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Abstract

We introduce two types of zeta functions (Ψ-type and ζ-type) of one complex
variable associated to an arbitrary number field K. We prove various arithmetic
identities which involve both of them. We also study their special values at integral
arguments.
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1 Introduction

We introduce two types of zeta functions of a complex variable s which depend on the choice
of a fixed order O of a number field K and some additional data. The first type may be
viewed as a zeta function whose general term is weighted by the product of a sign character
of K× with a certain additive character of K. The second type may be viewed as a partial
zeta function of K whose general term is weighted by a sign character of K×. Special
cases of these two types of zeta functions appear in the work of Hecke (see [Hec59]) and
Siegel (see [Sie68] and [Sie70]). Some of their arithmetic properties were known to Siegel
(at least in the case where O is the maximal order of K) and probably to the experts.
But to the author’s best knowledge, no systematic treatment of them can be found in the
literature. This paper concentrates on the main arithmetic properties on these two types
of zeta functions.

We now briefly describe the content of this paper. In Section 2 we define functions of
Ψ-type and ζ-type and we prove some key identities for both of these. In Section 3 we
recall a functional equation (proved in [Cha09]) which relates these two types under the
change of variables s 7→ 1 − s. We also show that a function of ζ-type can be written as
a certain linear combination of functions of Ψ-type and vice versa. In Section 4 we set
some notation about Hecke characters and Gauss sums. This allows us to give a precise
relation between zeta functions of Ψ-type and L-functions associated to a primitive Hecke
character. In Section 5 we study their special values at integral arguments which we relate
to special values of classical partial zeta functions.

In a forthcoming paper, the author would like to construct certain Eisenstein series
such that the constant term of their q-expansion is a special value at some negative integer
of a function of Ψ-type or ζ-type. Once this is done one can then apply the so-called
q-expansion principle to these Eisenstein series to study p-divisibility properties of these
special values.

Notation

Let K be a number field of degree n over Q and let OK be its maximal Z-order. Let
O be a Z-order of K. A discrete O-module Λ ⊆ K will be called an O-ideal. By an
invertible O-ideal (or O-invertible ideal) we mean an O-ideal Λ such that EndK(Λ) = {λ ∈
K : λΛ ⊆ Λ} = O. Note that every Z-lattice Λ ⊆ K (of maximal rank) is an invertible
O-ideal for O = EndK(Λ). A Z-lattice Λ ⊆ K (of maximal rank) will be called integral

if Λ ⊆ EndK(Λ). We note that the notion of invertibility is not well behaved under the
intersection or the sum of ideals. If a and b are invertible O-ideals then it is not necessarily
true that a ∩ b and (a, b) := a+ b are invertible O-ideals.

We recall some facts about invertible O-ideals and regular prime ideals of O. It is well
known that an O-ideal a is invertible if and only if for every prime ideal p 6= 0 of O one
has that ap is a principal Op-ideal (here ap denotes the localization of a at p). For a proof
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of this criterion see Proposition 12.4 of [Neu99]. Let

cond(O) = {x ∈ OK : xOK ⊆ O}.

Note that cond(O) is an integral OK-ideal. A prime ideal p of O is called regular if Op is
a discrete valuation ring. We have the following criterion for regular prime ideals of O:

p + cond(O) ⇐⇒ p is regular.

For a proof of this fact see Proposition 12.10 of [Neu99]. We note that if q is a regular prime
ideal of O then it is necessarily O-invertible. Indeed, if p ⊆ O is a prime ideal distinct from
q then qOp = Op and so is principal. If p = q then qOp is again principal since in this case
Op is a discrete valuation ring. Since the localization of q at each prime of O is principal
it follows that q is O-invertible.

Given an integral O-ideal f we define the set

IO(f) := {b ⊆ O : b is an invertible integral O-ideal coprime to f, i.e., (f, b) = O}.

Consider the monoid IO(1) = IO(O) where the multiplication is given by the usual multi-
plication of two ideals. Let {σ1, . . . , σr1} be the set of real embeddings of K into R where
r1 + 2r2 = n. Let λ ∈ K. The notation λ ≫ 0 will be taken to mean that σi(λ) > 0
for i = 1, . . . , r1. For every integral O-ideal f we define an equivalence relation ∼f on the
monoid IO(1). Let a, b ∈ IO(1). We say that a ∼f b if and only if there exists an element
λ ∈ 1 + fa−1, λ ≫ 0, such that λa = b. Note that if a ∼f b then (a, f) = (b, f). The
set IO(1)/ ∼f is a finite monoid. The set of invertible elements of IO(1)/ ∼f is exactly
IO(f)/ ∼f. We let

O(∞)× := {λ ∈ O× : λ ≫ 0},

where ∞ =
∏r1

i=1∞i stands for the product of the distinct real places of K.

We let

(1) PO(f∞) =
{

α
β
O : α, β ∈ O, β 6= 0, (αO, f) = (βO, f) = O, α

β
≫ 0

}
,

(2) PO,1(f) =
{

α
β
O : α, β ∈ O, β 6= 0, (αO, f) = (βO, f) = O, α ≡ β (mod f)

}
,

(3) PO,1(f∞) =
{

α
β
O ∈ PO,1(f) :

α
β
≫ 0

}
.

It is easy to see that for a, b ∈ IO(f), a ∼f b if and only if there exists a λO ∈ PO,1(f∞)
such that λa = b. Thus the quotient IO(f)/PO,1(f∞) makes sense (even though PO,1(f∞) *
IO(f)) and can be identified with IO(f)/ ∼f.

We let CO(f) := IO(f)/ ∼f. In the case where f is O-invertible we call CO(f) the narrow
ideal class group of K of conductor f. Note that because f is assumed to be invertible
the order O is already encoded in f. By class field theory, the ideal class group CO(f)
corresponds to an abelian extension of K which we denote by K(f∞). We call K(f∞) the
narrow ray class field of K of conductor f. Note that in the case where f is an integral
OK-ideal then K(f∞) is just the usual narrow ray class field of conductor f.
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2 Functions of Ψ-type and ζ-type

2.1 Functions of Ψ-type

Before defining zeta functions of Ψ-type we recall some facts about the dual and the inverse
of a Z-lattice contained in K. Let M ⊆ K be a Z-lattice of maximal rank. We define N(M)
to be the absolute value of the determinant of a matrix that takes a Z-basis of OK to a
Z-basis of M . Note that N(M) is always a positive rational number. We define the dual
lattice of M as

M∗ := {x ∈ K : TrK/Q(xy) ∈ Z for all y ∈ M}.

One can check that (M∗)∗ = M and EndK(M) = EndK(M
∗). From this we may deduce

that M is an invertible O-ideal if and only if M∗ is an invertible O-ideal. If c is an invertible
O-ideal then we define c−1 = {x ∈ K : xc ⊆ O}. From now on we fix a Z-order O and we
let dO = d := (O∗)−1. If f is an invertible O-ideal then one readily checks that f∗ = f−1d−1.
Note also that for any λ ∈ K× one has N(λO) = |NK/Q(λ)|N(O).

Let f be an integral invertible O-ideal. Let w be a sign character of K, i.e., a product
over elements of a subset of the characters

sign ◦ σi : K
× → R× → {±1}.

Let c be an integral invertible O-ideal of K. Following Siegel (see equation (9) and (12) of
[Sie68]), we define

Ψ(c, f, w, s) := N

(
c

fd

)s ∑

Γc(f)\{06=µ∈ c
fd
}

w(µ)
e2πiTr(µ)

|N(µ)|s
, ℜ(s) > 1,(2.1)

where Tr(µ) := TrK/Q(µ) and N(µ) := NK/Q(µ) are the usual trace and norm functions
from K to Q and where

Γc(f) := O(∞)× ∩ (1 + fc−1).

It is understood that the summation in (2.1) is taken over a complete set of representatives
of {0 6= µ ∈ c

fd
} modulo Γc(f). Note that for any ǫ ∈ Γc(f) and µ ∈ c

fd
we have µ − ǫµ ∈

d−1, so Tr(µ − ǫµ) ∈ Z. Therefore the summation (2.1) does not depend on the choice
of representatives. Note also that by definition we have Γc(f) = Γcb(fb) for all integral
invertible O-ideals b and therefore

Ψ(c, f, w, s) = Ψ(cb, fb, w, s).(2.2)

Definition 2.1 A function of Ψ-type associated to the number fieldK will be a function

in the complex variable s which is equal to Ψ(c, f, w, s) for some invertible integral O-ideals

c, f and sign character w.

Proposition 2.1 The function Ψ(c, f, w, s) depends on the first entry only modulo ∼f.
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In order to prove this we will prove certain identities and a lemma. For a subgroup Γ′ ≤ Γc(f)
of finite index, a straightforward computation shows that

[Γc(f) : Γ
′] ·Ψ(c, f, w, s) = N

(
c

fd

)s ∑

Γ′\{06=µ∈ c
fd
}

w(µ)
e2πiTr(µ)

|N(µ)|s
, ℜ(s) > 1.(2.3)

Let ρ ∈ K× be such that ρc ⊆ O. Using the inclusion Γρc(f) ∩ Γc(f) ⊆ Γc(f) with (2.3) we
may deduce that

[Γρc(f) : Γc(f) ∩ Γρc(f)] ·Ψ(ρc, f, w, s) = w(ρ)N

(
c

fd

)s ∑

Γc(f)∩Γρc(f)\{06=µ∈ c
fd
}

w(µ)
e2πiTr(ρµ)

|N(µ)|s
.

(2.4)

Lemma 2.1 Let a and b be integral invertible O-ideals such that b = λa for some

λ ∈ K×. Then if (a, f) = (b, f) we have Γa(f) = Γb(f).

Proof By assumption we have (1, fa−1) = (λ, a−1f). Therefore 1 = αλ + β for some
α ∈ O and β ∈ a−1f. Let ǫ ∈ Γb(f). Then we have

(ǫ− 1) = (ǫ− 1)(1− αλ) + (ǫ− 1)αλ ∈ O(a−1f) + fb−1(a−1b) ⊆ a−1f.

Therefore Γb(f) ⊆ Γa(f). By symmetry we have Γa(f) ⊆ Γb(f). �

Corollary 2.1 Assume either a ∼f b or a = λb for some λ ∈ K× where λ = α
β
for some

α, β ∈ O and (αβO, f) = O. Then Γa(f) = Γb(f).

Proof In both cases one has (a, f) = (b, f). Therefore by the previous lemma one has
Γa(f) = Γb(f). �

Proof of Proposition 2.1 Use Lemma 2.1 and the identity (2.4). �

Remark 2.1 Note that if there exists a ρ ∈ Γc(f) such that w(ρ) = −1, then we find
using (2.4) that Ψ(c, f, w, s) = 0. The existence of such units should be avoided in order to
have a non-zero function of Ψ-type.

The next lemma will be used in Section 3. In the case where (f, cond(O)) = O the
following lemma gives a more explicit description of Γa(f).

Lemma 2.2 Assume that (f, cond(O)) = O. Let a be an invertible integral O-ideal

and (a, f) = f′. Then

Γa(f) = O(∞)× ∩ (1 + f(f′)−1).

Proof First note that f′ is an invertible O-ideal divisible only by regular primes of O.
We can thus write a = f′a0 where a0 is an integral invertible O-ideal coprime to f(f′)−1. Let
ǫ ∈ Γa(f). Then (ǫ− 1) ∈ f(f′)−1a−1

0 ∩ O = f(f′)−1. Therefore ǫ ∈ 1 + f(f′)−1. Conversely, if
ǫ ∈ O(∞)× and ǫ ∈ 1 + f(f′)−1 then ǫ ∈ (1 + fa−1) ∩ O(∞)× = Γa(f). �
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2.2 Functions of ζ-type

Let O be a Z-order of K. Let w : K× → {±1} be a sign character. Fix an integral
invertible O-ideal f. Given an invertible integral O-ideal a (so 1 ∈ a−1) we define

ζ(a, f, w, s) := N(a)−s
∑

Γa(f)\{µ∈a−1,µ≡1 (mod fa−1)}

w(µ)

|N(µ)|s
ℜ(s) > 1,(2.5)

where Γa(f) = O(∞)× ∩ (1 + fa−1). The expression on the right hand side of (2.5) may be
viewed as a partial zeta function weighted by the sign character w.

Definition 2.2 A function of ζ-type associated to the number field K will be a function

in the complex variable s which is equal to ζ(c, f, w, s) for some invertible integral O-ideals

c, f and sign character w.

Let b be an invertible integral O-ideal. Then a direct computation reveals that

ζ(a, f, w, s) = ζ(ab, fb, w, s).

As for the functions of Ψ-type, the function ζ(a, f, w, s) depends on the first entry only
modulo ∼f. Let us prove it. Let Γ′ ≤ Γa(f) be a subgroup of finite index. Then

[Γa(f) : Γ
′] · ζ(a, f, w, s) = N(a)−s

∑

Γ′\{06=µ∈a−1, µ≡1 (mod fa−1)}

w(µ)

|N(µ)|s
.(2.6)

Let λ ∈ K× be such that a and λa are integral invertible O-ideals. Then applying (2.6) to
the inclusion Γb(f) ∩ Γa(f) ⊆ Γb(f) we deduce that

[Γλa(f) : Γλa(f) ∩ Γa(f)] · ζ(λa, f, w, s) = w(λ)N(a)−s
∑

Γλa(f)∩Γa(f)\{06=µ∈a−1 , µ≡λ (mod fa−1)}

w(µ)

|N(µ)|s
.

(2.7)

From Corollary 2.1 and (2.7) we deduce that ζ(a, f, w, s) depends on the first entry only
modulo ∼f.

3 A functional equation

Let {ai}
r1
i=1 be the signature of w, i.e., w =

∏r1
i=1(sign ◦ σi)

ai where ai ∈ {0, 1}. Then we
define

Fw(s) := |dK |
s/2π−ns/22r2(1−s)Γ(s)r2

r1∏

i=1

Γ

(
s+ ai
2

)

where dK = N(OK) is the discriminant of K and Γ(s) is the Gamma function evaluated at
s.
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Theorem 3.1 Let a and f be integral invertibleO-ideals. Then the functionsΨ(a, f, w, s)
and ζ(a, f, w, s) admit a meromorphic continuation to all of C. Moreover they are related

by the following functional equation:

Fw(s)Ψ(a, f, w, s) = iTr(w)Fw(1− s)N(f)1−sζ(a, f, w, 1− s)(3.1)

where Tr(w) :=
∑

i ai.

Proof The functional equation (3.1) appears (without any proof) as a special case of
equation (19) of [Sie70]. For a detailed proof of (3.1), see Theorem 1.1 of [Cha09], where a
functional equation is proved for a slightly more general class of zeta functions. The proof
follows Hecke’s classical method and relies on the functional equation of a multivariable
theta function which is a direct consequence of the Poisson summation formula. �

3.1 Identities between functions of Ψ-type and ζ-type

In this section we want to show that a certain linear combination of functions of Ψ-type
is equal to a function of ζ-type and and vice versa. Before doing this, it is convenient to
define a certain involution of the set of invertible O-ideals of K.

Definition 3.1 Let a be an invertible O-ideal of K. We define aι = fda−1. Obviously

we have (aι)ι = a.

The next lemma gives a precise relation between functions of Ψ-type and functions of
ζ-type.

Lemma 3.1 Let f and c be invertible integral O-ideals such that (c, f) = O. Assume

also that (f, cond(O)) = O. Then we have the following formulas:

(1) Ψ(c, f, w, s) =
∑

λ∈ c
fd

(mod cd−1)

e2πiTr(λ)w(λ)[Γλcι(f) : Γc(f)]ζ(λc
ι, f, w, s).

(2) Let 0 6= λ ∈ c
fd
. Then

[Γλcι(f) : Γc(f)]

N(f)
w(λ)

∑

ρ∈O (mod f)

[Γρc(f) : Γc(f)]e
−2πiTr(ρλ)w(ρ)Ψ(ρc, f, w, s) = ζ(λcι, f, w, s).

In all the summations it will always be assumed that the representative of the zero
congruence class is a non-zero element of K.

Proof Let us first show (1). A direct computation shows that

Ψ(c, f, w, s) = N

(
c

fd

)s ∑

λ∈cf−1d−1 (mod cd−1)

e2πiTr(λ)
∑

{06=µ∈cf−1d−1,

µ≡λ (mod cd−1)}/Γc(f)

w(µ)

|N(µ)|s
.

(3.2)
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One can verify that the congruence µ ≡ λ (mod cd−1) is preserved under the action of Γc(f)
so that the second summation makes sense. The last equality can be rewritten as

Ψ(c, f, w, s) =
∑

λ∈cf−1d−1 (mod cd−1)

e2πiTr(λ)w(λ)N

(
c

λdf

)s ∑

{06=µ∈λ−1cf−1d−1,

µ≡1 (mod λ−1cd−1)}/Γc(f)

w(µ)

|N(µ)|s
.

(3.3)

Now using the fact that (f, cond(O)) = O and applying Lemma 2.2 we find that

Γλcι(f) = O(∞)× ∩ (1 + f(f′)−1),

where f′ = (λfd, f). In particular we deduce from this that Γc(f) ⊆ Γλcι(f). Using (2.6) we
can rewrite (3.3) as

Ψ(c, f, w, s) =
∑

λ∈cf−1d−1 (mod cd−1)

e2πiTr(λ)w(λ)[Γλcι(f) : Γc(f)]ζ(λc
ι, f, w, s).

This proves (1).

Let us prove (2). Let 0 6= λ ∈ c
fd
. From (2.4) a direct computation shows that

∑

ρ∈O (mod f)

[Γρc(f) : Γc(f)]e
−2πiTr(ρλ)w(ρ)Ψ(ρc, f, w, s)(3.4)

= N

(
c

fd

)s ∑

{06=µ∈ c
df}/Γc(f)

∑

ρ∈O (mod f)

(
e2πiTr(ρ(µ−λ))

) w(µ)

|N(µ)|s
.

Using the fact that

∑

ρ∈O (mod f)

(
e2πiTr(ρ(µ−λ))

)
=

{
N(f) if µ ≡ λ (mod cd−1),
0 if µ 6≡ λ (mod cd−1),

we can rewrite (3.4) as

∑

ρ∈O (mod f)

[Γρc(f) : Γc(f)]e
−2πiTr(ρλ)w(ρ)Ψ(ρc, f, w, s)

= N(f)N

(
c

fd

)s ∑
{

06=µ∈ c
fd

µ≡λ (mod cd−1)

}

/Γc(f)

w(µ)

|N(µ)|s

= N(f)N (λcι)−sw(λ)
∑

{

06=µ∈(λcι)−1

µ≡1 (mod f(λcι)−1)

}

/Γc(f)

w(µ)

|N(µ)|s
.
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Note that the summation on the right hand side of the first equality makes sense since
for any ǫ ∈ Γc(f) = O(∞)× ∩ (1 + f) we have ǫµ ≡ µ ≡ λ (mod cd−1). Finally using the
inclusion Γc(f) ⊆ Γλcι(f) in (2.6) we deduce from the last equality that

[Γλcι(f) : Γc(f)]

N(f)
w(λ)

∑

ρ∈O (mod f)

[Γρc(f) : Γc(f)]e
−2πiTr(ρλ)w(ρ)Ψ(ρc, f, w, s) = ζ(λcι, f, w, s).

This proves (2). �

4 Finite order Hecke characters

In this section we set some notation about characters of the narrow ideal class group of
conductor f, i.e., characters of IO(f)/PO,1(f). We have the following short exact sequence:

1 → (O/f)× /(O(∞)× (mod f))
θ
→ IO(f)/PO,1(f∞) → IO(1)/PO(∞) → 1,

where θ(a (mod f)) = [ãO] where ã ∈ O is chosen so that ã ≡ a (mod f) and ã ≫ 0. From
this short exact sequence we see that every character χ : IO(f)/PO,1(f∞) → C× can be
pulled back to a character

χf := χ ◦ θ : (O/f)× /(O(∞)× (mod f)) → C×,

where the subscript f of χf stands for finite. It will also be convenient to view χf as a
function on the set of elements of

QO(f) = {αO : α ∈ O, (αO, f) = O} .

This makes sense since the latter set admits a natural map to (O/f)×. For an element
α ∈ QO(f) we define

χ∞(α) := χ([αO])/χf(α).

Let α ∈ QO(f). Choose an element β ∈ QO(f) in such a way that α ≡ β (mod f) and β ≫ 0.

Then one finds that χf(α) = χ([βO]). Therefore χ∞(α) = χ([αO])
χ([βO])

. Since
(

α
β

)2

≫ 0 and
(

α
β

)2

≡ 1 (mod f), it follows that χ∞(α) ∈ {±1}. The map χ∞ : QO(f) → {±1} can be

written as
∏r1

i=1(sign◦σi)
ai for a unique set of integers {ai}

r1
i=1 where ai ∈ {0, 1}. Therefore

χ∞ can be viewed (after extension to K×) as a sign character. Thus every character

χ : IO(f)/PO,1(f∞) → C×,

when restricted to principal O-ideals αO coprime to f, can be written uniquely as χ = χ∞χf

where
χ∞ : K× → {±1} and χf : (O/f)×/(O×(∞) (mod f)) → C×.

If we view χf as a character of (O/f)× and χ∞ as a sign character of K×, one may deduce
the following identity:

χf (ǫ)χ∞(ǫ) = 1 ∀ǫ ∈ O×.(4.1)
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Conversely, for every pair of characters (w, η) ∈ ( ̂(R⊗K)×, ̂(O/f)×) satisfying (4.1), there
exists a character χ : IO(f)/PO,1(f∞) → C× which lifts the pair (w, η), i.e, such that χf = η
and χ∞ = w. Note that the number of such lifts is exactly h+

K , where h
+
K denotes the order

of the narrow ideal class group of K, i.e., IO(1)/PO(∞).

In order to simplify the notation we set Gf∞ = IO(f)/PO,1(f∞) and Gf = IO(f)/PO,1(f).
We have the following short exact sequence:

1 → PO,1(f)/PO,1(f∞) → Gf∞ → Gf → 1.(4.2)

Let us assume that PO,1(f)/PO,1(f∞) ≃ (Z/2Z)r. This means precisely that the index of
the wide ray class field of conductor f in the narrow ray class field of conductor f is 2r.
Taking the Pontryagin dual of (4.2) we get

1 → Ĝf
π
→ Ĝf∞ → ̂PO,1(f)/PO,1(f∞) → 1.

Let {ηj}
r
j=1 be a set of generators of ̂PO,1(f)/PO,1(f∞). For every 1 ≤ j ≤ r, take an

arbitrary lift of ηj to Ĝf∞ and denote it again by ηj . By construction, the group generated

by the ηj’s is a complete set of representatives of Ĝf∞ modulo Ĝf. Let χ ∈ Gf∞. Then there

exists a unique set of integers {bj}
r
j=1, bj ∈ {0, 1}, such that χ∞ =

∏r
j=1 η

bj
j . From this it

follows that Ĝf corresponds precisely to the set of characters χ ∈ Ĝf∞ such that χ∞ = 1.

4.1 Gauss sums

Let χ ∈ Ĝf∞ be a finite order Hecke character and α ∈ K× be such that γO = a
df

where

(a, f) = O. For an element ξ ∈ O we define

gγ(χ, ξ) := χ∞(γ)χ(a)
∑

ρ∈O (mod f)

χf (ρ)e
2πiTr(ργξ).

We set χf(ρ) = 0 if (ρ, f) 6= O. It is easy to see that if γ′ ∈ K× is another element such
γ′O = a′

df
with (a′, f) = O then gγ′(χ, ξ) = gγ(χ, ξ). So from now on we omit the subscript

γ keeping in mind that the modulus f is fixed. When ξ is coprime to f we have

g(χ, ξ) = χf (ξ)g(χ, 1).(4.3)

Furthermore, when χ is primitive, (4.3) remains valid for ξ not coprime to f since in this
case g(χ, ξ) = 0.

4.2 Relation between Ψ(c, f, χ∞, s) and L(χ, s)

In this subsection we would like to give a precise formula which relates functions of Ψ-
type to Artin L-functions. Let χ be a primitive character of Gf∞. Roughly speaking, this
formula says that a certain linear combination of the functions Ψ(a, f, χ∞, s) (where a is
allowed to vary) is equal L(χ, s), up to a Gauss sum which depends on χ.
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Definition 4.1 Let O be an arbitrary Z-order of K and let f be an integral invertible

O-ideal. For a character χ : IO(f)/PO,1(f∞) → C× we define

L(χ, s) =
∑

a∈IO(f)

χ(a)

N(a)s
, ℜ(s) > 1.

Proposition 4.1 Let O be an arbitrary Z-order ofK and let χ : IO(f)/PO,1(f∞) → C×

be a primitive Hecke character. Then
∑

c∈IO(f)/PO,1(f)

χ̄(ac)Ψ (ac, f, χ∞, s) = g(χ, 1)L(χ, s)(4.4)

where ac ∈ c is an arbitrary chosen integral invertible O-ideal in the class of c.

Proof See the calculation on p. 27 of [Sie68]. This calculation was done in the special
case where O = OK but one readily checks that it generalizes to an arbitrary order. �

Remark 4.1 One can also deduce a similar formula when χ is not primitive but one
needs to remove certain Euler factors from L(χ, s). This can be accounted by the fact that
for a non primitive character χ, the identity (4.3) does not necessarily hold when ξ and f

are not coprime. Note that the summation of (4.4) goes over wide ideal classes modulo f,
i.e., elements of IO(f)/PO,1(f) and not over narrow ideal classes modulo f, i.e., elements of
IO(f)/PO,1(f∞). Therefore there is no factor 2r which appears on the right hand side of
(4.4) as it is the case on p. 27 of [Sie68].

As a corollary of this, one may deduce the well known functional equation of L(χ, s)
proved by Hecke in the special case where O = OK .

Corollary 4.1 We have

Fχ∞
(1− s)g(χ, 1)L(χ, 1− s) = (i)Tr(χ∞)Fχ∞

(s)N(f)s
∑

c∈IO(f)/PO,1(f)

ζ(ac, f, χ∞, s)χ̄(ac)

= (i)Tr(χ∞)Fχ∞
(s)N(f)sL(χ, s).

Proof The proof follows from Proposition 4.1 and Theorem 3.1. �

5 Special values of zeta functions of Ψ-type and ζ-type

In this section we concentrate on special values of functions of Ψ-type and ζ-type evaluated
at integers. First let us determine the set of trivial zeros of functions of ζ-type when
restricted to the set of integers m ≥ 1. Let w : K× → {±1} be a sign character and let
{ai}

r1
i=1 be the signature of w. For even integers m ≥ 2 the quantity

Fw(m)

Fw(1−m)
(5.1)

11



is equal to 0 unless r2 = 0 and aj = 0 for all j. Similarly, for odd integers m ≥ 1, the
quantity

Fw(m)

Fw(1−m)
(5.2)

is 0 unless r2 = 0 and aj = 1 for all j. In order to avoid trivial zeros we make the following
assumption.

Assumption: The number field K is totally real, i.e., r2 = 0.

We let w0 = 1 be the trivial sign character and w1 = sign◦NK/Q. Let f and a be integral
invertible O-ideals. Using Theorem 3.1 with (5.1) and (5.2), we see that for integers m ≥ 1
the quantity ζ(a, f, w, 1−m) can be different from 0 only when w = w0 and m is even or
when w = w1 and m is odd.

Remark 5.1 Let QO,1(f) = {α ∈ O : α ≡ 1 (mod f)} and let QO,1(f∞) = {α ∈
QO,1(f) : α ≫ 0}. We have a natural map QO,1(f) → PO,1(f)/PO,1(f∞). Therefore every
sign character w̃ of PO,1(f)/PO,1(f∞) pulls back to a sign character of QO,1(f) and thus,
after extension to K×, to a sign character w of K×. Let w be a sign character of K× which
is not induced from a sign character of PO,1(f)/PO,1(f∞). Then using (2.7), it is not to hard
to see that ζ(a, f, w, s) is identically equal to zero. Therefore the only sign characters which
are interesting are the ones which are induced from the sign characters of PO,1(f)/PO,1(f∞).

Definition 5.1 We define

ζ(a, f∞, s) := N(a)−s
∑

Γa\{λ∈a−1,λ≡1 (mod fa−1),λ≫0}

1

|N(λ)|s
=

∑

b⊆O
b∼fa

1

N(b)s
,(5.3)

where b ∼f c means that b and c lie in the same narrow ray ideal class modulo f. We call

ζ(a, f∞, s) a partial zeta function.

Let λ ∈ 1 + f. Using orthogonality relations of characters we find
∑

w sign character

ζ(λa, f, w, s) = 2nζ(λa, f∞, s),(5.4)

where n = [K : Q]. Setting λ = 1 in (5.4) and combining it with (5.1) and (5.2), we see
that for all even integers m ≥ 2,

ζ(a, f, w0, 1−m) = 2nζ(a, f∞, 1−m),(5.5)

Similarly, for all odd integers m ≥ 1,

ζ(a, f, w1, 1−m) = 2nζ(a, f∞, 1−m).(5.6)

Conversely, using (5.4) and orthogonality relations of characters, we may deduce that for
any sign character η

∑

λ∈QO,1(f)/QO,1(f∞)

|N(λ)|−sη(λ)ζ(aλ, f∞, s) = ζ(a, f, η, s).
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Remark 5.2 Let ρ ∈ 1 + f. Then using the identity (2.7) with Lemma 2.1 we may
deduce that

ζ(ρa, f, w, s) = w(ρ)ζ(a, f, w, s).(5.7)

Setting w = w1 in (5.7) and using (5.5) we get that for all odd integers m ≥ 1

ζ(ρa, f∞, 1−m) = w1(ρ)ζ(a, f∞, 1−m).(5.8)

Similarly for all even integers m ≥ 2 one has

ζ(ρa, f∞, 1−m) = ζ(a, f∞, 1−m).(5.9)

The identity (5.8) at m = 1 plays a key role in the context of Gross-Stark conjectures.

One of the key results about special values at negative integers of partial zeta functions
associated to totally real number fields is the following:

Theorem 5.1 (Siegel,Klingen,Shintani) For any integer k ≥ 1 the value ζ(a, f∞, 1−
k) is a rational number.

Proof See [Sie69] and [Shi76]. �

Corollary 5.1 Let j ∈ {0, 1}. Then for any integer k ≥ 1 such that k ≡ j (mod 2) we
have that

(1)
Fwj

(k)

Fwj
(1− k)

(i)Tr(wj)Ψ (c, f, wj, k) is a rational number,

(2) Ψ (c, f, wj, 1− k) ∈ Q(ζf ) where N(f) = f and ζf = e2πi/f .

(3) ζ (c, f, wj, k) ∈ |dK|
−1/2πnk · Q(ζf)

+ where Q(ζf)
+ is the maximal real subfield of

Q(ζf).

Proof Part (1) follows from Theorem 5.1, Theorem 3.1 and the identities (5.5) and
(5.6). Part (2) follows from the identity (1) of Proposition 3.1 and Theorem 5.1. Part (3)
follows from part (2) and Theorem 3.1. �

Remark 5.3 It is easy to describe the Galois action of Gal(Q(ζf )/Q) on the special
values appearing in (2). Let j ∈ {0, 1} and k ≥ 1 be such that k ≡ j (mod 2). Let
a be a positive integer coprime to f and denote by τa the automorphism of Q(ζf) de-
fined by ζτaf = ζaf . Then a straightforward computation which uses (1) of Proposition 3.1
shows that Ψ (c, f, wj, 1− k)τa = Ψ (ac, f, wj, 1− k). In particular, if we apply the com-
plex conjugation τ∞ := τf−1, we find with the help of (2.4), that Ψ (c, f, wj, 1− k)τ∞ =
wj(−1)Ψ (c, f, wj, 1− k).

13



References

[Cha09] H. Chapdelaine. Functional equation for partial zeta functions twisted by additive
characters. Acta Arith., 16 pages, 136:213–228, 2009.
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