namely U?;ll{agi ;0 < i< p*—p},isalso a Z-basis of Cr, /ux
(using again Lemma 71); we deduce that g = 0. In particular, p = (1+ o? + 0% +
et of’k’f’r)p’ for some p’ € Z[I'], and thus (7.3) follows. [ |

From Theorem 5.2, we know that O} /€ is a finite Z[T']-module. Let (O} /Cr),
and CI(L),, denote the p-Sylow subgroups of the corresponding Z[T']-modules. The
aim of this section is to construct annihilators of CI(L) » by means of annihilators of

(0}/€Cr),. To do this we appeal to the following key theorem which allows one to pro-
duce annihilators of CI(L), from certain units of L. This theorem should be viewed
as a modification of a similar result obtained first by Thaine (see [15, Proposition 6])
and then generalized by Rubin (see [12, Theorem 5.1]).

Theorem 7.3  Let m be a power of p divisible by p**. Assume that € € Oy, is m-semi-
special, suppose that V. < L* [m is a finitely generated Z|[T |-submodule, and that the
class containing ¢ belongs to V. Let z: V. — Z/m|[T] be a Z[T|-linear map such that
z(V N K*) = 0, where V. n K* is taken to mean V n (K*L*™ [L*™). Then z(¢) anni-
hilates Cl(L)P/(m/pk(s’l)).
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Proof This can be proved along similar lines as [5, Theorem 12]. In order to guide
the reader to make the necessary modifications needed for the proof, we chose to
state Theorem 7.4 (the required version of [5, Theorem 17], which has its origin in [12,
Theorem 5.5]). This concludes our rough sketch of the proof. ]

Theorem 7.4  Fix a p-power m, suppose that V. C L*[m is a finitely generated
Zp[T]-submodule. Without loss of generality we can assume that we have chosen a set
of generators of V that belongs to Op. Let us suppose that we are given a Z,[T']-linear
map z: V. — Z[m|[I'] that is such that z(V n K*) = 0. Then, for any ¢ € CI(L),,
there exist infinitely many unramified primes Q in L of absolute degree 1 satisfying the
following conditions:
Let q be the prime ideal of K below Q and let q be the rational prime number below
q.
(i) [Q] = ¢, where [Q] is the projection of the ideal class of Q into CI(L) ,;
(ii) g=1+m (mod m?);
(iii) foreach j=1,...,s, the class of mj is an m-th power in (Ox/q)*;
(iv) the support of any of the chosen generators of V does not contain any prime of L
above q, and there is a Z,[T']-linear map ¢: (Or/q)*/m — Z[m[T] such that
the diagram

V——2 > 7/m[T]
(Or/a)*/m

commutes, where y corresponds to the reduction map.

Proof This can be proved in the same way as [5, Theorem 17]. [ |

We can finally present the main result of this paper.

Theorem 7.5  Let r be the highest jump less than k, i.e, pr < prs = ns. If % €
Anngr((O1/CL),), then (1 - o?" ) annihilates CI(L) ,. In other words, we have

Anngr1((0}/€1),) € Anngpry((1- 0?")CI(L),).

The number r can be characterized as follows: p*~" = max{t; ; j € J}, where ] = {j €
{L....s};nj=ng}.

Proof Fixa p-power m that is large enough so that m + p**h; and let

ne AnnZ[r] ((OZ/EL)P)

be a fixed annihilator. We first construct a Z[T']-linear map z’: O} — Z[T'], that will
only depend on the annihilator », and then consider the induced map z: 07 /m —
Z[m|T]. Let f be the greatest divisor of the index [0} :Cy ] that is not divisible by p.
Then

fr € Anngr (05 /Cyp),
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and thus, for any unit & € O}, we have &¢/* € €;. From Lemma 7.1, there is p € Z[T]
and ¢ € éL, such that ¢/* = (?(xi. We define z'(¢) = (1- apr)p. Let us check that
the the map 2’ is well defined. If ¢/* = S'ail for some p’ € Z[T] and 8’ € Cr,, then
(xi*p’ = 8'67" € @ ; applying Lemma 7.2, we find that (1- ¢?")(p - p) = 0, and so z’
is well defined. It follows directly from the definition of z’ that 2/ (ax) = (1 - o#") fx
and that z’(¢) = 0if ¢ € OF N K* = pg.

Let V = O} /m. We want to apply Theorem 7.3 to the Z,[I']-linear map z: V —
Z/m[T] determined by the map z’. Now, from Theorem 6.4, we know that ay € OF is
m-semispecial, and therefore, from Theorem 7.3, we obtain that z(ay) = (1 - o?") fa
annihilates Cl(L)P/(m/pk(s’l)). Finally, since p + f and m + p**hy, it follows that
Cl(L)P/(m/pk(s‘l)) = CI(L),, and therefore (1 - o?" ) annihilates CI(L),.

It remains to prove the last equality in Theorem 7.5, which gives a characteriza-
tion of the index r. Recall that for each index i € {1,...,k}, M; = {j € {1,...,s};
tj> pk_i} by (5.2) and that y; = fimax m; by (71). It follows from the definitions of ]
and y; that

(7.4) pi<ng<= M;n]=a.

In particular, if we set i = r in (7.4) we find that M, n ] = &, and therefore, for each
j € J we must have the inequality (a) ¢; < p*~". Let us show that the reverse inequality
holds true for at least one index. Since y,.; = n; it follows from (7.4) that M,,;n] # @.
Hence there must exist at least one index jo € M,,; N J, and by definition of M,.;, we
must have that (b) ¢;, > pk_(”l). Finally, combining inequalities (a) and (b), we find
that t;, = p*~" and thus p*~" = t;, = max{t;; jeJ}. ]

References

[1] W. Bley, Wild Euler systems of elliptic units and the equivariant Tamagawa number conjecture. J.
Reine Angew. Math. 577(2004), 117-146.  http://dx.doi.org/10.1515/crll.2004.2004.577.117

, Equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary
field. Doc. Math. 11(2006), 73-118.

[3] D. Burns, Congruences between derivatives of abelian L-functions at s = 0. Invent. Math.
169(2007), 451-499.  http://dx.doi.org/10.1007/500222-007-0052-3

[4] G. Gras, Class field theory. From theory to practice. Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2003.

[5] C. Greither and R. Kucera, Annihilators for the class group of a cyclic field of prime power degree.
Acta Arith. 112(2004), 177-198.  http://dx.doi.org/10.4064/aa112-2-6

(2]

[6] —, Annihilators for the class group of a cyclic field of prime power degree II. Canad. J. Math.
58(2006), 580-599.  http://dx.doi.org/10.4153/CJM-2006-024-2
[7] —, Linear forms on Sinnott’s module. ]. Number Theory 141(2014), 324-342,

http://dx.doi.org/10.1016/}.jnt.2014.02.003

, Eigenspaces of the ideal class group. Ann. Inst. Fourier (Grenoble) 64(2014), 2165-2203.

http://dx.doi.org/10.5802/aif.2908

, Annihilators for the class group of a cyclic field of prime power degree III. Publ. Math.
Debrecen 86(2015), no. 3-4, 401-421.

[10] T. Ohshita, On higher Fitting ideals of Iwasawa modules of ideal class groups over imaginary
quadratic fields and Euler systems of elliptic units. Kyoto J. Math. 53(2013), 845-887.
http://dx.doi.org/10.1215/21562261-2366118

[11] H. Oukhaba, Index formulas for ramified elliptic units. Compositio Math. 137(2003), 1-22.
http://dx.doi.org/10.1023/A:1023667807218



http://dx.doi.org/10.1515/crll.2004.2004.577.117
http://dx.doi.org/10.1007/s00222-007-0052-3
http://dx.doi.org/10.4064/aa112-2-6
http://dx.doi.org/10.4153/CJM-2006-024-2
http://dx.doi.org/10.1016/j.jnt.2014.02.003
http://dx.doi.org/10.5802/aif.2908
http://dx.doi.org/10.1215/21562261-2366118
http://dx.doi.org/10.1023/A:1023667807218
https://doi.org/10.4153/CJM-2018-035-9

Annihilators of the Ideal Class Group 1419

[12] K. Rubin, Global units and ideal class groups. Invent. Math. 89(1987), 511-526.
http://dx.doi.org/10.1007/BF01388983

, Stark units and Kolyvagin’s “Euler systems”. ]. Reine Angew. Math. 425(1992), 141-154.
http://dx.doi.org/10.1515/crll.1992.425.141

[14] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field. Invent. Math.
62(1980), 181-234.  http://dx.doi.org/10.1007/BF01389158

[15] FE. Thaine, On the ideal class groups of real abelian number fields. Ann. of Math. (2) 128(1988),
no. 1,1-18.  http://dx.doi.org/10.2307/1971460

(13]

Faculty of Science and Engineering, Laval University, Québec G1V 0A6, Canada
Email: hugo.chapdelaine@mat.ulaval.ca

Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
Email: kucera@math.muni.cz


http://dx.doi.org/10.1007/BF01388983
http://dx.doi.org/10.1515/crll.1992.425.141
http://dx.doi.org/10.1007/BF01389158
http://dx.doi.org/10.2307/1971460
mailto:hugo.chapdelaine@mat.ulaval.ca
mailto:kucera@math.muni.cz
https://doi.org/10.4153/CJM-2018-035-9

