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Abstract

Let K be a real quadratic number field and let p be a prime number which is inert in K.
We denote the completion of K at the place p by Kp. We propose a p-adic construction
of special elements in K×

p and formulate the conjecture that they should be p-units lying
in narrow ray class fields of K. The truth of this conjecture would entail an explicit class
field theory for real quadratic number fields. This construction can be viewed as a natural
generalization of a construction obtained by Darmon and Dasgupta who proposed a p-adic
construction of p-units lying in narrow ring class fields of K.
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1. Introduction

Let K be a real quadratic number field and let p be a prime number which is inert in K. Darmon
and Dasgupta proposed a p-adic construction of special elements u ∈ K×

p where Kp stands for the

completion of K at p. The two authors have conjectured that u is a p-unit in L, i.e., u ∈ OL[1p ]
×,

where L is a suitable narrow ring class field of K. Moreover they also predicted that for all infinite
places ν of L, |u|ν = 1. Because of the last condition it is essential to assume beforehand that L
is a totally complex field, otherwise u = ±1, thus the importance of working in the narrow sense.
In fact it is not too hard to see that such a u 6= ±1 is necessarily contained in a CM -field. As is
explained in the introduction of [DD06], those conjectural p-units can be thought of as analogues of
classical elliptic units which are constructed by evaluating modular functions at imaginary quadratic
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numbers. Darmon and Dasgupta also constructed a p-adic L-function which interpolates Z-linear
combinations of special values of partial zeta functions attached to L/K and related it to their
invariant u. This is the so-called p-adic Kronecker limit formula. The first goal of this paper is to
extend their p-adic construction to the case where L is a narrow ray class field of K. The transition
from a narrow ring class field situation to the case of a narrow ray class field is a natural interesting
question raised by Darmon and other experts and requires some subtle refinements but the main
central ideas come from [DD06]. The second goal is to prove a p-adic Kronecker limit formula which
allows us to relate the first derivative of a certain p-adic zeta function to our p-adic invariant. The
approach used to define our p-adic invariant is similar to the one developed in [DD06] but it is more
direct since the p-adic measures appearing in our construction are known to be Z-valued rather than
just Zp-valued. The analogue of this result in the context of ring class fields was not available when
the paper [DD06] was written, but it was later proved by Dasgupta (see Theorem 1.3 of [Das07a])
and proof could be adapted to the more general setting of ray class fields (see Theorem 13.1 of
[Cha]).

We now describe the construction of our p-adic invariant and its appearance in a p-adic Kronecker
limit formula. We need first to fix some notation and definitions. Let (p,N0, f) be a triple of strictly
positive integers which are pairwise coprime and where p is a prime number. Also, fix a pair (K,N)
where K is real quadratic number field with ring of algebraic integers OK and N is an integral
OK-ideal such that OK/N ≃ Z/N0Z (“Heegner hypothesis”). Finally, we also require the prime
number p to be inert in K.

Definition 1.1 We define D(N0, f) to be the free abelian group generated by the symbols
{[d0, r] : 0 < d0|N0, r ∈ Z/fZ}. If δ ∈ D(N0, f) we call f the conductor of δ and N0 the level of δ.
A typical element δ ∈ D(N0, f) will be denoted by

δ =
∑

d0|N0,r

n(d0, r)[d0, r],

where the sum goes over d0|N0 (d0 > 0) and r ∈ Z/fZ with n(d0, r) ∈ Z. We have a natural action
of (Z/fZ)× on D(N0, f) given by j ⋆ [d0, r] := [d0, jr] where j ∈ (Z/fZ)× and we extend this action
Z-linearly to all of D(N0, f). We will use the short hand notation

δj := j ⋆ δ.

Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f) be such that the integers n(d0, r) are subject to the
following three conditions

(1) If r ≡ 0 (mod f) then for all d0|N0 we have n(d0, r) = 0,

(2) For all r ∈ Z/fZ,
∑

d0|N0
n(d0, r)d0 = 0,

(3) For all d0|N0 and r ∈ Z/fZ, n(d0, pr) = n(d0, r).

An element δ ∈ D(N0, f) satisfying (1) and (2) and (3) will be called a good divisor for the triple
(N0, f, p).

We want to associate Eisenstein series to any good divisor δ ∈ D(N0, f). Let

Ek(r, τ) :=

(
(−1)k(2πi)k

(k − 1)!

)−1 ∑

(m,n)∈Z2

(0,0)6=(m,n)

e−2πim r
f

(m+ nfτ)k
(1)

=
−B̃k(−r/f)

k
+

1

fk

f−1∑

b=0

e−2πibr/f
∑

m≥1

∑

n≥1

mk−1(qmnτ+b/f + (−1)kqmnτ−b/f ),
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where τ ∈ H = {x + iy ∈ C : y > 0} stands for the complex upper half plane, r ∈ Z/fZ,
qnτ+b/f = e2πi(nτ+b/f) and B̃k(x) := Bk({x}) where Bk(x) is the k-th Bernoulli polynomial and
0 ≤ {x} < 1 is the fractional part of x. When k ≥ 3 the convergence of the right hand side of
(1) is absolute and therefore Ek(r, τ) is a modular form of weight k for the modular group Γ1(f).
When k = 2 the convergence is not absolute. Nevertheless, the corresponding q-expansion of (1)
still converges and therefore we take it as the definition of E2(r, τ). In the case where r 6≡ 0 (mod f)
and k = 2, one can show that Ek(r, τ) satisfies the correct transformation formula and therefore
corresponds to a holomorphic modular form of weight 2 for the modular group Γ1(f). In a similar
way, we also define

E∗
k(r, τ) :=

(
(−1)k(2πi)k

(k − 1)!

)−1 ∑

(m,n)∈Z2

(0,0)6=(m,n)

e2πin
r
f

(m+ nτ)k

=
−B̃k(r/f)

k
+

f−1∑

b=0

e2πibr/f
∑

m≥1

∑

n≥1

mk−1(qm(fn+b)τ + (−1)kqm(fn−b)τ ).

The Eisenstein series Ek(r, τ) and E∗
k(r, τ) are related by the formula

E∗
k(r, τ) = det(Wf )

kEk (r,Wf τ) (Wfτ)
k , (2)

where Wf =

(
0 −1
f 0

)
.

Next we want to associate Eisenstein series to a good divisor δ ∈ D(N0, f).

Definition 1.2 Let δ =
∑

d0|N0,r∈Z/fZ

n(d0, r)[d0, r] ∈ D(N0, f) be a fixed good divisor. To any

integer k ≥ 2 we associate the Eisenstein series

Fk,δ(τ) :=
∑

d0|N0,r∈Z/fZ

d0n(d0, r)Ek(r, d0τ) and F ∗
k,δ(τ) :=

∑

d0,r

dk−1
0 n

(
N0

d0
, r

)
E∗
k(r, d0τ),

and

Fk,δ,p(τ) := Fk,δ(τ) − pk−1Fk,δ(pτ) and F ∗
k,δ(τ) − pk−1F ∗

k,δ(pτ),

which are related by the formula

Fk,δ(WfN0τ) = (−1)kτkN0F
∗
k,δ(τ), where WfN0 =

(
0 −1

fN0 0

)
. (3)

For every j ∈ (Z/fZ)×/〈p〉 we set

F̃k(r, z) := −12fFk,δr(z) and F̃k,p(r, z) := −12fFk,δr,p(z),

and similarly we set

F̃ ∗
k (r, z) := −12F ∗

k,δr(z) and F̃ ∗
k,p(r, z) := −12F ∗

k,δr ,p(z).

In the definition of a good divisor we have forced the condition n(d0, r) = 0 for all d0|N0 when
r ≡ 0 (mod f), because we want the function F̃2(r, τ) to satisfy the correct transformation formula,
i.e., we want F̃2(r, τ) to be a modular form of weight 2. For a fixed integer k ≥ 2, we can think of
{F̃k(r, z)}(Z/fZ)×/〈p〉 as a family of Eisenstein series indexed by elements of (Z/fZ)×/〈p〉. For any
γ ∈ Γ0(f) we have the transformation formula

F̃k(γ ⋆ r, γτ)(cτ + d)−k = F̃k(r, τ),

3
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where

(
a b
c d

)
⋆ r := dr (mod f). A similar formula holds for F̃ ∗

k (r, τ). Because the divisor δ

satisfies the condition (2), the constant terms of the q-expansions of F̃k(r, τ) (resp. F̃ ∗
k (r, τ)) vanish

at the cusps Γ0(fN0){∞} (resp. Γ0(fN0){0}) where ∞ stands for the cusp 1
0 . It is “well known”that

the period integrals
∫ c2

c1

znF̃k(r, z)dz (4)

are rational numbers, for c1, c2 ∈ Γ0(fN0){∞} and 0 ≤ n < k. For explicit formulas of these periods
given in terms of Dedekind sums see Proposition 11.1 of [Cha].

We need to introduce some background about p-adic integration. Let

X := (Zp × Zp)\(pZp × pZp).

Definition 1.3 Let A be an abelian group. An A-valued distribution on X is a map

µ : {Compact open sets of X} → A

which is finitely additive, i.e., for any disjoint union,
⋃n
i=1 Ui, of compact open sets of X we have

µ

(
n⋃

i=1

Ui

)
=

n∑

i=1

µ(Ui).

A distribution is said to be a measure if A can be chosen to be a bounded subgroup of Qp.

Let

Γ̃0 :=

{(
a b
c d

)
= γ ∈ GL2(Z[1/p]) : det(γ) > 0 , c ≡ 0 (mod fN0)

}
.

Note that the orbit Γ̃0{∞} = Γ0(fN0){∞}.
The next theorem is the crucial technical ingredient for the definition of our p-adic invariant.

Theorem 1.1 There exists a unique collection of p-adic measures µ̃r{c1 → c2} on (Qp ×
Qp)\(0, 0) taking values in Z and indexed by triples

(r, c1, c2) ∈ (Z/fZ)×/〈p〉 × Γ̃0{∞} × Γ̃0{∞},
such that:

(1) For every homogeneous polynomial h(x, y) ∈ Zp[x, y] of degree k − 2,
∫

X

h(x, y)dµ̃r{c1 → c2}(x, y) = (1 − pk−2)

∫ c2

c1

h(z, 1)F̃k(r, z)dz,

(2) For all γ ∈ Γ̃0 and all compact open subset U ⊆ Q2
p\(0, 0),

µ̃r{c1 → c2}(U) = µ̃γ⋆r{γc1 → γc2}(γU),

(3) For every homogeneous polynomial h(x, y) ∈ Zp[x, y] of degree k − 2,
∫

Zp×Z
×
p

h(x, y)dµ̃r{c1 → c2}(x, y) =

∫ c2

c1

h(z, 1)F̃k,p(r, z)dz.

Proof See Section 3. �

Remark 1.1 A similar statement is true if one replaces F̃k(r, z) by F̃ ∗
k (r, z) and the orbit Γ̃0{∞}

by Γ̃0{0}.
4
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Now we need to introduce certain notions in order to give a precise definition of our p-adic
invariant. Let Hp = P1(Cp)\P1(Qp) be the so-called p-adic upper half plane endowed with its
structure of rigid analytic space and let Kp be the completion of K at the prime p. Note that
Hp ∩ K 6= ∅. For certain pairs (r, τ) ∈ Z/fZ × (Hp ∩ K) we want to associate a p-adic invariant
u(r, τ) ∈ K×

p . Let us fix an embedding K ⊆ R. For every τ ∈ K − Q we define the order Oτ as
EndK(Λτ ) where Λτ is the lattice Z + τZ. Let O be an order of K of conductor coprime to N0

and let n = N ∩ O. Note that O/n ∼ Z/N0Z. A pair (r, τ) ∈ (Z/fZ)× × (Hp ∩ K) is said to be
(O, n)-admissible if O = Oτ = ON0τ , ΛN0τ = nΛτ , and if τ − τσ > 0 where σ is the non trivial
automorphism of K. When there is no need to specify the pair (O, n) we simply say that the pair
(r, τ) is admissible. In Section 4 we give some motivation for the notion of admissibility which we
develop further. We also introduce an important relation of equivalence on admissible pairs which we
denote by ∼ (see Definition 4.4 and Remark 4.3). We are now ready to define our p-adic invariant.

Definition 1.4 For every admissible pair (r, τ) ∈ (Z/fZ)× × (Hp ∩K) such that τ is reduced
(see Definition 1.6), we define the p-adic invariant

u(δr, τ) = u(r, τ) := pψr{∞→γτ∞} ×
∫

X

(x− τy)dµ̃r{∞ → γτ∞}(x, y) ∈ K×
p , (5)

where γτ is an oriented generator of the stabilizer of τ under the action of Γ1 (see Definition 1.5),
i.e., γτ is chosen in such a way that it generates the quotient StabΓ1(τ)/〈±1〉 ≃ Z and

γτ

(
τ
1

)
= ǫ

(
τ
1

)

with ǫ > 1. For any pair of cusps c1, c2 ∈ Γ0(fN0){∞}, the quantity ψr{c1 → c2} is defined by the
following integral

ψr{c1 → c2} :=
1

2πi

∫ c2

c1

F̃2(r, τ)dτ, (6)

where the complex line integral on the right hand side is taken along the unique geodesic C in the
complex upper half plane H connecting the cusps c1 and c2.

Remark 1.2 One can define in an analoguous way a p-adic invariant u∗(r, τ) by replacing the
Eisenstein series F̃k(r, τ) in the statement of Theorem 1.1 by the Eisenstein series F̃ ∗

k (r, τ).

It is explained in Section 2 that the rational number ψr{c1 → c2} is in fact always an integer. Some
explanations about the multiplicative integral appearing in (5) are in order. This p-adic integral is
defined by

×
∫

X

(x− τy)dµ̃r{∞ → γτ∞}(x, y) := lim
||U||→0

∏

U∈U

(xU − τyU)eµr{∞→γτ∞}(U) ∈ K×
p , (7)

where U is a cover of X by disjoint compact open sets, (xU , yU) is an arbitrary point of U ∈ U , and
the p-adic limit is taken over increasingly fine covers U . The product in (7) makes sense since the
measures µ̃r{c1 → c2} are Z-valued and not only Zp-valued

The appellation p-adic invariant for the quantity u(r, τ) is appropriate in light of the following
theorem.

Theorem 1.2 Let (r, τ) and (r′, τ ′) be (O, n)-admissible pairs such that τ and τ ′ are reduced
and

γ ⋆ (r, τ) := (γ ⋆ r, γτ) = (r′, τ ′), γ =

(
a b
c d

)
∈ Γ̃0.

5
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Then

u(r, τ) ≡ u(r′, τ ′) (mod (K×
p )tor), (8)

where (K×
p )tor = µp2−1.

It is a natural question to ask if (8) remains valid without the modulo (mod µp2−1). The author
did not attempt to prove it but numerical examples suggest that this refinement is true. Under a
mild assumption on τ , one can show that (r, τ) ∼ (r′, τ ′) if and only if there exists a γ ∈ Γ̃0 such
that γ ⋆ (r, τ) = (r′, τ ′) (see Section 4).

When O = OK , we conjecture that the element u(r, τ) lies in the narrow ray class field K
of conductor f which we denote by K(f∞). To be precise, assume that the minimal quadratic
polynomial with integer coefficients satisfied by τ has the form

Aτ2 +Bτ + C = 0, (A,B,C) = 1, A > 1

where N0|A and B2 − 4AC = disc(K).

Conjecture 1.1 Let L = K(f∞)Frob(p/℘) where ℘ = pOK and p is a prime ideal of K(f∞)
above ℘. Then the element u(r, τ) ∈ K×

p is a “strong p-unit” in L i.e., an element of OL[1p ]
×, such

that |u(r, τ)|ν = 1 for all infinite places ν of L.

In Subsection 4.1 (see Conjecture 4.1), we propose a conjectural Shimura reciprocity law which
describes the action of Gal(K/K) on u(r, τ).

In Section 5 we introduce the zeta functions ζ∗(δ, (r, τ), s) (resp. ζ(δ, (r, τ), s)) which interpolates
certain periods of F̃k(r, τ) with respect to the cusp ∞ (resp. certain periods of F̃ ∗

k (r, τ) with respect
to the cusp 0). The reader should keep in mind the following diagram:

periods of F̃k(r, z) ; ζ∗(δ, (r, τ), s) and u(r, τ),

periods of F̃ ∗
k (r, z) ; ζ(δ, (r, τ), s) and u∗(r, τ).

Finally in Section 6, we prove a p-adic analogue of the Kronecker limit formula which relates
our p-adic invariant u(r, τ) to the first derivative at s = 0 of a certain p-adic zeta function. More
precisely we prove that

(1) 3(ζ∗p )
′(δ, (r, τ), 0) = − logpNKp/Qp

(u(r, τ)),

(2) 3ζ∗(δ, (r, τ), 0) = vp(u(r, τ)),

where ζ∗p(δ, (r, τ), s) is a p-adic zeta function interpolating the special values

(1 − p−2n)ζ∗(δ, (r, τ), n)

for even integer n ≤ 0 such that n ≡ 0 (mod p− 1).

Here we want to point out that our choice of working with the periods of F̃k(r, z) (with respect
to the cusp ∞) rather than the one coming from F̃ ∗

k (r, z) (with respect to the cusp 0) is not
necessarily the best choice. For example, the formulas which relate the special values of ζ(δ, (r, τ), s)
to the special values of classical partial zeta functions K are much simpler than the one showing up
in the case of ζ∗(δ, (r, τ), s). Nevertheless, we have decided to work with the periods of F̃k(r, z) rather
than the one coming from F̃ ∗

k (r, z) since this has the advantage of simplifying the formulas which
relate the Darmon-Dasgupta invariant to the p-adic invariant u(r, τ), see [Cha07b]. Note that in the
special case where f = 1, which was the case considered in [DD06], ζ∗p(δ, (r, τ), s) = ζp(δ, (r, τ), s),
which becomes false when f > 1. This can be accounted by the fact that the two cusps 0 and ∞
are inequivalent modulo Γ0(f) when f > 1.

6
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In [Das07b], Dasgupta proposed a conjectural p-adic construction of p-units lying in narrow
ray class fields of any totally real number field. In particular, his method allows him to construct
p-units in narrow ray class fields of a real quadratic number field K. However, his new method is
rather different from the modular symbols approach initiated in [DD06] and the one developed here.
One special feature of our modular symbols approach is the possibility of computing in polynomial
time the p-adic invariant u(r, τ) ∈ K×

p . For numerical examples which support the conjectural
algebraicity of u(r, τ) see [Das07a], [Cha] and [Cha07a].

It is my pleasure to express my deepest gratitude to my Ph.D. advisor, professor Henri Darmon,
who initiated me to the subject of this paper. I would also like to thank Claude Levesque for
a detailed proofreading of this article which led to some improvements. Finally, I would like to
aknowledge the efforts of the anonymous referee who pointed out many mistakes and inaccuracies
and whose suggestions led to many improvements of this paper.

Notation

Let K be a real quadratic number field and O be a Z-order of K. Let OK = Z + ωZ be the
maximal Z-order of K. Every Z-order O of K can be written uniquely as O = Z + nωZ where
n ∈ Z>0 is called the conductor of O. An O-module Λ ⊆ K will be called an O-ideal. An O-
ideal a will be called integral if a ⊆ O. By an invertible O-ideal we mean an O-ideal Λ such that
EndK(Λ) = {λ ∈ K : λΛ ⊆ Λ} = O. Note that if a and b are invertible O-ideals then a ∩ b is an
invertible O-ideal. However, if a and b are invertible O-ideals, then in general (a, b) := a + b is not
an invertible O-ideal. If c is an invertible ideal and f is an integral O-ideal then we say that (c, f) = 1
if there exists two O-invertible integral ideals a, b such that c = ab−1, a + f = O and b + f = O.
Given an integral O-ideal f we define the set

IO(f) := {b ⊆ K : b is an invertible integral O-ideal coprime to f, i.e., f + b = O}.
Consider the monoid IO(1). For every integral O-ideal f we define an equivalence relation on the
monoid IO(1) which we denote by ∼f. Let a, b ∈ IO(1). We say that a ∼f b if and only if there
exists an element λ ∈ 1 + fa−1, λ≫ 0 (totally positive), such that λa = b. Note that if a ∼f b then
(a, f) = (b, f). The set IO(1)/ ∼f is a finite monoid. The set of invertible elements of IO(1)/ ∼f is
exactly IO(f)/ ∼f. By class field theory, the ideal class group IO(f)/ ∼f corresponds to an abelian
extension of K which we denote by K(f∞) where ∞ = ∞1∞2 corresponds to the product of the
two distinct real places of K. We call K(f∞) the narrow ray class field of K of conductor f.

We let

PO(f∞) =

{
α

β
∈ K : α, β ∈ O, α ≡ β (mod f),

α

β
≫ 0

}
. (9)

It is easy to see that for a, b ∈ IO(f), a ∼f b if and only if there exists a λ ∈ PO(f∞) such that
λa = b. We can thus think of IO(f)/ ∼f as IO(f)/PO(f∞).

Let p be a prime number which is inert in K. Instead of working with Z-lattices and Z-orders
of K, one could well work with Z[1p ]-lattices and Z[1p ]-orders of K. It is an easy exercise to see that
all the notions introduced previously are still valid in this setting. For any Z-module M ⊆ C and a
prime number p, we define M (p) := M [1p ] ≃M ⊗Z Z[1p ].

Definition 1.5 For quantities p, f,N0 fixed, we define

(1) Γ̃0 :=

{(
a b
c d

)
∈ GL+

2 (Z[1/p]) : c ≡ 0 (mod fN0)

}
,

(2) Γ0 = {γ ∈ Γ̃0 : det(γ) = 1},
7
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(3) Γ̃1 =
{
γ ∈ Γ̃0 : a ≡ 1 (mod f), c ≡ 0 (mod fN0)

}
,

(4) Γ1 = {γ ∈ Γ̃1 : det(γ) = 1}.

For a fixed prime number p we let T = T0 ∪ T1 be the Bruhat-Tits tree for PGL2(Qp) where T0

corresponds to its set of vertices and T1 corresponds to its set of edges. We let v0 be the standard
vertex of T which corresponds to the homothety class of Zp ⊕ Zp. Finally we let red : Hp → T be
the reduction map.

Definition 1.6 A point τ ∈ Hp is said to be reduced if red(τ) = v0. This is equivalent to say
that |τ − t|p ≥ 1 for t = 0, 1, . . . , p− 1 and |τ |p ≤ 1 where | |p stands for the p-adic valuation on Cp

normalized in a such a way that |p|p = 1
p .

For a short introduction to the objects defined in the previous paragraph see chapter 5 of [Dar04].

2. Modular units and Eisenstein series

The results presented in this section relate periods of modular units with periods of Eisenstein
series. This was the initial point of view that was taken in [Cha]. We also explain how the p-adic
invariant u(r, τ) is related to a certain 2-cocycle κ ∈ Z2(Γ̃1,K

×
p ). All the results presented here can

be found in [Cha]. The main result proved in this section is the proof of Theorem 1.2 which uses in
an essential way the 2-cocycle κ.

Let H∗ = H ∪ P1(Q), f > 1 be a positive integer and let X(f)(C) = H∗/Γ(f) be the modular
curve with full level f structure. For a pair ( rf ,

s
f ) ∈ ( 1

fZ)2 we associate the Siegel function

g( r
f
, s
f
)(τ) = −e2πi

s
f
( r

f
−1)/2q

1
2

eB2( r
f
)

τ (1 − qz)
∏

n≥1

(1 − qnτ qz)(1 − qnτ q−z), (10)

where τ ∈ H, z = r
f τ + s

f , qτ = e2πiτ , qz = e2πiz , B2(x) = x2 − x + 1
6 is the second Bernoulli

polynomial and B̃2(x) := B2({x}) with 0 ≤ {x} < 1 being the fractional part of x. The infinite
product (10) converges whenever Im(τ) > 0. On page 36 of [DK81] it is explained that the function
g( r

f
, s
f
)(τ)

12f is a modular unit on X(f)(C), i.e., a meromorphic function on X(f)(C) with its divisor

supported on the set of cusps of X(f)(C). Let N0 > 0 be a positive integer prime to f and let d0|N0,
d0 > 0. Consider this special case of Siegel functions

g( r
f
,0)(d0fτ) = q

1
2

eB2( r
f
)

fd0τ
(1 − qrd0τ )

∏

n≥1

(1 − qnd0fτqrd0τ )(1 − qnd0fτ q−rd0τ ).

Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f) be a good divisor. We define a family of modular

functions, indexed by j ∈ (Z/fZ)×, by the formula

βδj (τ) :=
∏

d0|N0,r∈Z/fZ

g( r
f
,0)(d0fτ)

12n(d0,jr). (11)

Because of assumption (3) in Definition 1.1, βδpj
(τ) = βδj (τ). Therefore we can think of the functions

βδj (τ) as being indexed by the cosets j ∈ (Z/fZ)×/〈p〉. Using assumption (2) of Definition 1.1, a
direct calculation shows that the function βδj (τ) is invariant under the substitution τ 7→ γτ for all
γ ∈ Γ1(f) ∩ Γ0(fN0). In particular, the function βδj (τ) may be viewed as a modular unit of level
fN0. Moreover, for all c ∈ Γ0(fN0){∞} one has that βδj (c) = 1 (this uses assumption (2)), so that
βδj (τ) is holomorphic on the set of cusps Γ0(fN0){∞} = {ac : (a, c) = 1 and (fN0)|c}. Here, ∞
stands for the cusp 1

0 .

The definition of F̃k(r, τ) of the introduction was motivated by the following proposition.

8
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Proposition 2.1 Let δ =
∑

d0|N0,r∈Z/fZ

n(d0, r)[d0, r] ∈ D(N0, f) be a good divisor. Then when

the weight k is equal to 2, we have

(1) dlog βδr(τ) = 2πiF̃2(r, τ)dτ ,

(2) dlog βδr ,p(τ) = 2πiF̃2,p(r, τ)dτ .

Proof This is a straightforward computation. �

2.1 Construction of a modular symbol

Let M = Div0(Γ0(fN0){∞}) denote the group of degree-zero divisors on the set Γ0(fN0){∞}.
Note that M has a natural left action by Γ0(fN0). A partial modular symbol with values in an
abelian group A is simply a group homomorphism from M to A. If ψ is a partial modular symbol
and c1, c2 ∈ Γ0(fN0){∞}, then we write

ψ{c1 → c2} or ψ[m] for ψ([c1] − [c2]), where m = [c1] − [c2] ∈ M.

The assumption (2) of Definition 1.1 implies that the differential dlogβδr(τ) on H∗ is holomorphic
at the points of the set Γ0(fN0){∞}. Thus, we may define a family of partial modular symbols ψr,
indexed by r ∈ (Z/fZ)×/〈p〉, by the rule

ψr{c1 → c2} =
1

2πi

∫ c2

c1

dlog βδr (τ), (12)

where the complex line integral on the right hand side is taken along the unique geodesic C in H∗

connecting the cusps c1 and c2. The rational integer ψr{c1 → c2} may be understood as the winding
number of the closed loop βδr (C) around the origin in the complex plane.

Remark 2.1 In light of Proposition 2.1 we see that (12) coincides with (6).

The partial modular symbol ψr is Γ0(fN0)-invariant in the sense that for all γ ∈ Γ0(fN0) one has

ψr{c1 → c2} = ψγ⋆r{γc1 → γc2}, (13)

where, for γ =

(
a b
c d

)
, γ ⋆ j ≡ dj (mod f). The identity (13) follows directly from the transfor-

mation formula βδγ⋆r (γτ) = βδr (τ) where γ ∈ Γ0(fN0).

We define the p-stabilization of βδr(τ) to be

βδr ,p(τ) :=
βδr (τ)

βδr (pτ)
.

Using the infinite product of βδr ,p(τ) and (3) of Definition of 1.1 one can show that βδr ,p(τ) is
Up,m-invariant i.e.,

Up,m(βδr ,p(τ)) :=

p−1∏

k=0

βδr ,p

(
τ + k

p

)
= βδr ,p(τ). (14)

(The index m of Up,m stands for multiplicative). For a proof of (14) see Proposition 3.5 and Remark
4.7 of [Cha]. Moreover, for all c ∈ Γ0(fN0){∞} one also has βδr ,p(c) = 1.

The family of p-stabilized modular units {βδj ,p(τ)}j∈(Z/fZ)×/〈p〉 gives rise naturally to a family

of Γ̃0-invariant partial modular symbols with values in the abelian group of Z-valued measures on
P1(Qp). In order to make the previous statement precise, we need to introduce some notation.

9
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The group of matrices

GL+
2 (Z[1p ]) = {γ ∈ GL2(Z[1p ]) : det(γ) > 0}

acts naturally on P1(Qp) by the rule x 7→ γx =
ax+ b

cx+ d
, where γ =

(
a b
c d

)
∈ GL+

2 (Z[1p ]) and

x ∈ P1(Qp). We define a ball in P1(Qp) to be a translate of Zp by some element of GL+
2 (Z[1p ]), i.e.,

a ball in P1(Qp) is a set of the form

γZp := {γx ∈ P1(Qp) : x ∈ Zp},
where γ ∈ GL+

2 (Z[1p ]). We denote the set of all such balls by B.

Theorem 2.1 There exists a unique system of Z-valued measures on P1(Qp), indexed by triples

(Z/fZ)×/〈p〉 × Γ̃0{∞} × Γ̃0{∞}
satisfying the following properties: for all (r, c1, c2) ∈ (Z/fZ)×/〈p〉 × Γ̃0{∞} × Γ̃0{∞}
(1) µr{c1 → c2}(P1(Qp)) = 0,

(2) µr{c1 → c2}(Zp) = 1
2πi

∫ c2
c1

dlogβδr ,p(τ),

(3) (Γ̃0-invariance property) For all γ ∈ Γ̃0 and all compact open U ⊆ P1(Qp) we have

µγ⋆r{γc1 → γc2}(γU) = µr{c1 → c2}(U).

Proof The key idea is to use the Up,m-invariance of the modular units βδr ,p(τ). The latter property
can be used to “package” these various winding numbers into a family of p-adic Z-valued measures
on P1(Qp). For a proof, see Theorem 5.1 of [Cha]. �

The following lemma states that the system of measures µ̃ appearing in Theorem 1.1 lifts the
system of measures µ appearing in Theorem 2.1.

Lemma 2.1 For all compact open U ⊆ P1(Qp) we have

π∗µ̃{c1 → c2}(U) := µ̃j{c1 → c2}(π−1(U)) = µj{c1 → c2}(U),

where π : X → P1(Qp) is the Z×
p -bundle given by (x, y) 7→ x

y .

Proof See the proof of Lemma 6.1 in [Cha]. �

2.2 Construction of a 2-cocycle

The family of measures constructed in Theorem 2.1 will enable us to construct a 2-cocycle κ ∈
Z2(Γ̃1,K

×
p ) .

Let δ ∈ D(N0, f) be a fixed good divisor.

Definition 2.1 Let r ∈ (Z/fZ)×, c1, c2 ∈ Γ̃0{∞} and let τ1, τ2 ∈ Hp ∩Kp. We define
∫ τ2

τ1

∫ c2

c1

dlogβδr ,p(z) :=

∫

P1(Qp)
logp

(
t− τ2
t− τ1

)
dµr{c1 → c2}(t),

where µr{c1 → c2} is the measure of Theorem 2.1 for the modular unit βδ,p(τ). Since the measures
µr{c1 → c2} are Z-valued it makes sense also to define the multiplicative integral

×
∫ τ2

τ1

∫ c2

c1

βδr ,p(τ)dµr{c1 → c2}(t) := lim
C={Ui}

∏

i

(
ti − τ2
ti − τ1

)µr{c1→c2}(Ui)

,

where ti is an arbitrary point of Ui and the limit goes over a set of covers that become finer and
finer.

10
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Definition 2.2 Let τ ∈ Hp ∩Kp and fix c ∈ Γ̃0{∞} and r ∈ (Z/fZ)×. Then for all γ1, γ2 ∈ Γ̃0

we define

κc,(r,τ)(γ1, γ2) := ×
∫ γ1τ

τ

∫ γ1γ2c

γ1c
dlogβδr ,p(z) ∈ K×

p .

We let the group Γ̃0 act trivially on K×
p .

Proposition 2.2 The 2-cochain κc,(r,τ) ∈ C2(Γ̃0,K
×
p ) is a “twisted” 2-cocycle satisfying the

relation

(dκc,(r,τ))(γ1, γ2, γ3) = κc,(r,τ)(γ2, γ3) − κc,(γ−1
1 ⋆r,τ)(γ2, γ3)

for all γ1, γ2, γ3 ∈ Γ̃0.

In particular (dκc,(r,τ))|eΓ1
= 0, i.e., κc,(r,τ)|eΓ1

∈ Z2(Γ̃1,K
×
p ).

Proof See Proposition 5.7 in [Cha]. �

2.3 Explicit splitting of a 2-cocycle

Definition 2.3 To each v ∈ T0 (set of vertices of the Bruhat-Tits tree for PGL2(Qp)) we

associate a well defined partial modular symbol mv{c1 → c2} on the set of cusps Γ̃0{∞} taking
values in the set of Γ̃0-invariant Z-valued measures on P1(Qp). We define

mv0,r{c1 → c2} :=
1

2πi

∫ c2

c1

dlogβδr (z), mγv,γ⋆r{γc1 → γc2} = mv,r{c1 → c2},

where v ∈ V(T ), γ ∈ Γ̃0, r ∈ (Z/fZ)×/〈p〉 and c1, c2 ∈ Γ0(fN0){∞}.

Note that the assignment v 7→ mv,r{c1 → c2} satisfies the harmonicity property
∑

d(v′,v)=1

mv′,r{c1 → c2} = (p+ 1)mv,r{c1 → c2}.

The last equality comes from the fact that F̃2(r, z) is an eigenvector with eigenvalue (1 + p) for the
Hecke operator T2(p) (see equation (4.19) of [Cha]).

The next theorem gives an explicit splitting of the 2-cocycle appearing in Definition 2.2.

Theorem 2.2 Let τ ∈ Hp ∩Kp, r ∈ (Z/fZ)×, γ ∈ Γ̃1 and v = red(τ). Define

ρc,(r,τ)(γ) := pmv,r{c→γc)} ×
∫

X

(x− τy)dµ̃r{c→ γc}(x, y). (15)

Then ρc,(r,τ) ∈ C1(Γ1,K
×
p ) is a 1-cochain such that of dρc,(r,τ) = κc,(r,τ).

Proof The proof uses in an essential way Lemma 2.1 and property (3) of Theorem 1.1. For a detailed
proof see Theorem 6.2 of [Cha]. �

Remark 2.2 For an admissible pair (r, τ) one has that ρ∞,(r,τ)(γτ ) = u(r, τ).

Corollary 2.1 Let (r, τ) ∈ (Z/fZ)××Hp∩K be an admissible pair such that red(τ) = v0. Let

γ ∈ Γ̃1. Then

ordp(ρc,(r,τ)(γ)) = mv0,r{c→ γc}. (16)

Proof This follows directly from the definiton of ρc,(r,τ). �

11
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2.4 Proof of Theorem 1.2

Theorem 1.2 will be a direct consequence of the next two propositions.

Proposition 2.3 For τ ∈ Hp ∩K let

Γ1,τ := {γ ∈ Γ1 : γτ = τ}.
Let ρc,(r,τ) be the 1-cochain appearing in Theorem 2.2 when viewed as an element of Z1(Γ1,K

×
p ).

Then ρc,(r,τ)|Γ1,τ modulo Hom(Γ1,K
×
p )|Γ1,τ does not depend on the base point c ∈ Γ0{∞}.

Proof Let x, y ∈ Γ1{∞}. We want to show that

ρx,(r,τ)|Γ1,τ − ρy,(r,τ)|Γ1,τ ∈ Hom(Γ1,K
×
p )|Γ1,τ = Z1(Γ1,K

×
p )|Γ1,τ .

This is equivalent to showing that (dρx,(r,τ))|Γ1,τ − (dρy,(r,τ))|Γ1,τ = 0. The previous equality means
exactly that (κx,(r,τ) − κy,(r,τ))|Γ1,τ = 0. Let us compute.

Let γ1, γ2 ∈ Γ1. We have

κx,(r,τ)(γ1, γ2) − κy,(r,τ)(γ1, γ2) =

∫ γ1τ

τ

∫ γ1γ2x

γ1x
dlogβδr ,p(z) −

∫ γ1τ

τ

∫ γ1γ2y

γ1y
dlogβδr ,p(z)

=

∫ γ1τ

τ

∫ γ1y

γ1x
dlogβδk ,p(z) −

∫ γ1τ

τ

∫ γ1γ2y

γ1γ2x
dlogβδr ,p(z)

=

∫ γ1τ

τ

∫ γ1y

γ1x
dlogβδr ,p(z) −

∫ γ1γ2τ

τ

∫ γ1γ2y

γ1γ2x
dlogβδr ,p(z)

+

∫ γ1γ2τ

γ1τ

∫ γ1γ2y

γ1γ2x
dlogβδr ,p(z).

Now applying γ−1
1 to the bounds of the third term of the last equality (note that γ−1

1 ⋆ r = r) and
setting

cx,y(γ) :=

∫ γτ

τ

∫ γy

γx
dlogβδr ,p(z) ∈ C1(Γ1,K

×
p ),

we get

κx,(r,τ)(γ1, γ2) − κy,(r,τ)(γ1, γ2) = cx,y(γ1) − cx,y(γ1γ2) + cx,y(γ2) = (dcx,y)(γ1, γ2).

We thus have proved that d(ρx,(r,τ)−ρy,(r,τ)−cx,y)|Γ1 = 0. So ρx,(r,τ)−ρy,(r,τ)−cx,y ∈ Hom(Γ1,K
×
p ).

Finally evaluating at γτ and using the fact that cx,y(γτ ) = 0 proves the proposition. �

Proposition 2.4 The abelianization of Γ1, i.e., (Γ1)
ab = Γ1/[Γ1,Γ1] is a finite group.

Proof See [Men67] and [Ser70].

Corollary 2.2 The groupHom(Γ1,K
×
p ) is a finite abelian group of exponent dividing #(K×)tor =

p2 − 1.

Remark 2.3 Note that the Proposition 2.4 is obviously false if one replaces Γ1 by the larger
group Γ̃1.

Proof of Theorem 1.2 Let (r, τ) be an admissible pair. Let U ⊂ (Qp × Qp)\(0, 0) be a compact

open subset, let c1, c2 ∈ Γ̃0 and let γ =

(
A B
C D

)
∈ Γ̃0. A direct computation which uses property

12
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(2) of Theorem 1.1 shows that

×
∫

U
(x− τy)dµ̃r{c1 → c2}(x, y) = ×

∫

γU
(Cτ +D)(x− γτy)dµ̃γ⋆r{γc1 → γc2}(x, y). (17)

Now let (r, τ) and (r′, τ ′) be admissible pairs as given in the statement of Theorem 1.2. By assump-
tion there exists a η ∈ Γ̃0 such that η ⋆ (r, τ) = (r′, τ ′). Since τ and τ ′ are reduced we see that
η ∈ Γ̃0 ∩GL2(Zp) = Γ0(fN0). Note that γτ ′ = ηγτη

−1 where γτ and γτ ′ are as in Definition 1.4. Let
ξ = η∞. We have

u(r′, τ ′) = ρ∞,(r′,τ ′)(γτ ′) = ρξ,(r′,τ ′)(γτ ′) (mod µp2−1),

where the last equality follows from Proposition 2.3 (γτ ′ ∈ Γ1,τ ′) and Corollary 2.2. Now let us
compute directly ρξ,(r′,τ ′)(γτ ′). We have

ρξ,(r′,τ ′)(γτ ′)

= pmv0,r′{ξ→γτ ′ξ} ×
∫

X

(x− τ ′y)dµ̃r′{ξ → γτ ′ξ}(x, y)

= pmv0,r{∞→γτ∞} ×
∫

X

(x− τy)dµ̃r{∞ → γτ∞}(x, y),

where the last equality uses (17) and the Γ̃0-equivariance of the modular symbol mv0,r′{ξ → γτ ′ξ}.
This concludes the proof. �

3. Proof of Theorem 1.1

This section is devoted to the existence of the system of measures which appear in Theorem 1.1.

The proof is technical and long but essentially it follows the same lines as the one given in
[DD06]. We will only prove in details the new ingredients which are not straightforward adaptations
of [DD06]; for a more detailed version of it see [Cha]. The uniqueness of the family of measures
follows easily from properties (1) and (2). It remains to show the existence of such a family. We will
first prove the existence of a family of measures which satisfy properties (1), (2) and (3) under the
weaker assumption that they take values in Zp rather than Z. We break the proof in five steps.

We let ξ = a
c ∈ Γ̃0{∞} where p ∤ c and j ∈ (Z/fZ)×/〈p〉 and write µξ,j := µ̃j{ξ → ∞}.

First step There exists a unique family of Zp-valued measures on Zp × Zp which satisfies the
property

∫

Zp×Zp

h(x, y)dµξ,j(x, y) = (1 − pk−2)

∫ i∞

ξ
h(z, 1)F̃k(j, z)dz.

A direct computation shows that

In,m(j) :=

∫

Zp×Zp

xnymdµξ,j(x, y) = (1 − pn+m)

∫ i∞

ξ
znF̃n+m+2(j, z)dz

= − 12

fn+m
(1 − pn+m)

n∑

l=0

(
n

l

)(a
c

)n−l
(−1)l

∑

d0|N0,r∈Z/fZ

n(d0, r)d
−l
0 D

jr (mod f)
n+m−l+1,l+1(a, c/d0) (18)

for all integers n,m ≥ 0, where

D
r (mod f)
s,t (a, c) := cs−1

∑

1≤h≤c
h≡r (mod f)

B̃s(h/c)

s

B̃t(ha/c)

t
.

13
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The second equality follows from Proposition 11.4 of [Cha] which provides explicit formulas for the
rational periods of F̃k(j, z).

The key tool in showing the existence and uniqueness of {µξ,j} is the following result, which is
a two variables version of a classical theorem of Mahler.

Lemma 3.1 Let bn,m ∈ Zp be constants indexed by integers n,m ≥ 0. There exists a unique
measure µ on Zp × Zp such that

∫

Zp×Zp

(
x

n

)(
y

m

)
dµ(x, y) = bn,m.

For any 0 ≤ n and 0 ≤ i ≤ n, define the rational numbers cn,i via
(x
n

)
=
∑n

i=0 cn,ix
i. For j ∈

(Z/fZ)×/〈p〉 we let

Jn,m(j) :=
n∑

i=0

m∑

i′=0

cn,icm,i′Ii,i′(j).

So in order to show that the measures µξ,j are Zp-valued, it is enough to show, by Lemma 3.1, that
Jn,m(j) ∈ Zp. The way that this is proved is by interpreting the quantity Jn,m(j) as the partial
derivative of a certain rational function. More precisely,

Jn,m(j) =

(
Dw

m

)(
Dz

z

)
H∗
j (u, v)|(1,1),

where (z,w) = ( 1
u , u

a
c v

1
c ),Dw = w ∂

∂w ,Dz = z ∂
∂z and H∗

j (u, v) is a rational function in Zp(u
1/c, v1/c).

For the exact definition of H∗
j (u, v) see equations (12.9) and (12.10) of [Cha].

Now the p-integrality of Jn,m(j) is a direct consequence of the following lemma.

Lemma 3.2 Consider the subring R of Zp(u
1/c, v1/c) defined by

R :=

{
P

Q
: P,Q ∈ Zp[u

1/c, v1/c] and Q(1, 1) ∈ Z×
p

}
.

Then R is a ring stable under the operators
(Dw

m

)
and

(Dz

n

)
. Furthermore H∗

j (u, v) ∈ R.

The proof of Lemma 3.2 is identical to the proof of Lemma 4.11 of [DD06] (see also Lemma 12.2
of [Cha]). �

Second step There exists a unique family of partial modular symbols {νj}j∈(Z/fZ)×/〈p〉 supported
on the set of cusps Γ0(fN0){∞} of Zp-valued measures on Zp × Zp such that

∫

Zp×Zp

h(x, y)dνj{r → s}(x, y) = (1 − pk−2)

∫ s

r
h(z, 1)F̃k(j, z)dz

for r, s ∈ Γ0(fN0){∞} and for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.

Furthermore, if γ =

(
a b
c d

)
∈ Γ0(fN0) then νj{r → s}(U) = νγ⋆j{γr → γs}(γU), i.e., the

system of measures is Γ0(fN0)-invariant.

The proof of this step uses Step 1. The argument is identical to the proof of Lemma 4.13 of
[DD06] (see also Lemma 12.4 in [Cha]). Note that the Γ0(fN0)-invariance boils down basically to

the transformation formula Ek(γ ⋆ r, γτ)(cτ + d)−k = Ek(r, τ) where γ =

(
a b
c d

)
∈ Γ0(fN0).
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Third step Let r, s ∈ Γ{∞}. The measures νj{r → s} constructed in Step 2 satisfy the
following formula

∫

Zp×Z×
p

h(x, y)dνj{r → s}(x, y) =

∫ s

r
h(z, 1)F̃k,p(j, z)dz,

for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.

The proof of this step uses Step 2 and follows the same lines as the proof of Lemma 4.14 of
[DD06] where Lemma 4.15 of [DD06] is replaced by the following lemma

Lemma 3.3 Let s, t ≥ 1. For any rational number a
c (p could divide c), we have inside Qp the

identity

lim
j→∞

D
r (mod f)
s+(p−1)pj ,t

(a, c) = D
r (mod f)
s,t (a, c) − ps−1D

p−1r (mod f)
s,t (pa, c).

The proof of Lemma 3.3 is different from the proof of Lemma 4.15 of [DD06] since we don’t use
reciprocity formulas for Dedekind sums. For this reason we have decided to include it.

Proof of Lemma 3.3 Let x = a
c ∈ Q with (a, c) = 1 and assume first that p ∤ c. Let b be an

integer such that abp ≡ 1 (mod c). Note that

D
r (mod f)
s,t (a, c) = cs−1

∑

1≤l≤c
l≡ar (mod f)

B̃s(lbp/c)

s

B̃t(l/c)

t
. (19)

Therefore

D
r (mod f)
s+(p−1)pj ,t

(a, c) = cs−1+(p−1)pj
∑

1≤l≤c
l≡ar (mod f)

B̃s+(p−1)pj (lbp/c)

s

B̃t(l/c)

t
(20)

and similarly

D
r (mod f)
s+(p−1)pj ,t

(pa, c) = cs−1
∑

1≤l≤c
l≡ar (mod f)

B̃s+(p−1)pj(lb/c)

s

B̃t(l/c)

t
. (21)

Write y = {lbp/c} and y′ = {lb/c}. Since c(p−1)pj → 1, then subtracting ps−1 times (21) to (20) we
see that it suffices to prove that

lim
j→∞

Bs+(p−1)pj (y) = Bs(y) − ps−1Bs(y
′). (22)

For s > 0, this follows from the proof of Theorem 3.2 of [You01]. In the course of the proof of
Theorem 3.2 of [You01] Young gets for any positive integer b coprime to p the congruence

(bs+(p−1)pj − 1)
Bs+(p−1)pj (x) − ps−1+(p−1)pj

Bs+(p−1)pj (x′)

s+ (p− 1)pj
(23)

−(bs − 1)
Bs(x) − ps−1Bs(x

′)

s
≡ 0 (mod pj+1Zp)

where x′ is such that px′ − x ∈ {0, 1, . . . , p − 1} and s ≥ 1. The denominator of Bn
n at p is well

behaved. If (p − 1) ∤ n then Bn
n is p-integral. If (p − 1)|n then vp(

Bn
n ) = −1 − vp(n). Using the

previous observation it follows that limj→∞ p(p−1)pj
Bs+(p−1)pj (x′) = 0. Letting j → ∞ in (23) we

get that

(bs − 1) lim
j→∞

Bs+(p−1)pj(x)

s
= (bs − 1)

Bs(x) − ps−1Bs(x
′)

s
. (24)
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When s ≥ 1 we can always choose b such that bs − 1 6= 0. Therefore we can cancel the two factors
bs − 1 in (24) to get (22). It remains to treat the case where s = 0.

We have vp(y) ≥ 1. Let g = (p − 1)pj . Note that

Bg(y) =

g∑

k=0

(
g

k

)
Bky

g−k (25)

= yg + g

(
g−1∑

k=1

(
g − 1

k − 1

)
Bk
k
yg−k

)
+Bg.

If (p − 1) ∤ k then Bk
k ∈ Zp. If (p − 1)|k then we can write k = (p − 1)pum with (m, p) = 1.

So vp(
Bk
k y

g−k) ≥ −1 − u + (p − 1)pu ≥ 0 since pj−u − 1 ≥ m. We thus deduce from (25) that
limj→∞B(p−1)pj(y) = B(p−1)pj .

Let ω be the Teichmüller character at p. If we look at Lp(s) the p-adic L-function twisted by
the trivial character, we have the formula

Lp(1 − n) = −(1 − ω−n(p)pn−1)
Bn,ω−n

n
.

Here ω−n means the primitive character associated to ω−n (so ω−n(a) is not necessarily equal to
ω(a)−n). So letting n = (p− 1)pj , we have ω−n(p) = 1 and we get

Lp(1 − (p − 1)pj) = −(1 − p(p−1)pj−1)
B(p−1)pj

(p− 1)pj
.

Now we know that lims→1(s− 1)Lp(s) = 1 − 1
p . So letting j → ∞ we get

lim
j→∞

B(p−1)pj = 1 − 1

p
.

This proves the claim for s = 0.

We need to treat now the case where p|c. This case turns out to be simple. Let us prove the
following elementary lemma.

Lemma 3.4 Let h be any integer and 0 6= c ∈ Z such that p|c. Then we have the following:

(1) limj→∞ cs+gB̃s+g(
h
c ) = csB̃s(

h
c ), if (h, p) = 1,

(2) limj→∞ cs+gB̃s+g(
h
c ) = 0, if p|h,

where g = (p − 1)pj .

Proof of Lemma 3.4 Let us prove the first case. We have

cs+gB̃s+g(
h

c
) =

s+g∑

k=0

(
s+ g

k

)
Bkh

s+g−kck

=

s∑

k=0

(
s+ g

k

)
Bkh

s+g−kck +

s+g∑

k=s+1

(
s+ g

k

)
Bkh

s+g−kck. (26)

Now since |c|p < 1, |h|p = 1, |
(m
k

)
|p ≤ 1 and |Bk|p ≤ p, the limit in (26) when j → ∞ exists. Since

(h, p) = 1 the limit of the first term is csB̃s(
h
c ) and the limit of the second term is 0. This proves

the first part of the lemma.

Assume now that p|h. If vp(h) ≥ vp(c) then h
c ∈ Zp. In this case we know that limj→∞ B̃s+(p−1)pj(hc )

exists by (22). Finally since p|c it follows that limj→∞ cs+gB̃s+g(
h
c ) = 0. Assume now that vp(c) >

16
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vp(h) = m ≥ 1. Then by the first part of the lemma 3.4 we know that limj→∞( c
pm )s+gB̃s+g(

h/pm

c/pm )

exists. It follows limj→∞ cs+gB̃s+g(
h
c ) = 0 since m ≥ 1. �

With Lemma 3.4 it is now easy to prove Lemma 3.3 for the case where p|c. We have

lim
j→∞

D
r (mod f)
s+g,t (a, c) = lim

j→∞

∑

1≤h≤c
h≡r (mod f)

cs+g−1B̃s+g−1

(
h

c

)
B̃t

(
ah

c

)

=
∑

1≤h≤c
h≡r (mod f)

(p,h)=1

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
(27)

On the other hand we have

D
r (mod f)
s,t (a, c) − ps−1D

p−1r (mod f)
s,t (pa, c)

= D
r (mod f)
s,t (a, c) − ps−1D

p−1r (mod f)
s,t (a, c/p)

=
∑

1≤h≤c
h≡r (mod f)

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
−

∑

1≤h≤c/p
h≡p−1r (mod f)

ps−1

(
c

p

)s−1

B̃s−1

(
h

c/p

)
B̃t

(
ah

c/p

)

=
∑

1≤h≤c
h≡r (mod f)

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
−

∑

1≤h≤c
h≡r (mod f)
h≡0 (mod p)

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)

=
∑

1≤h≤c
h≡r (mod f)

(p,h)=1

cs−1B̃s−1

(
h

c

)
B̃t

(
ah

c

)
.

Compare with (27). This concludes the proof of Lemma 3.3. �

Fourth step Let r, s ∈ Γ{∞}. The measures νj{r → s} are supported on X.

Proof Let γ =

(
a b
c d

)
∈ Γ0(fN0) and set µ(γ, z) := (cz + d). Let h(x, y) ∈ Z[x, y] be a

homogeneous polynomial of degree k − 2 = m+ n− 2. Then
∫

γ(Zp×Z×
p )
h(x, y)dνj{r → s}(x, y) =

∫

Zp×Z×
p

h(γ(x, y))dνj{r → s}(γ(x, y))

=

∫

Zp×Z
×
p

h(γ(x, y))dνγ−1⋆j{γ−1r → γ−1s}(x, y)

=

∫ γ−1s

γ−1r
h(γz, 1)µ(γ, z)k−2F̃k,p(γ

−1 ⋆ j, z)dz

=

∫ s

r
h(z, 1)µ(γ−1, z)−(k−2)F̃k,p(γ

−1 ⋆ j, γ−1z)d(γ−1z).

Let M(p) ⊂M2(Z) be the set of primitive matrices of determinant p. Let

{
ηi =

(
ai bi
ci di

)}p+1

i=1

17
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be a complete set of representatives of SL2(Z)\M(p). Then we have

Tk(p)Ek(j, z) = pk−1
p+1∑

i=1

Ek(dij, ηiz)µ(ηi, z)
−k, (28)

where Tk(p) stands for the Hecke operator at p. For some background about Hecke operators in this
context see Section 4.8 of [Cha].

Let P =

(
p 0
0 1

)
and

{
γi =

(
ai bi
ci di

)}p+1

i=1

be a complete set of representatives of Γ0(pfN0)\Γ0(fN0).

Note that the set {Pγ−1
i }p+1

i=1 is a complete set of representatives of SL2(Z)\M(p).

From (30) we deduce that

−1

12f

p+1∑

i=1

F̃k,p(γ
−1
i ⋆ j, γ−1

i z)µ(γ−1
i , z)−(k−2)d(γ−1

i z)

=
∑

d0,r

n(d0, r)d0

p+1∑

i=1

Ek(airj, d0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z)− (29)

pk−1
∑

d0,r

n(d0, r)d0

p+1∑

i=1

Ek(airj, pd0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z).

Because

Ek(r, γz)µ(γ, z)−(k−2)d(γz) = Ek(γ
−1 ⋆ r, z)dz,

for any γ ∈ Γ0(f), we have that

Ek(airj, d0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z) = Ek(γi ⋆ (airj), d0z)dz

= Ek(jr, d0z)dz.

From equation (4.19) of [Cha] one may deduce that

Tk(p)Ek(j, z) = pk−1Ek(j, z) +Ek(pj, z). (30)

Using the fact that (28) is equal to (30), that µ(Pγ, z) = µ(γ, z) and pd0γ
−1
i z = d0Pγ

−1
i z we obtain

pk−1
p+1∑

i=1

Ek(airj, d0Pγ
−1
i z)µ(γ−1

i , z)d(γ−1
i z) = pk−1

p+1∑

i=1

Ek(airj, d0Pγ
−1
i z)µ(Pγ−1

i , z)−(k−2)d(Pγ−1
i z)

= (Tk(p)Ek(rj, d0z))dz

= (pk−1Ek(rj, d0z) + Ek(prj, d0z))dz.

Now because p ⋆ δ = δ we find that
∑

d0,r

n(d0, r)d0(p
k−1Ek(rj, d0z) + Ek(prj, d0z))dz = (pk−1 + 1)

∑

d0,r

n(d0, r)d0Ek(rj, d0z).

Substituting the last expression in (29) we find

−12f((p+ 1) − (pk−1 + 1))
∑

d0,r

n(d0, r)d0Ek(rj, d0) = (p− pk−1)F̃k(j, z).

18
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Finally note that ∪p+1
i=1 γi(Zp × Z×

p ) is a degree p cover of X. Hence we get

p

∫

X

h(x, y)dνj{r →}(x, y) =

p+1∑

i=1

∫

γi(Zp×Z
×
p )
h(x, y)dνj{r →}(x, y)

=

p+1∑

i=1

∫ s

r
h(z, 1)F̃k,p(γ

−1
i ⋆ j, γ−1

i z)µ(γ−1
i , z)−(k−2)d(γ−1z)

= (p − pk−1)

∫ s

r
h(z, 1)F̃k,p(j, z)dz

= (p − pk−1)

∫

Zp×Z×
p

h(x, y)dνj{r → s}(x, y)

= p

∫

Zp×Zp

h(x, y)dνj{r → s}(x, y).

Since this holds for any h homogeneous of degree k we get that the support of νj{r → s} is included
in X. �

Fifth step Now we want to extend the measures νj{r → s} to the space Q2
p\{(0, 0)}. The

compact open set X is a fundamental domain for the action of multiplication by p on Q2
p\{(0, 0)}

where by multiplication by p we mean

(
p 0
0 p

)
(x, y) = (px, py). Hence if for a compact open

U ⊆ X we define

µ̃j{r → s}(U) := νj{r → s}(U),

then µ̃j{r → s} extends uniquely to a Γ0(fN0)-invariant partial modular symbol of Zp-valued
measures on Q2

p\{0} which is invariant under the action of multiplication by p:

µ̃j{r → s}(pU) = µ̃j{r → s}(U),

for all compact open U ⊆ Q2
p\{(0, 0)}. This almost proves Theorem 1.1. It remains to show that

the modular symbol µ̃j is “Γ̃0-invariant”, i.e., for all compact open set U ⊆ Q2
p\{(0, 0)} and all pair

of cusps r, s ∈ Γ̃0{∞},
µ̃γ⋆j{γr → γs}(γU) = µ̃j{r → s}(U). (31)

Note that Γ̃0 = 〈Γ0(fN0), P 〉 where P =

(
p 0
0 1

)
. By construction the modular symbol µ̃j is

Γ0(fN0)-invariant therefore in order to show (31) it is enough prove it for the matrix P . This is
proved in the exact same way as the proof of Lemma 4.17 of [DD06].

Finally, it remains to show that our measures νj{r → s} are Z-valued.

Theorem 3.1 The measures µ̃j{∞ → a
c } take values in Z.

Proof This result is an easy adaptation of the proof of Theorem 1.3 of [Das07a]. The interested
reader may find all the details in Section 13 of [Cha]. �

This concludes the proof of Theorem 1.1. �

4. From H to Z/fZ ×HO
p (N0) and the Shimura reciprocity law

Let K be a real quadratic field and let p be a prime number inert in K. Let us fix an embedding
K ⊆ R and let GK/Q = {1, σ}. Choose a Z-order O ⊆ K and fix a positive integer N coprime to p.
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In [DD06] the authors associate to such data the set

HO
p (N) := HO

p = {τ ∈ Hp : O(p)
τ = O(p)

Nτ = O(p), τ − τσ > 0}, (32)

where Oτ = EndK(Λτ ) and Λτ = Z + τZ.

Remark 4.1 Note that the notion involved in (32) differs slightly from the one in [DD06] since
in their setting O was assumed to be Z[1p ]-orders instead of Z-orders. Therefore there is no need

to tensor over Z[1p ]. One can verify that the set HO
p (N) is nonempty if and only if there exists an

O-ideal N such that O/N ≃ Z/NZ; this is the so-called Heegner hypothesis.

We propose the following generalization of HO
p (N).

Definition 4.1 Let (N0, f, p) and (K,N) be as in the introduction. Let O be an order of K of
conductor coprime to N0 and let n = O ∩ N. To such data we associate the following sets

(1) Z/fZ ×HO
p (N0),

(2) Z/fZ ×HO
p (n),

(3) Z/fZ ×HO
p (N0, f),

(4) Z/fZ ×HO
p (n, f),

where

HO
p (n) := {τ ∈ Hp : O(p)

τ = O(p)
N0τ

= O(p), nΛ(p)
τ = Λ

(p)
N0τ

, τ − τσ > 0},

HO
p (N0, f) := {τ ∈ Hp : O(p)

τ = O(p)
N0τ

= O(p), (Λ(p)
τ , fO(p)) = 1, τ − τσ > 0},

and

HO
p (n, f) := {τ ∈ Hp : O(p)

τ = O(p)
N0τ

= O(p), nΛ(p)
τ = Λ

(p)
N0τ

, (Λ(p)
τ , fO(p)) = 1, τ − τσ > 0}.

Note that the notation (Λ
(p)
τ , f) = 1 is equivalent to say that (A, f) = 1 where Qτ (x, y) = Ax2 +

Bxy + Cy2. One has the two “stratifications”

(1)
∐

n

(
Z/fZ ×HO

p (n)
)

= Z/fZ ×HO
p (N0),

(2)
∐

n

(
Z/fZ ×HO

p (n, f)
)

= Z/fZ ×HO
p (N0, f),

where the two disjoint unions run over the elements of the set

{n E O : n is an invertible O-ideal and O/n ≃ Z/N0Z}. (33)

Definition 4.2 We have a natural left action of Γ̃0 on the set Z/fZ ×HO
p (N0) given by

(
a b
c d

)
⋆ (r, τ) :=

(
dr,

aτ + b

cτ + d

)
.

If there exists a γ ∈ Γ̃0 such that γ ⋆ (r, τ) = (r′, τ ′) then we simply write (r, τ) ≈ (r′, τ ′).

We now define a map that allows us to go from the set Z/fZ × HO
p (N0, f) to the set of integral

O(p)-ideals.

Definition 4.3 We define a map Ω (which depends on p and f)

Ω : Z/fZ ×Hp(N0, f) →
{

Z[1p ]-modules contained in K of rank 2
}
,
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by the rule

(r, τ) 7→ ArΛ
(p)
τ ,

where 0 6= Ar ∈ Z>0 is the smallest integer such that the following properties hold:

(1) Ar ≡ r (mod f),

(2) ArΛ
(p)
τ is O(p)-integral,

where Qτ (x, y) = Ax2 +Bxy + Cy2 and O(p) = EndK(Λ
(p)
τ ).

Remark 4.2 In the definition of the map Ω, it is important to assume that τ ∈ Hp(N0, f)
otherwise the integer Ar doesn’t always exist.

Now we introduce another equivalence relation, denoted by ∼, on Z/fZ ×HO
p (N0).

Definition 4.4 Let (r, τ), (r′, τ ′) ∈ Z/fZ ×Hp(N0). We say that (r, τ) ∼ (r′, τ ′) if and only if
there exists a totally positive element

λ ∈ 1 + f
(
r̃′Λ

(p)
τ ′

)−1

such that
(
r̃Λ

(p)
τ , r̃Λ

(p)
N0τ

)
=
(
λr̃′Λ

(p)
τ ′ , λr̃

′Λ
(p)
N0τ ′

)
where r̃, r̃′ are the unique integers such that 1 ≤

r̃, r̃′ ≤ f , r̃ ≡ r (mod f) and r̃′ ≡ r′ (mod f).

Remark 4.3 It is an easy exercise to see that the two stratifications (1) and (2) appearing
at the bottom of Definition 4.1 are preserved under the equivalence relation ∼. In the case where
(r, τ), (r′, τ ′) ∈ Z/fZ ×HO

p (N0, f) it is easy to see that (r, τ) ∼ (r′, τ ′) if and only if there exists a
totally positive element λ ∈ 1 + fΩ(r′, τ ′)−1 such that

(ArΛ
(p)
τ , ArΛ

(p)
N0τ

) = (λA′
r′Λ

(p)
τ ′ , λA

′
r′Λ

(p)
N0τ ′

).

where ArΛ
(p)
τ = Ω(r, τ) and A′

r′Λ
(p)
τ ′ = Ω(r′, τ ′).

Lemma 4.1 The equivalence relations induced by ∼ and ≈, when restricted to the distinguished
subset (Z/fZ)× ×HO

p (N0, f) ⊆ Z/fZ ×HO
p (N0), are the same.

Proof See section 5 of [Cha]. �

Corollary 4.1 The stratification

(Z/fZ)× ×HO
p (N0, f) =

∐

n

(
(Z/fZ)× ×HO

p (n, f)
)

(34)

is preserved under ≈.

Define the set MK(N0, f, p) to be

{(L,M) : pairs of Z[1p ]-modules of rank 2 in K,EndK(L) = EndK(M) = O(p),

(L, fO(p)) = (M,fO(p)) = 1 and L/M ≃ Z/N0Z}.
We have a natural equivalence relation on M(N0, f, p) which we denote again by ∼, where (L,M) ∼
(L′,M ′) if and only if there exists a totally positive element λ ∈ 1 + fL′−1 such that (L,M) =
(λL′, λM ′).
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Proposition 4.1 There exists a natural bijection of sets, which we denote by ψ, between

ψ :
(
(Z/fZ)× ×HO

p (N0, f)
)
/ ∼ −→ MK(N0, f, p)/ ∼,

where ψ([(r, τ)]) :=
[
(ArΛ

(p)
τ , ArΛ

(p)
N0τ

)
]

and ArΛ
(p)
τ = Ω(r, τ). (the brackets denote the class modulo

∼)

Proof First define the map ψ̃ : (Z/fZ)× ×HO
p (N0, f) → MK(N0, f, p), by

ψ̃(r, τ) = (ArΛ
(p)
τ , ArΛ

(p)
N0τ

),

where ArΛ
(p)
τ = Ω(r, τ). A direct calculation shows that the map ψ̃ descends to a well defined map

when one goes to the quotient on both sides; we denote this new map by ψ. Now let us construct
a “map”going in the the other direction. Let (L,M) ∈ MK(N0, f, p). Because (L, fO(p)) = 1,
there exists an integer a ∈ Z>0 such that a ≡ 1 (mod f) and aL is O(p)-integral. We can thus
assume beforehand that L is O(p)-integral without changing the class of modulo ∼. Let O(p) =
Z[1p ] + Z[1p ]ω. Because L/M ≃ Z/N0Z, there exists an ordered Z[1p ]-basis (ω1, ω2) of L such that

L = Z[1p ]ω1 + Z[1p ]ω2 and M = Z[1p ]ω1 + Z[1p ]N0ω2. We claim that we can always choose ω1 in such
a way that ω1 ≡ integer (mod f). Let us prove it:

If ω1 ≡ integer (mod f) then we are done. Let us suppose that ω1 6≡ integer (mod f). In this
case one can assume without lost of generality that ω2 = a + bω where a, b ∈ Z[1p ] and b 6≡ 0
(mod f), otherwise replace ω2 by ω2 + ω1. Now since N0 is coprime to f one can find an integer k
such that ω1 −N0kω2 ≡ integer (mod f). Then the new basis {ω̃1, ω̃2} where ω̃1 = (ω1 −N0kω2)
and ω̃2 = ω2 satisfies the required property.

Let ω1 ≡ u (mod f) where u ∈ Z. Because (L, fO) = 1 we have (u, f) = 1. Therefore there
exists an α ∈ O(p) such that αω1 ≡ 1 (mod f) and αω1 ≫ 0. Note that α ≡ u−1 (mod f). Now we
can write the pair (L,M) as

(L,M) =

(
α−1

(
Z[1p ]αω1 + Z[1p ]αω2

)
, α−1

(
Z[1p ] + Z[1p ]N0

ω2

ω1

))

∼
(
α−1

(
Z[1p ] + Z[1p ]

ω2

ω1

)
, α−1

(
Z[1p ] + Z[1p ]N0

ω2

ω1

))
.

Now set τ = ω2
ω1

. Without lost of generality we can assume that τ > τσ otherwise replace τ by −τ .
Finally, we send the pair (L,M) on the pair (u, τ) ∈ (Z/fZ)××HO

p (N0, f). One can check that this
construction gives a well defined map (when one descends to the quotient on both sides) which is
an inverse of ψ. �

Let f(p) = fO(p). Class field theory gives an isomorphism

IO(p)(f(p))/ ∼f(p)
rec−1

→ Gal(K(f(p)∞)/K),

where K(f(p)∞) is the abelian extension of K which corresponds by class field theory to the ideal
class group IO(p)(f(p))/ ∼f(p) . Note that K(f(p)∞) = K(f∞)〈Fr℘〉 where pO = ℘, K(f∞) is the

abelian extension corresponding to the ideal class group IO(f)/ ∼f and K(f∞)〈Fr℘〉 is the subfield
of K(f∞) fixed by the Frobenius at ℘. We set L := K(f∞)〈Fr℘〉.

Using Proposition 4.1 we see that there is a natural action of GL/K on ((Z/fZ)××HO
p (N0, f))/ ∼

given by the following rule: Let [(r, τ)] ∈ ((Z/fZ)× ×HO
p (N0, f))/ ∼ and ψ[(r, τ)] = [(L,M)]. Now

define

rec−1(b) ⋆ [(r, τ)] := ψ−1[(bL, bM)].

Note that this Galois action preserves the stratification (34). From this one sees directly that this
action is simple but in general not transitive since the indexing set of the stratification might be of
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size larger than one.

4.1 Shimura reciprocity law

We are now ready to formulate the Shimura reciprocity law which describes the action of GK on
u(r, τ). We assume in the next conjecture that the number field L is totally complex otherwise the
conjecture says nothing interesting.

Conjecture 4.1 Let (r, τ) ∈ (Z/fZ)× ×HO
p (N0, f). Then

u(r, τ) ∈ OL[1p ]
×,

where L = K(fO∞)〈Fr℘〉, ℘ = pO. Moreover, we have a Shimura reciprocity law. Let

rec : GL/K → IO(f)/〈QO(f∞), p〉.
where f = fO. Then for σ ∈ GL/K we have

u(k, τ)σ
−1

= u(k′, τ ′) (mod µp2−1),

where σ ⋆ [(k, τ)] = [(k′, τ ′)]. Furthermore, if we let c∞ denotes the complex conjugation in GL/K ,
then

u(r, τ)c∞ = u(r, τ)−1 (mod µp2−1).

Remark 4.4 In [DD06], since the conductor f = 1, one is led to consider various orders of K.
However in our case, since f can vary, it is sufficient to consider only the case, where O = OK .
As explained before the statement of the theorem, if we want our construction to be interesting, it
is essential to assume beforehand that L is totally complex. Let L = K(f∞)〈Fr℘〉 where f = fOK .
Then Class field theory implies that L is totally complex if and only if the index

n := [OK [1p ](f)× : OK [1p ](f∞)×],

is equal to 1 or 2, where OK [1p ](f∞)× corresponds to the group of totally positive units of OK [1p ]

congruent to 1 modulo f and OK [1p ](f)× corresponds to the group of units of OK [1p ] congruent to
1 modulo f . We expect u(r, τ) to be contained in the largest CM subfield contained in L which we
denote by LCM . In general the field LCM can be a proper subfield of L of index 2 (see Proposition
7.1 of [Cha07a]).

5. Special values of zeta functions and periods of Eisenstein series

In this section we introduce various zeta functions and we show how their special values are related
to certain periods on Eisenstein series.

5.1 The zeta function twisted by an additive character

Let K be a real quadratic field with discriminant D and fix a positive integer f coprime to D. We
let OK(∞)× stand for the group of totally positive units of OK .

Definition 5.1 Let a be an integral OK -ideal. We define

Ψ(a, f, w1, s) := NK/Q

(
a

f
√
D

)s ∑

Γa\
n
06=µ∈ a

f
√

D

o

w1(µ)e2πiTrK/Q(µ)

|NK/Q(µ)|s ,

where Γa = OK(∞)× ∩ (1 + fa−1) and w1 is the sign character given by sign ◦NK/Q.

23



Hugo Chapdelaine

It is easy to see that the first entry of Ψ depends only on the the narrow ray class modulo f ,
i.e., for a, b ∈ IOK

(1) if a ∼f b then Ψ(a, f, w1, s) = Ψ(b, f, w1, s).

For any point τ ∈ Hp∩K we let Qτ (x, y) = A(x−τy)(x−τσy) = Ax2+Bxy+Cy2 (A,B,C ∈ Z,
A > 0 and (A,B,C) = 1) be the primitive quadratic form associated to τ . We always have the
formulas NK/Q(Λτ ) = 1

A and cond(Oτ )
2D = B2 − 4AC where Qτ (x, y) = Ax2 + Bxy + Cy2 and

cond(Oτ ) is the conductor of the order Oτ .

Let ÃΛτ be an integral OK -ideal where Ã ∈ Z>0 and τ ∈ Hp ∩ K. Note that A|Ã where
( 1
A) = NK/Q(Λτ ). A direct calculation shows that

Ψ(ÃΛτ , f, w1, s) = −
∑

〈ητ 〉\{(m,n)∈Z2\(0,0)}

sign(Qτ (m,n))

|Qτ (m,n)|s e
−2πi

eA
A

n

f , Re(s) > 1, (35)

where ητ is the matrix corresponding to the action of the generator ǫ > 1 of Γ eAΛτ
= OK(∞)× ∩

f(ÃΛτ )
−1 on the lattice Λτ with respect to the ordered basis {τ, 1}. The action of a matrix

(
a b
c d

)

acting on the vector (x, y) is given by (ax+ by, cx+ dy). In the case where (Ã, f) = 1 one has that
c ≡ 0 (mod f) and d ≡ 1 (mod f). In fact one can show that 〈±ητ 〉 = StabΓ1(f)(τ). Based on the
previous discussion we introduce the following zeta function.

Definition 5.2 Let (r, τ) ∈ Z/fZ × (Hp ∩K). We define

ζ((r, τ), s) = −
∑

〈ητ 〉\{(m,n)∈Z2\(0,0)}

sign(Qτ (m,n))

|Qτ (m,n)|s e
−2πirn

f , Re(s) > 1,

where Qτ (x, y) = Ax2 +Bxy + Cy2 and 〈±ητ 〉 = StabΓ1(f)(τ).

A direct calculation shows that if (r, τ) is equivalent to (r′, τ ′) under the action of Γ0(f) then
ζ((r, τ), s) = ζ((r′, τ ′), s). Let Ã ∈ Z and ÃΛτ be an integral OK -ideal. Let r be the image of the
integer Ã/A inside Z/fZ. Then from (35) one readily sees that

Ψ(ÃΛτ , f, w1, s) = ζ((r, τ), s).

Now we want to define a dual zeta function to ζ((r, τ), s) (dual in the sense of the functional
equation).

Definition 5.3 Let (r, τ) ∈ Z/fZ × (Hp ∩K). We define

ζ̂((r, τ), s) := f2s
∑

〈ητ 〉\(06=(m,n)≡(r,0) (mod f))

sign(Qτ (m,n))

|Qτ (m,n)|s , Re(s) > 1, (36)

where 〈±ητ 〉 = StabΓ1(f)(τ).

Note that the matrix ητ preserves the congruence (r, 0) (mod f).

There is a functional equation which relates ζ((r, τ), s) to ζ̂((r, τ), s).

Theorem 5.1 Let (r, τ) ∈ Z/fZ × (Hp ∩K). Then we have

−Fw1(s)ζ((r, τ), s) = Fw1(1 − s)ζ̂((r, τ), 1 − s), Re(s) < −1, (37)

where Fw1(s) = disc(Qτ )
s/2π−sΓ

(
s+1
2

)2
.

Proof Note that the left hand side of (37) makes sense when Re(s) < −1, since ζ admits a
meromorphic continuation to C (see Corollary 8.1 of [Cha]). All the essential ingredients in the
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proof of the previous theorem can be found in [Sie68]. For a detailed proof, see Section 8.3 of [Cha].
�

By the previous theorem we can now evaluate the zeta function ζ̂((r, τ), s) at negative integers.
The key result concerning these special values is due to Siegel.

Theorem 5.2 (Siegel) For any even integer n ≤ 0 we have that ζ̂((r, τ), n) is a rational
number.

Proof In [Sie68], Siegel gives explicit formulas for the values ζ((r, τ), n) for odd integers n ≥ 1.
These values are equal to a certain power of π times a rational number for which he gives an
explicit formula involving Bernoulli polynomials. Using the functional equation of ζ((r, τ), s) and
Siegel’s explicit formulas for the values of ζ((r, τ), n), where n ≥ 1 is an odd integer, we deduce the
rationality of ζ̂((r, τ), n) for even integers n ≤ 0. �

5.2 Archimedean zeta function associated to a class in (Z/fZ ×HO
p (N0))/Γ̃0

In this subsection we want to associate to any class in (Z/fZ×HO
p (N0))/Γ̃0 a well defined Archimedean

zeta function. We first start by stating a useful elementary lemma.

Lemma 5.1 Let τ ∈ Hp ∩K such that (disc(Qτ ), p) = 1 and let

〈±γτ 〉 = Stab
SL2(Z[

1
p ])

(τ).

Then γτ ∈ SL2(Z) where γτ is well defined up to ±1.

Proof See the proof of Lemma 8.1 in [Cha]. �

Remark 5.1 It is easy to show that if τ is reduced, i.e., if red(τ) = v0 where v0 is the standard
vertex on the Bruhat-Tits tree and red is the reduction map, then (disc(Qτ ), p) = 1. However the
converse is false. We can therefore think of the reduced requirement as a finer notion compared to
the more naive condition (disc(Qτ ), p) = 1.

Proposition 5.1 Let (r, τ), (r′, τ ′) ∈ Z/fZ ×HO
p (N0) and assume that red(τ) = red(τ ′) = v0.

Then if (r′, τ ′) ≈ (r, τ) , i.e., if there exists a γ ∈ Γ̃0 such that (r′, τ ′) = γ ⋆ (r, τ) then we have

ζ((r, τ), s) = ζ((r′, τ ′), s) and ζ((r, τ∗), s) = ζ((r′, τ ′∗), s),

where τ∗ = 1
fN0τ

and τ ′∗ = 1
fN0τ ′

.

Proof Since τ and τ ′ are reduced we have γ =

(
a b
c d

)
∈ Γ0(f). It thus follows that

ζ((r, τ), s) = ζ((r′, τ ′), s). Let us show the other equality. A direct calculation reveals that
(

d c/fN0

bfN0 a

)(
τ∗

1

)
=

(
τ ′∗

1

)
.

It follows that (r, τ∗) and (r′, τ ′∗) are Γ0(f)-equivalent and thus ζ((r, τ∗), s) =
ζ((r′, τ ′∗), s). �

We have thus succeeded to attach well defined Archimedean zeta functions to any class of
(Z/fZ × HO

p (N0))/Γ̃0. So far we have not used the level N0-structure built in HO
p (N0). The next

object we define is a zeta function attached to a good divisor δ ∈ D(N0, f) and a pair (r, τ) ∈
Z/fZ ×HO

p (N0).
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Definition 5.4 Let δ =
∑

d0,r

n(d0, r)[d0, r] ∈ D(N0, f) be a good divisor and (j, τ) ∈ Z/fZ ×

HO
p (N0) with red(τ) = v0 and j ∈ (Z/fZ)×. Then we define

(1) ζ(δj , (1, τ), s) :=
∑

d0|N0,r∈Z/fZ

n(d0, r)d
s
0ζ̂((rj, d0τ), s),

(2) ζ∗(δj , (1, τ), s) :=
∑

d0|N0,r∈Z/fZ

n(N0
d0
, r)ds0ζ̂((−rj, d0τ

∗), s) where τ∗ = 1
fN0τ

.

With the help of Proposition 5.1 it is an easy exercise to show that ζ(δj , (1, τ), s) and ζ∗(δj , (1, τ), s)
depend only on the class of (1, τ) modulo ≈ when τ is reduced. We have the formulas ζ(δaj , (1, τ), s) =
ζ(δj, (a, τ), s) and ζ∗(δaj , (1, τ), s) = ζ∗(δj , (a, τ), s) for all a ∈ Z/fZ.

Remark 5.2 Note that there is a hat on zeta functions appearing on the right hand side of (1)
and (2). One can think of ∗ as an involution on the set Z/fZ× (Hp ∩K) given by (r, τ) 7→ (−r, τ∗)
where τ∗ = 1

fN0τ
. This involution ∗ allows us to relate our p-adic invariant u(r, τ) to the Gross-Stark

p-units; see [Cha07b]. If we restrict this involution to the distinguished subset (Z/fZ)××HO
p (N0, f)

then we obtain a map

∗ : (Z/fZ)× ×HO
p (N0, f) → (Z/fZ)× ×HO∗

p (N0)

(r, τ) 7→ (−r, τ∗),
where τ∗ = 1

fN0
and cond(O∗) = f · cond(O). Note that if Qτ (x, y) = Ax2 + Bxy + Cy2, then

Qτ∗(x, y) = sign(C)(CN0f
2x2 +Bfxy + A

N0
y2).

5.3 The special values ζ∗(δ, (r, τ), 1 − k) as integrals of Eisenstein series F̃2k(r, z)

We would like to state a result which relates periods of Eisenstein series to special values of the
Archimedean zeta functions ζ(δr, (1, τ), s) and ζ∗(δr, (1, τ), s).

Proposition 5.2 Let (j, τ) ∈ Z/fZ ×HO
p (N0) where j ∈ (Z/fZ)× and red(τ) = v0. Then for

all odd integers k ≥ 1 we have

(1) 3ζ∗(δj , (1, τ), 1 − k) =
∫ γτ∗ξ2
ξ2

Qτ∗(z, 1)
k−1F̃ ∗

2k(j, z)dz

= f2k−2
∫ γτ ξ1
ξ1

Qτ (z, 1)
k−1F̃2k(j, z)dz,

(2) 3ζ(δj , (1, τ), 1 − k) =
∫ γτ ξ2
ξ2

Qτ (z, 1)
k−1F̃ ∗

2k(j, z)dz,

where τ∗ = 1
fN0τ

, ξ1 = ∞, ξ2 = 0, 〈±γτ 〉 = StabΓ1(τ) with cτ + d > 1 for γτ =

(
a b
c d

)
.

Proof The second equality of (1) follows from (3). The proof of (1) and (2) is similar to the
proof of Proposition 3.2 of [DD06]. For a detailed proof see Lemma 9.2 of [Cha]. �

6. P -adic zeta functions and p-adic Kronecker limit formula

Definition 6.1 Let δ ∈ D(N0, f) be a good divisor and let (j, τ) ∈ (Z/fZ)× × HO
p (N0) such

that (disc(Qτ ), p) = 1. We define the p-adic zeta function

ζ∗p(δj , (1, τ), s) :=
1

3

∫

X

〈Qfτ (fx, y)〉−sdµ̃j{∞ → γτ∞}(x, y) (38)

=
1

3
〈f〉−2s

∫

X

〈Qτ (x, y)〉−sdµ̃j{∞ → γτ∞}(x, y),
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where 〈x〉 denotes the unique element in 1 + pZp that differs from x by a (p− 1)-th root of unity.

This zeta function makes sense for any s ∈ Zp and as usual 〈±γτ 〉 = StabΓ1(τ).

Corollary 6.1 For an even integer n ≤ 0 congruent to 0 modulo p− 1, we have

(1 − p−2n)ζ∗(δj , (1, τ), n) = ζ∗p(δj , (1, τ), n).

Proof Combine (1) of Proposition 5.2 with (1) of Theorem 1.1. �

Remark 6.1 We thus see that our p-adic zeta function interpolates rational values of the
Archimedean zeta function ζ∗(δj , (1, τ), s) at negative integers.

Lemma 6.1 The derivative (ζ∗p)
′(δj , (1, τ), 0) at s = 0 is given by

(ζ∗p )
′(δj , (1, τ), 0) = −1

3

∫

X

logp(Qτ (x, y))dµ̃j{ξ → γτξ}(x, y) where ξ = ∞.

Proof This is a direct calculation using equation (38). Note that the integral over X of logp(Qfτ (fx, y)) =
logp f

2+logpQτ (x, y) is the same as logpQτ (x, y) since the total measure is zero so that the constant
term logp f

2 vanishes. �

We can now deduce a p-adic Kronecker limit formula.

Theorem 6.1 Let (r, τ) ∈ (Z/fZ)× ×HO
p (N0) with τ reduced, i.e., red(τ) = v0. Then

3(ζ∗p)
′(δr, (1, τ), 0) = − logpNKp/Qp

(u(δr, τ)). (39)

Proof From Theorem 2.2 we have

logp u(δr, τ) =

∫

X

logp(x− τy)dµ̃r{∞ → γτ∞}(x, y). (40)

Replacing τ by τσ in the previous identity gives us

logp u(δr, τ
σ) =

∫

X

logp(x− τσy)dµ̃r{∞ → γτσ(∞)}(x, y). (41)

But γτ = γτσ . Therefore adding (40) and (41) and using Lemma 6.1 gives (39). �

Proposition 6.1 We have 3ζ∗(δr, (1, τ), 0) = ordp(u(δr, τ)).

Proof Combine Corollary 2.1 with (1) of Proposition 5.2 after having set k = 1. �
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