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1 The main result

This Chapter gives some finiteness results for the set of primitive solutions of the
generalized Fermat equation

xp + yq = zr(1)

where the exponents p, q, r satisfy the inequality 1/p+1/q+1/r < 1. The very special
“shape”of the surface defined by (1) allows us to use some geometry to reduce its study
to the study of non-abelian unramified covers of P1\{0, 1,∞} of signature (p, q, r) in
the sense of Definition 1.1. Therefore the study of the arithmetic of equation (1) can
be transferred to the setting of algebraic curves. The main ingredients in the proof
are a variant of the Chevalley-Weil theorem, and the finiteness theorems of Hermite-
Minkowski and Faltings. This finiteness result for (1) which was proved in [8] can be
viewed as an illustrative special case of the Campana program which was presented
in Dan Abramovich’s lecture series at this summer school.

The author would like to thank Henri Darmon for a careful proofreading of this
article which led to many improvements.
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A solution (a, b, c) ∈ Z3 of (1) is called nontrivial if abc ̸= 0 and primitive if
gcd(a, b, c) = 1. When the exponents p, q and r are pairwise coprime, the following
exercise shows that (1) has infinitely many nontrivial but not necessarily primitive
solutions.

Exercise 1 Let p, q and r be pairwise coprime. Show that the affine surface defined
by xp + yq = zr in A3

Q is rational, i.e., the field qt(Q[x, y, z]/(xp + yq − zr)) is purely
transcendental of degree 2 over Q.

From now on we are only interested in studying the set of nontrivial primitive
solutions of (1). The study of (1) can be split into three cases:

(1) The spherical case: 1/p+1/q+1/r > 1. The possibilities are {p, q, r} = {2, 2, k}
with k ≥ 2, {2, 3, 3},{2, 3, 4} and {2, 3, 5}.

(2) The euclidean case: 1/p + 1/q + 1/r = 1. The possibilities are {p, q, r} =
{3, 3, 3}, {2, 4, 4} and {2, 3, 6}.

(3) The hyperbolic case: 1/p+ 1/q + 1/r < 1.

This division is reminiscent of the classification of algebraic curves which also falls
into 3 cases depending on the genus or the sign of the Euler characteristic. Here is
the main theorem that we wish to prove.

Theorem 1.1 (Darmon, Granville) If 1/p+1/q+1/r < 1 then (1) has only finitely
many nontrivial primitive solutions.

Note that the statement of this theorem concerns the existence of integral points on a
surface. We would like to reduce the study of integral solutions of (1) to the study of
K-rational points on an auxiliary projective curve X/K where K is a suitable number
field. We consider the map

{Set of nontrivial primitive solutions of equation (1)} → P1(Q) ⊆ P1(C)

(a, b, c) 7→ ap

cr
,

which allows us to reduce the study of (1) to the study of certain branched coverings
of P1(C). We define the set

Σp,q,r :=

{
ap

cr
∈ Q : ap + bq = cr, abc ̸= 0, gcd(a, b, c) = 1

}
⊆ P1(Q).

Exercise 2 Show that #Σp,q,r < ∞ if and only if (1) has finitely many primitive
solutions.

Now let us explain the main ideas of Theorem 1.1.
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Proof of Theorem 1.1We want to show that the set of nontrivial primitive solutions
of (1) is finite. By Exercise 2, it is enough to show that Σp,q,r is finite when

1
p
+ 1

q
+ 1

r
<

1. The proof can be broken into four steps.

First step: The existence of a Galois branched covering.

Definition 1.1 A Galois covering π : X → P1 is said to be of signature (p, q, r) if its
ramification indices above 0, 1 and ∞ are equal to p, q and r respectively, and if π is
unramified everywhere else.

The first stage of the proof consists in constructing a Galois covering of P1 of signature
(p, q, r) defined over a suitable number field K and Galois over that field (The con-
struction of such a cover will be done in detail in Section 2). The Riemann-Hurwitz
formula then determines the genus g(X) of X in terms of the degree d of π :

2g(X)− 2 = d(2g(P1(C))− 2) +
d

p
(p− 1) +

d

q
(q − 1) +

d

r
(r − 1)

= d(1− 1/p− 1/q − 1/r).

Since 1− 1/p− 1/q − 1/r > 0 we conclude that g(X) > 1.

Second step: A Chevalley-Weil theorem for branched coverings.

Given t ∈ P1(K), let Lt be the smallest field of definition of the closed points in
π−1(t). As is explained in Section 3, the field Lt is a Galois extension of K with Galois
group isomorphic (non-canonically) to a subgroup of Gal(X/P1). The Chevalley-Weil
theorem for branched coverings (see Theorem 3.2) shows that the ramification of Lt,
for t ∈ Σp,q,r, is bounded independently of t, in light of the following elementary
property of Σp,q,r:

Lemma 1.1 Let t = ap

cr
∈ Σp,q,r then for all prime numbers ℓ we have

(1) vℓ(Numerator(t)) ≡ 0 (mod p),

(2) vℓ(Numerator(t− 1)) ≡ 0 (mod q),

(3) vℓ(Numerator(1
t
)) ≡ 0 (mod r),

where for x ∈ Q, vℓ(x) stands for the valuation of x at the prime ℓ.

Note that proof of Lemma 1.1 uses in a crucial way the primitivity of the solution
(a, b, c) corresponding to t = ap

cr
and the fact that t− 1 = − bq

cr
.

Third step: Hermite-Minkowski.
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By the Hermite-Minkowski theorem (cf. Theorem 1.1 in Section 1.1 of [5]) the
compositum L of all the number fields Lt, for t ∈ Σp,q,r, is a finite extension of K.

Fourth step: Faltings’ Theorem.

By definition of L we have π−1(Σp,q,r) ⊆ X(L). Since g(X) > 1, we deduce by
Faltings’ theorem that X(L) is a finite set and therefore π−1(Σp,q,r) and Σp,q,r are also
finite sets. This concludes the sketch of the proof of Theorem 1.1. □

Remark 1.1 The conclusion of Theorem 1.1 remains the same if we replace the
equation xp + yq = zr by the more general equation Axp + Byq = Czr for nonzero
fixed integers A,B and C. For a further discussion of the equation Axp+Byq = Czr,
see [8].

Remark 1.2 In some special cases, for example when (p, q, r) = (n, n, n) with n ≥ 3
we know by the work of Wiles and Taylor (see [22] and [20]), that (1) has no nontrivial
solutions. Using similar techniques, Darmon and Merel (see [6] and [9]) could also
treat the case (p, p, r) where r = 2 or 3 and p is a prime number larger or equal to
6− r to conclude that (1) has no nontrivial primitive solutions.

For the rest of the paper, we would like first to explain in details the construction
of the auxiliary branched covering (XK , π,P1

K) of signature (p, q, r) above {0, 1,∞}
which was needed in the first step of the proof of Theorem 1.1. Secondly, we would like
to give a more detailed discussion about the variant of the Chevalley-Weil theorem
that we have used to control the ramification of the number field Lt over K for
the special elements t ∈ Σp,q,r. We won’t say anything about Steps 3 and 4 which
are discussed in [5]. Sections 2 and 3 are devoted to a discussion of Steps 1 and 2
respectively.

2 Construction of the branched covering

In this section we will use the theory of Riemann surfaces in order to construct certain
analytic Galois branched coverings over P1(C) unramified outside {0, 1,∞}.

For every triple of integers (p, q, r) with p, q, r ≥ 2 we define the Hecke triangle
group by the abstract presentation

Γp,q,r := ⟨γ0, γ1, γ∞|γp
0 = γq

1 = γr
∞ = γ0γ1γ∞ = 1⟩.

It is convenient to allow the exponents p, q and r to be infinite which will be taken
to mean that the order of the corresponding element is infinite.

One has that π1(P1(C)\{0, 1,∞}) ≃ Γ∞,∞,∞ = ⟨l0, l1, l∞|l0l1l∞ = 1⟩ which is
isomorphic to the free group on two generators. We have the short exact sequence

1 → Np,q,r → Γ∞,∞,∞
φ→ Γp,q,r → 1,
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where φ(l0) = γ0, φ(l1) = γ1 and Np,q,r = ker(φ). The universal covering space of
P1(C)\{0, 1,∞}) is the upper-half plane, see for example Theorem 6.4.3 of [18]. Let
us denote by

θ : H → P1(C)\{0, 1,∞}(2)

a choice of such a universal covering map. From the theory of covering spaces one
has a (non-canonical) isomorphism between the group of Deck transformations of (2)
and the fundamental group of P1(C)\{0, 1,∞}), see for example §80 of [14]. Such an
isomorphism allows us to define an action of Γ∞,∞,∞ ≃ π1(P1(C)\{0, 1,∞}) on H.
From this, one may deduce the following diagram

H
θ1
��

θ

vv

U := H/Np,q,r

θ2
��

P1(C)\{0, 1,∞} ≃ H/Γ∞,∞,∞

where θ1 (resp. θ2) is the covering map induced by the action of Np,q,r on H (resp.
Γ∞,∞,∞/Np,q,r on U).

Note that U is a connected Riemann surface such that π1(U) ≃ Np,q,r and that θ2
is a Galois covering map with Galois group isomorphic to Γ∞,∞,∞/Np,q,r ≃ Γp,q,r. One
can show that θ2 is of finite degree if and only if 1/p + 1/q + 1/r > 1 (see Exercise
4). Since in our setting we work under the assumption that 1/p + 1/q + 1/r < 1 we
see that in this case the map θ2 is never of finite degree. The pair (U, θ2) is universal
among all Galois coverings over P1(C)\{0, 1,∞} of signature (p, q, r) in the following
sense: Let π : X → P1(C) be a Galois branched covering unramified outside {0, 1,∞}
with ramification index p above 0, q above 1 and r above ∞. Then π factors through
θ2, i.e., there exists a covering map θ̃2 : U → X\π−1({0, 1,∞}) which makes the
following diagram commutative:

U

θ2

��

θ̃2uu
X\π−1({0, 1,∞})

π

((
P1(C)\{0, 1,∞}

Note that θ̃2 is onto and unramified since all the ramification happens already in π.
Let us assume that π is finite of degree d then, in this case, X is a compact Riemann
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surface. Using the Riemann Hurwitz formula one gets that

2g(X)− 2 = d(2g(P1(C))− 2) +
d

p
(p− 1) +

d

q
(q − 1) +

d

r
(r − 1)

= d(1− 1/p− 1/q − 1/r).

We thus see that

(1) g(X) = 0 if 1/p+ 1/q + 1/r > 1,

(2) g(X) = 1 if 1/p+ 1/q + 1/r = 1,

(3) g(X) ≥ 2 if 1/p+ 1/q + 1/r < 1.

Again using Theorem 6.4.3 of [18], one may deduce that the universal covering space of
X is P1(C) if 1/p+1/q+1/r > 1, C if 1/p+1/q+1/r = 1, andH if 1/p+1/q+1/r < 1.
This explains the trichotomy for the study of (1).

We would like to give a geometrical realization of the universal pair (U, θ2) in the
case where 1

p
+ 1

q
+ 1

r
< 1. This will be used to understand the set of elliptic elements

of Γp,q,r (see Exercise 3). Since 1/p+1/q+1/r < 1, there exists a hyperbolic triangle
in the Poincaré unit disc with angles π/p, π/q, π/r, see Figure 1. Let σP be the

Figure 1: Hyperbolic triangle inside the Poincaré disc.

symmetry with respect to the geodesic passing through QR, σQ the symmetry with
respect to the geodesic passing through PR and σR the symmetry with respect to
the geodesic passing through PQ. Let γP = σQσR be the rotation around P with
angle 2π

p
, γQ = σRσP be the rotation around Q with angle 2π

q
and γR = σPσQ be the

rotation around R with angle 2π
r
. We have drawn the image of the triangle PQR
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under the rotation γP in Figure 1. Since the open unit disc D(0, 1) is biholomorphic
to H we can identify the group ⟨γP , γQ, γR⟩ as a subgroup of PSL2(R) ≃ Aut(H).
We have an isomorphism between ⟨γP , γQ, γR⟩ and Γp,q,r given by γP 7→ γ0, γQ 7→ γ1
and γR 7→ γ∞ (prove it by using Figure 1). In particular, we can think of Γp,q,r as a
subgroup of PSL2(R). The group Γp,q,r, when applied to the triangle PQR, gives a
“half tessellation”of D(0, 1). A fundamental domain for the action of Γp,q,r on D(0, 1)
is given for example by the geodesic quadrilateral PQRQ′ where the geodesic RQ′ is
identified with the geodesic RQ and the geodesic PQ with the geodesic PQ′. It thus
follows that the quotient H/Γp,q,r is isomorphic to P1(C). Let

π̃ : H → H/Γp,q,r ≃ P1(C).

Since PSL2(C) acts triply transitively on P1(C) we can assume that π̃(P ) = 0, π̃(Q) =
1 and π̃(R) = ∞. Therefore the Galois branched covering π̃ has signature (p, q, r)
above {0, 1,∞}. Unfortunately π̃ has infinite degree but the next lemma takes care
of this difficulty.

Exercise 3 Define U := H\π̃−1{0, 1,∞}. Show that the map

π̃|U : U → P1(C)\{0, 1,∞}

corresponds to the universal map associated to Galois branched coverings over P1(C)
of signature (p, q, r). It thus gives a geometrical realization of U as the unit disc minus
the vertices of all the Γp,q,r-translates of the triangle PQR. Conclude that an element
γ ∈ Γp,q,r is elliptic if and only if it fixes a vertex of a Γp,q,r-translate of the triangle
PQR. Remember that an elliptic element in PSL2(R) is by definition a matrix which
fixes a point in H.

Exercise 4 Show that Γp,q,r is finite if and only if 1/p + 1/q + 1/r > 1. Show that
Γp,q,r is infinite and non abelian if and only if 1/p+ 1/q + 1/r ≤ 1.

Lemma 2.1 There exists a normal subgroup H ≤ Γp,q,r such that [Γp,q,r : H] < ∞
and such that H acts without fixed point, i.e., H contains no elliptic elements.

Remark 2.1 Note that the set of all elliptic elements of Γp,q,r consists of the union
of the conjugacy classes in Γp,q,r of γZ

0 , γ
Z
1 and γZ

∞. Moreover, if H is as in Lemma
2.1 then the order of γ0, γ1 and γ∞ in Γp,q,r/H is equal to p, q and r respectively.

Proof of lemma 2.1 We follow essentially the proof of Proposition 4.4 of [3]. Let
us construct an abstract group homomorphism of Γp,q,r onto a certain subgroup of
PSL2(C) for which all its matrices have algebraic entries. Consider the matrices

A =

(
0 −ζ−1

2p

ζ2p ζ2p + ζ−1
2p

)
C =

(
0 ζ−1

2p ζ
−1
2q

−ζ2pζ2q ζ2r + ζ−1
2r

)
B = AC−1
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where ζn = e2πi/n. One can verify that the order of A,B and C in PSL2(C) are p, q
and r respectively. For example to show that A has order p one can use the observation
that (−1, 1) and (−ζ−1

p , 1) are eigenvectors with eigenvalues ζ2p and ζ−1
2p . A similar

argument can be used for B and C. We thus have an onto group homomorphism

ρ : Γp,q,r → ⟨A,B,C⟩ =: N ⊆ PSL2(R)

given by ρ(γ0) = A−1, ρ(γ1) = B, ρ(γ∞) = C where R = Z[ζ2p, ζ2q, ζ2r]. Note that ρ
sends an elliptic element of Γp,q,r to an elliptic element of N and all elliptic elements
of N are contained in a conjugacy class of AZ, BZ or CZ. Let π be some prime ideal

of R. Note that A = P

(
ζ2p 0
0 ζ−1

2p

)
P−1 for some matrix P ∈ PSL2(R). Therefore

if A(mod π) ≡ I(mod π) then

(
ζ2p 0
0 ζ−1

2p

)
≡ I(mod π), where I stands for the

identity matrix. This implies that π|(1− ζ2p). We have a similar thing for B and C.
Let us choose a prime ideal π such that π does not divide 1 − ζkn for 1 ≤ k ≤ n − 1
and n ∈ {p, q, r}. Finally define the group

H := {g ∈ Γp,q,r|ρ(g) ≡ I(mod π)}.(3)

The group H satisfies the property of Lemma 2.1. □

We can finally define the auxiliary curve that was used in the course of the proof
of Theorem 1.1. Define

X := H/H,

where H is as in Lemma 2.1 and let π be the natural map

π : X → H/Γp,q,r ≃ P1(C).(4)

By construction π is a finite complex analytic Galois branched covering over P1(C)
of signature (p, q, r). Since π has finite degree and P1(C) is compact we deduce that
X is compact Riemann surface. Note that the complex structure of X is inherited
from the complex structure of H, where some care should be taken in order to define
local charts around fixed points of elliptic elements of Γp,q,r.

There is a dictionary between non singular projective curves over C and compact
Riemann surfaces

Theorem 2.1 Any compact Riemann surface S is algebraic.

Let us sketch a proof of this important result in the special case where S is the
compact Riemann surface X that was previously constructed as a quotient of the
upper half-plane.
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Sketch of the proof We will break the proof in three steps.

Step 1: X admits a large supply of non-constant meromorphic functions.

We first show thatX admits a large supply of non-constant meromorphic functions
in the sense that for every pair of points P,Q ∈ X with P ̸= Q there exists a
meromorphic function f on X such that f(P ) ̸= f(Q) (separates points) and for
every P ∈ X there exists a meromorphic function g on X such that g is a local chart
in a small neighborhood of P (separates tangents).

Let G be the preimage of H under the natural projection SL2(R) → PSL2(R).
Note that G is a discrete subgroup of SL2(R) which contains the element −I. For
every pair of points P,Q ∈ H consider the Poincaré series (modular form)

fm(P,Q, z) =
∑
g∈G

rP,Q(gz)j(g, z)
−m(5)

where m is any fixed even integer larger or equal to 4, rP,Q(z) =
z−P
z−Q

, gz = az+b
cz+d

and

j(g, z) = (cz + d) for g =

(
a b
c d

)
∈ G. The infinite sum (5) converges absolutely

since m ≥ 3. Therefore the function fm(P,Q, z) is meromorphic on H and satisfies
the important transformation formula

fm(P,Q, gz) = (cz + d)mfm(P,Q, z) ∀ g =

(
a b
c d

)
∈ G.(6)

Note that when m is odd, the transformation formula (6) applied to the matrix
−I ∈ G implies that fm(P,Q, z) is identically equal to 0. Let P,Q ∈ H be arbitrary
points such that GP and GQ are distinct right orbits. Now choose a third point
R ∈ H such that fm(R,Q, z) does not vanish at z = P (It is easy to see that such
a point R always exists by considering for example the function ω 7→ fm(ω,Q, P )).
A simple calculation reveals that the function fm(R,Q, z) has a pole of order one
at every elements of GQ (this uses the fact that m is even). It thus follows that
fm(R,Q, z) is a non-constant meromorphic function on H. Now let us consider the
quotient

Fm(z) =
fm(R,P, z)

fm(R,Q, z)
.

Using (6), one readily sees that Fm(z) descends to a meromorphic function on X.
Moreover, by construction, it has a zero of order one at the point GQ ∈ X and a
pole of order one at the point GP ∈ X. This shows that X has a set of meromorphic
functions that separates points and tangents.

Step 2: Riemann-Roch.
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Let D be a divisor of X and let LD be the locally free OX-module of rank 1
associated to D where for every open set U ⊆ X

LD(U) = {f : U → C : f is meromorphic and div(f) ≥ −D|U }.

Then the famous theorem of Riemann-Roch says

Theorem 2.2 (Riemann-Clebsch-Roch)

dimCH
0(X,LD)− dimCH

1(X,LD) = deg(D) + 1− g,

where g stands for the genus of X and deg(D) for the degree of the divisor D.

For an elementary proof of Theorem 2.2 which uses only Step 1, see chapter IV of
[13].

Step 3: Construction of a planar parametrization of X.

Proposition 2.1 Let z be a non-constant meromorphic function on X. Then there
exists a meromorphic function f and an irreducible algebraic equation P (z, f) defined
over C such that the map

x 7→ (z(x), f(x))

is a conformal bijection of X onto the compact Riemann surface associated to the
irreducible equation P (z, f) = 0.

Proposition 2.1 is a nice application of Riemann-Roch and the analytic continuation
principle for germs of holomorphic functions. For a detailed proof, see for example the
discussion on p. 242 of [11]. This concludes the sketch of the proof of the algebraicity
of X. □

Remark 2.2 Historically, Riemann proved the inequality dimCH
0(X,LD) ≤ deg(D)

+1 by constructing meromorphic differential forms with prescribed poles at points ap-
pearing in D, see [16]. His construction appealed to the so-called Dirichlet’s principle
which back then was not rigorously proved. An inequality going in the other direc-
tion was proved by Clebsch (see [4]) and then refined by Roch (see [17]). In general,
the construction of non-constant meromorphic functions (or non-zero meromorphic
differential forms) on an abstract compact complex manifold of dimension one (i.e., a
compact Riemann surface) is a highly non-trivial fact. When the dimension is higher
than one, it is the lack of non-constant meromorphic functions which prevents com-
pact complex manifolds to be algebraic. In dimension one, the construction of such
functions can done abstractly by the use of harmonic analysis, see for example Section
5.2 of [11]. Note that in Step 1 of the previous argument, we could get around this

10



non-trivial fact by taking advantage of the description of X as a certain quotient of
H. This allowed us to define directly Poincaré series which are meromorphic m

2
-fold

differential forms. The idea of constructing meromorphic m
2
-fold differential forms by

averaging over the elements of a fuchsian group is due to Poincaré. Poincaré was the
first one to announce that for every algebraic curve P (x, y) = 0 (of genus ≥ 2) there
exists two non-constant fuchsian functions f(z) and g(z) such that P (f(z), g(z)) ≡ 0,
see [15]. Finally, we should mention a more recent way of proving Theorem 2.1
under the additional assumption that the compact Riemann surface S admits a sin-
gle non-constant meromorphic function f , i.e., a non-constant holomorphic function
f : S → P1(C). This alternative approach is a special case of a general equivalence
between analytic and algebraic coherent sheaves on smooth projective algebraic vari-
eties. Very often, this equivalence is quoted under the acronym “GAGA principle”,
see Section 6.1 of [18] and [19]. The key point is that this holomorphic function
f : S → P1(C) gives rise to a coherent analytic sheaf F on P1(C) (which is an al-
gebraic curve) and therefore, by GAGA, F is an algebraic sheaf. From this we may
conclude that S is algebraic.

Now we recall that we have constructed previously a branched covering π : X →
P1(C) of signature (p, q, r). Now armed with Proposition 2.1, we know that there
exists a meromorphic function f on X and a polynomial P (x, y) ∈ C[x, y] such that
P (π, f) = 0 . Let M be the subfield of C generated by the coefficients of P (x, y).
Note that M is a finitely generated field over Q. In general the field M will not be
an algebraic extension over Q. Nevertheless we have the following key proposition:

Proposition 2.2 There exists a smooth projective algebraic curve X̃ defined over a
number field K such that the following diagram commutes

X
g̃ //

π
��

X̃

π̃��
P1

where g̃ : X(C) → X̃(C) is an isomorphism defined over C and where π̃ is a branched
covering defined over K.

Proposition 2.2 is a direct application of the following general result

Theorem 2.3 Let V be an algebraic variety defined over an algebraically closed
field L of characteristic 0, and let L′ be an algebraically closed field extension of L.
Then every covering p : U → V defined over L′ comes from a covering p′ : U ′ → V
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defined over L in the sense that there exists a commutative diagram

U
g //

p

��

U ′

p′~~
V

where g is an isomorphism of varieties defined over L′ and p′ is a covering defined
over L.

Proof See the proof of Theorem 6.3.3 of [18]. □

Let us explain how the existence of f̃ and π̃ follows from Theorem 2.3. Let Y
be the algebraic curve over C defined by X\π−1{0, 1,∞}. Note that π|Y : Y →
P1\{0, 1,∞} is a covering defined over C and that P1\{0, 1,∞} is an algebraic curve
defined over Q (in fact over Q!). From Theorem 2.3, we know that there exists a
covering π′ : Y ′ → P1\{0, 1,∞} defined over Q and an isomorphism g : Y → Y ′

defined over C such that π′ ◦g = π. Let K be the field generated by the coefficients of
the equations defining the algebraic curve Y ′. Note that K is finitely generated over
Q and therefore it is a number field. The open Riemann surfaces Y (C) and Y ′(C)
admit natural compactifications X and X̃ (just add the deleted points) where X̃ can
be chosen to be defined over K. Finally, note that the map g (resp. π′) extends

uniquely to a map g̃ : X → X̃ defined over C (resp. π̃ : X̃ → P1 defined over K).

Remark 2.3 Unfortunately, the proof of Theorem 2.3 doesn’t give any control on
the number field K which appears in Proposition 2.2. For a different proof which
gives some control on the number field K, see [12].

Remark 2.4 Note that Proposition 2.2 implies the “if part”of the famous Belyi’s
theorem which states that a compact Riemann surfaceX admits a model over Q if and
only if there exists a branched covering π : X → P1(C) which is unramified outside
{0, 1,∞}. Historically, this direction is due to Weil; see [21]. The “only if part”is not
really longer to prove, in fact it is shorter. Its proof is completely algorithmic and is
due to Belyi; see [2].

Remark 2.5 In general, for higher dimensional complex varieties one has the fol-
lowing criterion which characterizes varieties which admit a model over a number
field

Theorem 2.4 (Gonzàlez-Diez) An irreducible complex projective variety X can be
defined over a number field if and only if the family of all its conjugates Xσ , where
σ is any field automorphism of C, contains only finitely many isomorphism classes of
complex projective varieties.
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For a proof of this criterion see [10].

Combining Theorem 2.1, Proposition 2.2 and our discussion on branched coverings
we see that every finite index normal subgroup H ≤ Γp,q,r, which contains no elliptic
elements, gives rise to an algebraic Galois branched covering over P1 of signature
(p, q, r) defined over a suitable number field K where the number field K depends on
H. Such covers turn out to be extremely useful since they can be used to study the
set of integral solutions of (1). From the previous observation one may deduce the
following general principle:

Principle 2.1 There is a dictionnary between the distinct strategies for studying
xp + yq = zr and the finite quotients of the Hecke triangle group Γp,q,r.

This principle is slightly imprecise but at least, from the author’s point of view has
the virtue of being inspiring. We won’t say more about it and we encourage the
reader to look at [7] where Principle 2.1 is explained in greater details.

3 A Chevalley-Weil theorem for branched cover-

ings

In this section we would like to present a variant of the Chevalley-Weil theorem
that allowed us, during the second step of the proof of Theorem 1.1, to control the
ramification of the field extension Lt over K for the special elements t ∈ Σp,q,r. Let
us first recall the Chevalley-Weil theorem in the context of curves (see also Section
1.2 of [5]).

Theorem 3.1 (Chevalley-Weil) Let X and Y be smooth schemes of relative dimen-
sion one defined over the ring of S-integers OL,S of a number field L where S is a
finite set of places of L. Let f : X → Y be a morphism of schemes defined over OL,S

which is unramified over the generic fiber. Then there exists a finite extension L′/L
such that

f−1(Y (OL,S)) ⊆ X(OL′,S′),

where the set of places S ′ extend the set of places of S.

Remark 3.1 In the statement it was important to work with integral models of
X and Y in order to make sense to the notion of integral points, i.e., OL,S-valued
points. In general, the notion of integral points and rational points differ since the
set X(OL,S) could be smaller that the set X(L). For example, consider the affine
curve E defined by the equation y2−x3−73x = 0. By Siegel’s Theorem one has that
#E(Z) < ∞. On the other hand, since the Mordell-Weil group of E/Q has positive
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rank, one has that #E(Q) = ∞. However, there is an important situation where the
two notions coincide namely in the special case where the curve X is projective.

Remark 3.2 At this point we can’t resist to give an nice application of the Chevalley-
Weil theorem when combined with Faltings’ theorem. Consider the affine complex
curve embedded in A4(C) defined by the zero locus

Z(u+ v−1, uw−1, vt−1) = {(u, v, w, t) ∈ A4(C) : u+ v−1 = uw−1 = vt−1 = 0}.

It is easy to see that the map

P1(C)\{0, 1,∞} → Z(u+ v − 1, uw − 1, vt− 1)

[u, 1] 7→ (u, 1− u, 1/u, 1/(u− 1))

is an isomorphism of complex curves. From this, we deduce that the coordinate ring
of P1(C)\{0, 1,∞}, which is C[u, 1

u
, 1
u−1

], is isomorphic to C[u, v, w, t]/(u+v−1, uw−
1, vt− 1). Now choose a covering (so unramified)

π : Y (C) → P1(C)\{0, 1,∞}

where Y (C) is an open Riemann surface of genus larger or equal to 2 (there are
infinitely many possibilities for π). Finally, combining Faltings and Chevalley-Weil
we may conclude that the equation

u+ v = 1

has only finitely many solutions in O×
L,S where L is an arbitrary number field and S

is any finite set of places of L. Historically, Siegel was the first to prove this result.
Of course, he proved it without appealing to Faltings’ theorem.

For the rest of this section we would like to discuss in more details the variant of the
Chevalley-Weil theorem that was used in the proof of Theorem 1.1. Let (XK , π,P1

K)
be the algebraic Galois branched covering of degree d, with Galois group G and
signature (p, q, r) constructed in Section 2. Let us fix an embedding of K into C.
Since π is defined over K we have a natural action of Gal(C/K) on all the fibers
of π above points t ∈ P1(K). Moreover, for every t ∈ P1(C)\{0, 1,∞}, we have a
simply transitive action of G on π−1(t) since π is Galois. We thus get two group
homomorphisms:

ρ1 : Gal(C/K) → Sym(π−1(t)) and ρ2 : G → Sym(π−1(t)).

It is important to know how ρ1 and ρ2 are related. Let us choose a complex embedding
φ : X(C) ↪→ PN(C). For every P ∈ X(C) let us denote the image of P by φ by
φ(P ) = [φ0(P ), φ1(P ), . . . , φN(P )] ∈ PN(C). For t ∈ P1(K)\{0, 1,∞} define the
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number field Lt to be the field generated over K by all the coordinates of φ(P ) for
all P ∈ π−1(t). Let π−1(t) = {P1, . . . , Pd}. The first thing to notice is that the
number field L′ := K(φ(P1)) is equal to Lt. For every i ∈ {1, . . . , d} there exists an
element g ∈ G such that g(φ(P1)) = φ(Pi). Therefore the coordinates of φ(Pi) can
be expressed algebraically in terms of the coordinates of φ(P1) so L′ = Lt. It thus
follows that the action of an element σ ∈ Gal(K/K) on Lt is completely determined
by its action on the coordinates of φ(P1). Since σ(φ(P1)) = φ(Pi) for a unique i we
readily see that every automorphism of Lt/K can be realized “algebraically”by the
action of a unique element g ∈ G (G acts simply transitively on the fibers). We have
the following identification

Gal(Lt/K) = {g ∈ G : ∃σ ∈ Gal(K/K) such that σ(φ(P1)) = gφ(P1)} ⊆ G.

We would like now to understand the ramification of Lt over K when t ∈ P1(K).
The morphism π : XK → P1

K induces an inclusion of fields K(P1) ≃ K(x) ↪→ K(X)
where x is a variable. Note that K(X)/K(x) is Galois. Let t ∈ K. We define the
specialization of π at t to be the K-algebra map

K ≃ K[x]/(x− t) ↪→ K[X]/(x− t)

whereK[X] corresponds to the integral closure ofK[x] inK(X). Let t ∈ P1(K)\{0, 1,∞}.
Since π is unramified at all the points above t we have (x−t)K[X] = p1 . . . pr where the
pi’s are distinct prime ideals of K[X]. We thus find that K[X]/(x− t) ≃ L1⊕ . . .⊕Lr

where Li = K[X]/pi. Note that all Li’s are Galois over K with Galois group
D(pi/(x − t)) = {g ∈ G : g(pi) = pi} so that all the Li’s collapse to the same
number field in a fixed algebraic closure of K.

Exercise 5 Show that Li/K ≃ Lt/K.

In order to understand the ramification of Li over K we need to define the arith-
metic intersection between two points a, b ∈ P1(K) at a prime ideal ℘ of K.

Definition 3.1 Let ℘ be a prime ideal of K and a, b ∈ K ∪ {∞}. We define

I℘(a, b) :=


ord℘(a− b) if ord℘(a) ≥ 0, ord℘(b) ≥ 0
ord℘(

1
a
− 1

b
) if ord℘(

1
a
) ≥ 0, ord℘(

1
b
) ≥ 0

0 otherwise

where ord℘(0) = ∞ and ord℘(∞) = −∞.

Before stating the Chevalley-Weil theorem for branched covering we need to make
one more definition.

Definition 3.2 Let X
G→ P1 be a Galois branched covering over C. A Galois

branched covering x : XK
G→ P1

K is called a good model for X
G→ P1 over K if
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the primes of OK (when viewed as primes in OK [x]) that ramify in OK [XK ] are con-
tained in Sbad. The ring OK [XK ] stands for the integral closure of OK [x] in K(XK)
and the set Sbad is the union of the set of primes that divide the order of G and the
set of primes at which two branch points meet.

We can now state in more details a result due to Beckmann which implies the “ram-
ification control”of L1/K ≃ Lt/K (by Exercise 5) where

K[X]/(x− t) ≃ L1 ⊕ . . .⊕ Lr(7)

and Lt for t ∈ Σp,q,r is defined as in Step 2 of the proof of Theorem 1.1. We have the
following theorem which is a special case of Theorem 1.2 of [1].

Theorem 3.2 (Chevalley-Weil for branched coverings) Assume that XK
G→ P1

K is a
good model where G = ⟨γ0, γ1, γ∞⟩ and let L = L1 be as in (7). Then L is ramified
only at the places S = Sbad ∪ St where

Sbad := {℘ is a finite prime of K : ℘|#G}

and

St = {℘ is a finite prime of K : I℘(t, j) > 0 for some j ∈ {0, 1,∞}}.

Moreover, if t meets j ∈ {0, 1,∞} at ℘, i.e., I℘(t, j) > 0 (note that j can at most
meet one of those values) then

I(p/℘) = ⟨γI℘(t,j)
j ⟩

up to conjugation in G where p is some prime ideal of L above ℘.

The last part of the theorem says basically that the geometric ramification “con-
trols”the arithmetic ramification.

Remark 3.3 In general one cannot always guarantee the existence of a good model
but nevertheless, Theorem 3.2 remains valid if we add to the set Sbad the finite set of
primes that prevent the model to be good.

Using the previous theorem one deduces the following proposition.

Proposition 3.1 Let t ∈ Σp,q,r and ℘ ∤ Sbad then Lt/K is unramified at ℘.

Proof Since t ∈ Σp,q,r ⊆ P1(C)\{0, 1,∞} we have t = ap

cr
for coprime integers a, c.

Moreover t− 1 = − bq

cr
for b and c coprime. By Lemma 1.1 we have

I℘(t, 0) ≡ 0 (mod p),

I℘(t, 1) ≡ 0 (mod q),

I℘(t,∞) ≡ 0 (mod r).
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Using the last part of Theorem 3.2 we deduce that I(p/℘) = 1. Therefore Lt is
unramified at ℘. □
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