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Abstract

Let K be a real quadratic number field. Let p be a prime which is inert in K.
We denote the completion of K at the place p by K,. Let f > 1 be a positive
integer coprime to p. In this thesis we give a p-adic construction of special elements
u(r,7) € K for special pairs (r,7) € (Z/fZ)* x H, where H, = P'(C,)\P"(Q,)
is the so called p-adic upper half plane. These pairs (r,7) can be thought of as an
analogue of classical Heegner points on modular curves. The special elements u(r, )
are conjectured to be global p-units in the narrow ray class field of K of conductor f.
The construction of these elements that we propose is a generalization of a previous
construction obtained in [DD06]. The method consists in doing p-adic integration of
certain Z-valued measures on X = (Z, X Z,)\(pZ, x pZ,). The construction of those
measures relies on the existence of a family of Eisenstein series (twisted by additive
characters) of varying weight. Their moments are used to define those measures. We
also construct p-adic zeta functions for which we prove an analogue of the so called
Kronecker’s limit formula. More precisely we relate the first derivative at s = 0 of a
certain p-adic zeta function with —log, Nk, g, u(r, 7). Finally we also provide some
evidence both theoretical and numerical for the algebraicity of u(r, 7). Namely we
relate a certain norm of our p-adic invariant with Gauss sums of the cyclotomic field
Q(¢r, ¢p)- The norm here is taken via a conjectural Shimura reciprocity law. We also

have included some numerical examples at the end of section 18.



Résumé

Soit K un corps de nombre quadratique réel. Soit p un nombre premier inerte dans K.
Nous noterons par K, la complétion de K en p. Soit f > 1 un entier positif copremier
a p. Dans cette these nous donnons une construction p-adique de certains éléments
u(r,7) € K pour certaines paires (r,7) € (Z/f7Z)* x H, ot H, = P'(C,)\P'(Q,).
Ces paires (r, 7) sont en quelque sorte des analogues des points de Heegner classiques
sur les courbes modulaires. Nous avons conjecturé que les éléments u(r, 7) sont des p-
unités dans le corps de classe de K au sens restreint de conducteur f. La construction
de ces éléments que nous proposons est une généralisation d’une construction obtenue
dans [DDO06]. La méthode consiste essentiellement a faire de I'integration p-adique de
certaines mesures sur X = (Z, X Z,)\(pZ, X pZ,) a valeurs dans Z. La construction de
ces mesures repose essentiellement sur I'existence d’une famille de séries d’Eisenstein
(tordues par des caracteres additifs) avec le poids k > 2 qui varie. Les moments de ces
séries d’Eisenstien sont utilisés pour définir ces mesures. Nous construisons aussi une
fonction zeta p-adique pour laquelle nous prouvons un analogue de la formule limite
de Kronecker. Plus précisément, nous relions la premiere dérivée en s = 0 d’'une
certaine fonction zeta p-adique avec —log, N, /@, u(r, 7). Finalement nous donnons
une bonne raison théorique de croire en algébricité de u(r, 7). A savoir, nous relions
une certaine norme de notre invariant p-adique avec des sommes de Gauss contenues
dans le corps cyclotomique Q((f,(,). La norme ici est définie a l'aide d’une loi
de réciprocité de Shimura conjecturale. Nous avons aussi inclu quelques résultats

numériques a la fin de la section 18.
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Introduction

Let L be a number field. Define
(L*)” ={x € L™ : |z|, = 1 for all infinite places v of L}.

One can think of (L*)~ as the intersection of the minus spaces of all complex con-
jugations on L*. A complex conjugation of L acts as —1 on (L*)~. One can show
that if L contains no CM field then (L*)~ = {£1}. Moreover when L contains a CM
field, if we denote by Lcas the largest CM field contained in L, then (L*)~ C LJ,,.

From now on we assume that L is a CM field.

Let p be an odd rational prime number. The group of p-units of L is defined as
(@) L[%}X. Dirichlet’s units theorem tells us that

(0.1) Op[2]* =~ (L*),, x 2"+

where ¢ is the number of prime ideals in L above p and 2n = [L : Q. We define the



group of strong p-units of L to be

Up(L) = (L*)" N O[]
= {z € L™ : for all places v of L (finite and infinite) such that v t p, |z|, = 1}.

Clearly U,(L) is a subgroup of the group of p-units of L. If we let L™ be the maximal
real subfield of L and ¢ the number of prime ideals of Lt above p then an easy
calculation shows that rankz(U,(L)) = g — g*(see Proposition 1.1). For example

when the prime p splits completely in L we have rankz(U,(L)) = [L : Q]/2.

Let K = Q(v/D) be a real quadratic number field where disc(K) = D and p be
an odd prime number which is inert in K. We denote the completion of K at p by
K,. In [DDO06] a p-adic construction of elements in K¢ is proposed. Those elements
are conjectured to be strong p-units in certain abelian extensions of K, namely the so
called narrow ring class fields of K. We recall the main ideas of their construction.
Let N > 1 be an integer coprime to D such that oo(N) = > ;v 1 > 2. Let a(z)
be a non constant modular unit on the modular curve X(N) having no zero or pole
at the cusp ico (such modular units always exist). Let H, = P*(C,)\P*(Q,) be the
p-adic upper half plane. For certain points 7 € H, N K they define a p-adic invariant
u(a, 7) € KY. When this p-adic invariant is non trivial, i.e. when u(a,7) # £1, the
two authors have conjectured that u(c, 7) lies in a certain narrow ring class field L,
of K which depends on 7 and «. More precisely they conjecture that u(ca,7) is a
strong p-unit in L,. If we assume that u(a, 7) is a non trivial strong p-unit contained
in L, then L, contains a CM field and therefore has at least one complex embedding.
Note that any ring class field L™ of K is Galois over Q. Therefore by normality
L, is totally complex. Because of the dihedral nature of Gal(L"/Q) we see that
having at least one complex embedding is equivalent for L™ to be a CM field. We

thus conclude that if u(«, 7) is a non trivial p-unit inside L, then L, has to be a CM
field.

The key idea in their construction is to use the periods of the modular unit a(z)

in order to construct a family of Z-valued measures on P'(Q,). In their construction



they use modular units of the form
a(z) = [[A(dz)™
d|N

where A(2) = ¢[],51(1—¢")** (where ¢ = ¢*™¥) and the ng € Z’s are integers subject

to the conditions >,y ng = 0 and >,y ned = 0. The "periods” considered come

from the modular unit % and they are given by the formula

02) i L os () €2

where ¢1,co € T'o(IV)(ico). These periods can be expressed in terms of Dedekind

sums. A key feature of their method is the possibility of testing their conjecture since
the p-adic integral defining the invariant u(«, 7) can be computed in polynomial time.

For a description of this algorithm see [Das07].

In this thesis we propose a generalization of their construction. Let Ny and f be

coprime positive integers such that (pD, fNg) = 1. We call f the conductor and Ny

A(z)
A(doz)

function g(%o)( fdot), see (3.1) for the definition.

the level. We replace the function for do|No by a certain power of the Siegel

The first novelty is that instead of working with one modular unit a(z) we work
with a family of modular units {g;(2) }+er indexed by the finite set T = (Z/fZ)* /(p)
where (p) corresponds to the group generated by the image of p inside (Z/fZ)*.
By construction those modular units are I'g(fVy)-invariant in the sense that for all
v € T'o(fNy) one has

Gyxt(72) = 9:(2)

b
where ¢ y *xt = dt(mod f). So the matrix v acts not only on the variable z but
c

also on the indexing set 1. Moreover every modular unit in this family has no zero

or pole on the set I'y(fNp)(ioco). The periods considered are of the form

(0.3) L[ dlog ( 9:(2) ) e

27 o g:(pz)




where ¢y, ¢ € I'g(fNo)(ico) and ¢ € T which is the analogue (0.2).

Using equation (0.3) we define, for every triple
(Cl, Ca, t) € F()(fNo)(’LOO) X Fo(fNo)(ZOO) X T,
Z-valued measures on P'(Q,) denoted by

Hg, {Cl — CQ}.

Using those measures, we propose a construction of elements in K. For certain pairs
(r,7) € (Z/fZ)* x H, we associate an invariant u(r,7) € K, which depends also
on the family of modular units {g;(z) }scr. Those elements are constructed as certain
p-adic integrals of our measures. The element u(r, ) is conjectured to be a strong
p-unit in K(foo), the narrow ray class field of K of conductor f. In particular, if
we want to construct non trivial strong p-units inside K (foo), it will be essential to
assume beforehand that the latter field is totally complex. This shows the importance
of working in the narrow sense and not just in the wide sense. We propose a conjec-
tural Shimura reciprocity law (see conjecture 5.1) which says how the Galois group
Gal(K(foo)/K) should permute the elements u(r, 7). We also prove an analogue of
the Kronecker limit formula relating our invariant u(r,7) to the first derivative at

s = 0 of a certain p-adic zeta function. More precisely we prove that

(1) 3¢,(0) = —log, Nk, q,u(r, T)

(2) 3¢(0) = vp(u(r, 7))

where (,(s) is a p-adic zeta function interpolating special values at negative integers

of a classical zeta function ((s), attached to K, deprived from its Euler factor at p,
namely (1 —p=2)((s).

Let us explain more precisely the main ideas involved in the construction of the
invariant u(r, 7). In a very similar way to [DDO06], our family of Z-valued measures
ftg{c1 — ca} on P*(Q,) can be used to construct a 2-cocycle v € Z*(T'y, K)) (see
Definition 5.10 ) where

I := {( a Z) € SLy(Z[}]) :a=1 (mod f),c=0 (mod fNO)}

10



and K has trivial I';-action. It turns out that the 2-cocycle k is a 2-coboundary i.e.
there exists a 1-cochain p € C'(I'y, KX) such that d(p) = . Note that p is uniquely
determined modulo Z'(T'y, KY) = Hom(T';, K) which turns out to be a finite group.
In order to show the splitting of the 2-cocycle k one is lead to lift the system of
measures fg{ci — c2} to a system of measures on X := (Z, x Z,)\(pZ, x pZ,).
There is a natural ZX-bundle map 7 : X — P'(Q,) given by n(z,y) = 2. In order
to lift our measures from P'(Q,) to X we use the periods of a family of Eisenstein
series twisted by additive characters with varying weight £ > 2. When the weight
k equals 2 then the corresponding Eisenstein series is the logarithmic derivative of
our modular unit. We denote the unique lift of p4,{c1 — 2} to X (under certain
conditions see theorem 6.1) by g, {c1 — ca}. Note that by construction we have
Teflg {1 — ca} = pg,{c1 — c2}. Using this lift one can give a "simple expression” for

u(r, 7) namely

04)  ulr,7) = plyy) = proelizemrioe) / (2 — 7y)df, {ico — 1rico}(z, y)
X

where m,, ,{ico — v,ic0} is an integer given in terms of certain Dedekind sums and
v, is an oriented generator of the stabilizer of 7 under the action of I';. Therefore
the invariant u(r,7) is obtained from the evaluation of the 1-cochain p at 7,. The
presence of the stabilizer 7, is accounted for the presence of endomorphisms of infinite
order of the lattice Z + 77 which is equivalent to the presence of units of infinite order
in Og. When the element 7 € H, N K and 7 is reduced, there is a natural bijection
¢ : X = O given by (2,y) — x — 7y. If we let v, = ¢, pig, {icc — yrico} then (0.4)
can be rewritten in a more functorial way as
u(r,7) = pmv,r{z‘oo—wTiOO}/ zdv,.(x) € pr.
:EEOIX(I)
This new point of view, which applies to any totally real number field, is the subject

of a recent paper by Dasgupta, see [Das08].

We compute the various moments of jig,{c1 — ¢} i.e. integrals of the form

/X 2y {ico — 7,(i00)} (1, ),

11



where m and n are positive integers, see Proposition 11.5 for explicit formulas. Fol-
lowing [Das07], we also give explicit formulas for the measures i, {1 — 2} evaluated

on balls of X, i.e. compact open sets of the form
(u+p"Zp) X (v+ p"Zy).

See Proposition 14.1 for the formulas. Both of these formulas involve periods of
Eisenstein series which can be expressed in terms of Dedekind sums. Having such
formulas turns out to be essential for numerical verifications. We have included at the
end of section 18 a few numerical examples which support the conjectural algebraicity

of u(r, 7).

Finally we give some theoretical evidence for the algebraicity of u(r,7) by com-
puting ”their norm” and relating them to normalized Gauss sums, see theorem 17.1.
Let f be an integer such that for all ¢|f, ¢ is inert in K. Assume furthermore that
—1¢ (p) < (Z/f7Z)*, then we prove that

(05) NK(foo)FTp/Q(gf)FTp (U(T, T)) =S (mOd PJF)

where p = pOg, S is a product of normalized Gauss sums in F' = Q(Q)<F7’p> -Q(¢) C
@p. The norm in (0.5) is taken via a Shimura reciprocity law which is still meaningful
even if we don’t assume the algebraicity of the element u(r,7). Note that the left
hand side of (0.5) lies necessarily in K, N F = Q(¢;){™ C @p. Because of the

assumption —1 ¢ (p) < (Z/fZ)* we see that Q((;)" is a CM field.

Notation

Let K be a number field and O an order of K. For a finite subset of places S of K
we define Og to be the ring of S-integers of O
a

OS‘:{b

GK:a,bG(’),and‘%

§1f0r1/ﬁniteandy¢5}.

Let My, = {01, ...,0,} be the set of real embeddings of K. Given an integral Og-ideal
f and a subset M C M, we define the following sets

12



(1) Ips(f) := {b € K : b is an integral Og-ideal coprime to f},

(2) Qogalfoon) :={3 € K:a,B € Os,(ap,f) =1,a = f(modf), and
ai(%) > 0Vo; € M},

where we think of ooy, = HmE 1 00; Where oo, is the infinite place corresponding to
o;. Two ideals a,b € Ip,(f) are said to be equivalent modulo Qo 1(foon,) if there
exists an element A € Qg 1(foons) such that Aa = b. This gives us a relation of
equivalence on Ip.(f). The quotient oy (f)/Qog1(foonr) is a generalized Og-ideal

class group corresponding by class field theory to a certain abelian extension of K.

Let K be a quadratic number field. For 7 € K\Q then we define
N, =7+ 77,

and
O, = Endg(A;) ={)A € K : A\, C A}

Let N be a positive integer then we define

a b

(1) To(N) := {( 4 ) € SLy(Z) : ¢ =0(mod N)},
a b

(2) T1(N) :={< .4

) € SLy(Z) : ¢ =0(mod N),d = 1(mod N)}.

1 The Z-rank of strong p-units

Let L be a number field. Remember that
(L*)” ={x € L™ : |z|, = 1 for all infinite places v of L}.

One can think of (L*)~ as the intersection of the minus spaces of all complex conju-
gations of (L*)~. A complex conjugation acts like —1 on L*. If L contains no CM
field then a simple computation reveals that (L*)~ = {£1}. In the case where L
contains a CM field let us denote by Lgys the largest CM field contained in L. In

13



this case one has that (L*)~ C Lf,,. For this reason we now assume that L is a CM
field of degree 2n over Q. Let K be a totally real subfield of L and let p be a prime
ideal of K. We define a relative group of strong p-units

Up(L/K) =
{z € L™ : for all places v of L (finite and infinite) such that v {p, |z|, = 1}.

We would like to compute the Z-rank of Uy(L/K). Let S be the set of places of L
containing exactly all the infinite places and all the finite ones above p. Let Yg be the
free abelian group generated by the elements of S. Let also Xg be the subgroup of
Ys of elements having degree 0. Let m € K be such that 7Og = p™ for some integer

m. We have a natural map
1
AR ®yz OL[%}X —+ R®zYs

1®er—>210g]e\y~[y]

veS

where ||, denotes the normalized local absolute value for which we have the formula

o] { Ng, r(a) if v is complex
al, =

N(v)~"@ if vy is finite

for any @ € L*. Using Dirichlet’s unit theorem and the product formula we see
that A induces an R-linear isomorphism between R ®z (’)L[%]X and R ®z Xg. Let
Too be the complex conjugation on L then 7., acts naturally on the left and right
hand side of A. Note that 7., acts always trivially on infinite places of S. One can
verify that A is T..-equivariant. Let us denote by ST = {v € S : 7,v = v} and
by ST ={v € S : 1ov # v}. It is easy to see that the —1 eigenspace of R ®; Xg
has dimension #Ty where a R-linear basis is provided for examples by the elements
[V] = [Teov] for v € S. Therefore it follows that the +1 eigenspace of R ®7 X has
dimension equal to #S* + % — 1. Since the map A\ is 7o-equivariant the same is
true for R ®z Op[£]*. Note also that #S* + #S5~ = n + g where g is the number of

prime ideals of L above p.

14



Proposition 1.1 Let L™ be the maximal real subfield of L and g* be the number

of prime ideals of Op+ above p then one has

(1.1) rankz(Upy(L/K))=s=g—g".

Proof A small computation shows that #57 = n + 2¢g7 — g and #5~ = 2(g — ¢7).

From this we get

dimp, (R ®z (OL[%]X>_> — dimg (R ®z X5) = dima (R @z X5)) = #TS_

=g-g"

The second equality follows from the fact that the eigenvalues of 7, which are £1,

lie in Z. Finally note that (O.[%]*) = Uy(L/K) and in general for any finitely
generated abelian group A we have dimg(R ®7 A) = rankz(A). O

Question Let K be a real quadratic field and L = K(foo) be the narrow ray class
field of conductor f of K. Let p be a prime number inert in K which is congruent to
1 modulo f and assume that K(foo) is a C'M field. Let p = pOg. If conjecture 5.1
is true, can we prove that the Z-rank of the subgroup generated by our strong p-units
is equal to g — g7 = [K(fo0)/K]/27?

2 Distributions on P!(Q,) and holomorphic func-

tions on the upper half plane

Let p be a prime number and (A, +) be an abelian group. Let P*(Q,) be the projective
line over the field of p-adic numbers endowed with its natural topology induced from
the one on Q,. The field Q, has a natural normalized non Archimedean metric | |,

where [p|, = %. The group of matrices

GLQ*(Z[%D —{re GLz(Z[%]) - det(y) > 0

15



a b
acts naturally on P'(Q,) by the rule z — vz = ‘cljis where v = ( d) €
c

GLy(Z[}]) and = € P'(Q,). We define a ball in P'(Q,) to be a translate of Z,
under some element of G Lj (Z[%]). Therefore by definition all balls of P*(Q,) can be

P
written as

VZy = {yz € PY(Q,) : x € Z,}.

for some v € GL3 (Z[}]). Given a ball B C P!(Q,) one can show that there exists an

element a € Z[;] and n € Z such that
1 1
B:{me(@p:\x—a\pgﬁ} or B:{xEQp:\x—a\pzﬁ}U{oo}.

This explains somehow the terminology for the word ”ball”. We denote the set of all
balls of P(Q,) by B.

An A-valued distribution on P*(Q,) is a map
1 - {Compact open sets of P*(Q,)} — A

which is finitely additive i.e. for all finite disjoint union |J;_, U; of compact open sets
of P*(Q,) we have

K (U Ui) = ZM(Ui),

where the summation on the right hand side takes place in the abelian group A. It
thus follows that a distribution on P*(Q,) is completely determined by its values on
a topological basis of P'(Q,). A topological basis of P!(Q,) is given for example by
its set of balls.

We say that a distribution on P!(Q,) has total value 0 if u(P'(Q,) = 0. We would
like to give a simple criterion to construct A-valued distributions on P'(Q,) of total

value 0. Before stating this criterion we need to introduce some notation.

Every ball B = vZ, can be expressed uniquely as a disjoint union of p balls
p—1
B=|]JB,
=0
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p 1

where B; := v (wZ,) and o; = ( -

) . We can now state the criterion:

Lemma 2.1 If y is an A-valued function on B satisfying

W(E'(Q) ~ B) = ~u(B), u(B) =Y u(B)

for all B € B then n extends uniquely to an A-valued distribution on P(Q,) with

total value 0.

The proof of this lemma can be made transparent by using the dictionary between
measures on P*(Q,) and harmonic cocycles on the Bruhat-Tits tree of PGLy(Q,).
For a small introduction to the subject see chapter 5 of [Dar04]. From now on we will

use the previous lemma freely.

For the sequel we would like to give a general procedure to construct A-valued
distributions on P!(Q,) from certain analytic functions on the complex upper half

plane. In practice we are mainly interested in the case where A = Z.

Let H = {z =x+iy € C:y > 0} be the upper half-plane endowed with its

usual metric ds? = LtdyQ. For any analytic function f : H — C we define the

multiplicative U, ,, operator as

U )r) = [T 1),

We say that f satisfies the multiplicative distribution relation at p or simply that f
is a Up, ,-eigenvector (even if U, ,, is not a linear operator) if there exists A € C* such

that
(2.1) (Upn ) (1) = Mf(T), V7T € H.

We also call A the eigenvalue of f with respect to the operator U,,,. Similarly for
any meromorphic function g : H — C we define an C-linear operator U, , (where the

7a” stands for additive) as




If we take the logarithmic derivative of (2.1) we get

—_

p—

Upalclog () = - 3~ (dlog (") = diog f(7).

=
<
Il
o

Note that the constant A has dropped out. In general if g(7) is a meromorphic

function on H we say that g satisfies the distribution relation at p if

(2.2) %;Q(T;j) 2 g(r)

for all 7 € H where (x) is defined, in other words g(7) is an U, ,-eigenvector with
cigenvalue 1. We call (2.2) the additive distribution relation at p. When in addition
the function f(7) is invariant under translation by Z, i.e. f(7+ 1) = f(7),V7 € H,
we find that for (N,p) =1

(Upmfn)(T) = Afn(7),

where fy(7) := f(N7). In this way get even more functions on the upper half plane
satisfying the multiplicative distribution relation at p. Note that the multiplicative
distribution relation is stable under standard multiplication of functions. Using the
previous observation we get
(2.3) I )
d|N

is also a U, ,,-eigenvector for arbitrary integers ny’s. Equation (2.3) is the basic tool
for constructing U, ,,-eigenvectors from a given one. We recall also the reader that
since f(T+ 1) = f(7) for all 7 € H then f admits a g-expansion at ico of the form

Z anqr, TEH

nez

where ¢, = €?™" and a,, € C.

Assume that f(7) satisfies additional symmetries and some boundary conditions

namely that there exists an integer N > 1 coprime to p such that

(1) f(7) is I'y(pN)-invariant and that it descends to a meromorphic function on
Xo(pN).

18



(2) f(7) has no zeros or poles on the set of cusps I'g(N)(ic0), i.e. for all v € T'y(N)
we have a”) # 0 and ai) = 0 if n < 0 where a$” is defined by (2.4).

Using (1), one can define the g-expansion of f(7) at any point ¢ € P}(Q) by the

following rule: First choose a matrix v € SLy(Z) such that yc = ico. It is an exercise

1 h
to verify that there always exists a matrix 01 € SLy(Z) with h > 0 such that

1 h
vy < 01 ) vt € To(pN). Without lost of generality we can assume that h > 0 is

minimal, we call it the width at the point c. It is easy to see that the width is constant
on the orbit I'g(pN)c. It follows that f(y7) is holomorphic on H and invariant under
the translation z +— z 4+ h. Therefore the function f(y7) admits a g-expansion at ioco

of the form

(2.4) for) =Y aVq,. reH.

nez

Note that ai” = 0 if n is small enough since f is meromorphic. The latter g-expansion
is defined to be the g-expansion of f(7) at the point c. If one chooses a 7' such that
~'ico = 7yioco = ¢ then one can verify that for n > 0 ol = Cag) for some h-th root of
unity ¢ depending on n. So up to a root of unity, a,, depends only on ¢. However, ag is
uniquely determined by c. So formally speaking the ¢g-expansion at ¢ depends not just
on ¢ but also on the choice of the matrix v € SLy(Z) such that vyico = ¢. However,
this slight ambiguity will not create any problems for the applications we have in
mind. Often we are only interested by the qualitative behavior of the g-expansion at

¢ € P(Q) which is the same for all points in ¢ € To(pN)c, as one can verify.
We can summarize so far the assumptions made on the holomorphic function
f:H—=C:
(1) f descends to a meromorphic function on Xy(pN),
(2) fisa U,,, eigenvector,

(3) f has no zeros and poles on the set of cusps I'g(N)(ic0).
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where (p, N) = 1.

Having such a f one can associate C/Q-valued distributions on P*(Q,) of total

value 0 where € is a finitely generated Z-module of C defined by

1
Q= <{—/ dlog f(7) : C is a small loop around a zero of f }> ,
c

211

where dlog f(7) = D ar. By small loop we mean a circle C' such that C' does not
f(r)

cross any zero of f and inside that circle f has only one zero. It is finitely generated
because f descends to a meromorphic function on Xo(pN). In particular if f has no
zeros in ‘H then 2 = {0}.

In order to construct such distributions we need to introduce some notation first.

Ty = {’y e (Ty(N), (g (1) >> : det(v) = 1}.

0
Note that the matrix ( ](; | > ¢ I'p. A calculation shows that the natural image

Let us denote

of Iy in PGL3 (Z[%]) has index two. It thus follows that the group I'y splits the set
of balls of P'(Q,) into two orbits, the one equivalent to Z, and the one equivalent
to P1(Q,)\Z,. Let (c1,c2) € To(N)(ico) x To(N)(ico). One is lead naturally to the
following definition

1

(2:5) peier = e} (VZy) = / j_  dlog /(7).
(2.6 prten = e}y (P@IZ)) = — [ dlog £(r)

where v € I'g. The integral between the two cusps appearing in the bounds of the
integral is taken to be along a curve C' (containing its end points) which is assumed
to be smooth, of finite length and does not cross any zeros of f(7). Moreover, we
also require that C' agrees with the unique geodesic of H joining v~ 'c; to v ey on
small enough neighborhoods of v~!¢; and vy~ lc,. In particular if we let U; and U,
be small enough open discs centered around ~~'c; and vy le, respectively we find

that Uy "' H N C and U, NH N C are small arcs containing no zeros of f. Such
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neighborhoods always exist since f descends to a meromorphic function on Xy (pN).
Under these assumptions those integrals make sense since the functions % has no
zero, pole on the path C' and this latter path is well behaved in small neighborhoods
of its two endpoints. Note that the image of the integrals (2.5) and (2.6) in C/€)
does not depend on the choice of such special paths since we mod out by the only
obstruction coming from the poles of dlog f(7) which correspond to the zeros of f.
Those poles are the only obstruction since dlog f(7) is a meromorphic 1-form on H,

therefore closed.

By definition the total value of ps{c; — 2} is zero. Moreover, since Stabr,(Z,) =
Lo(pN) (uses (N,p) = 1) and f(7) is I'o(pN)-invariant, one sees that (2.5) and (2.6)
are well defined. Finally, the fact that us{c; — c2} is a distribution follows from
Lemma 2.1. The condition of Lemma 2.1 is verified since f is by assumption a U, ,,-

eigenvector, see equation (2.2).

Remark 2.1 The reason why one needs to be careful about the endpoints of the
path of integration comes from the observation that f(7) could have infinitely many

zeros or poles in a small real interval around the point ¢ € I'y(N)(i00).

Remark 2.2 Note that the set {f(c) € C: ¢ € I'y(N)(ico)} is finite since f(7)

is a T'o(pN)-invariant.

Remark 2.3 An important observation is that the the group generated by the
0
matrix < Z(j ) ) gives rise to a nontrivial action on the set I'g(N)(ioco) = I'g(ic0) by

the rule

where n € Z. In other words, the multiplication by p map reshuffles the set I'g (V) (i00).
Here it is crucial for N and p to be coprime. Philosophically the non triviality of this
action combined with the special properties of f(7) give rise to non trivial C/Q-valued
distributions on P*(Q,).
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An important property satisfied by the family of distributions pr{c; — ¢} is a I'o-

invariance. For all compact open set U and v € I'y one has

piiyer = yeb(YU) = pp{er = o} (U).

This is a direct consequence of the definition of ps{c; — 2}

In general one imposes even stronger conditions on f(7) in order to control the

range of pir{c; — c2}. We introduce the following useful definition:

Definition 2.1 We say that f(7) satisfies the real algebraicity condition on the
set To(N)(ico) if there exists a real number field L C C such that f(x) € L,Vx €
Lo(IN)(io0).

In general, modular functions tend to have algebraic coefficients therefore the previous
definition is not too hard to fulfill. For example suppose that all the ”g-expansions”
of f(7) at the cusps T'o(NV)(ico) lie in M[[¢]] where M is a CM-field. Let M™* be the
maximal real subfield of M. Then taking the norm of f(7) down to M*[[qg]] gives rise

to a modular unit satisfying the definition 2.1.

Assumptions: Form now on we assume that f(7) satisfies the conditions (1),
(2), (3), has no zeros in H and also that it satisfies the real algebraicity condition on
the set ['o(V)(ic0).

We thus get that Q@ = {0}. Doing a small change of variables reveals that

1 [ e 1 ot g A
(2.7) — dlog f = —/ =
f

270 )1, 2mi

ey £ 2w 2
where ¢t = f(7) and A is the finitely generated additive subgroup of R (by Remark
2.2) generated by log|f(c)| for ¢ € T'o(N)(ico) (here we assume that there exists a
¢ € To(N)(ico) such that f(c) = 1). The real part of the left hand side of (2.7) is
half integral since the bounds of the integral appearing on the right hand side are real

valued. Therefore if we define

1 [ 1
pe{cr = 2} (Z) == Re (—/ dlog f) € §Z
ol

211 ) —1e,

we obtain a 3Z-valued distribution on P'(Q,).
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Remark 2.4 Note that there are only finitely many possibilities for the bounds
appearing in the right hand side of (2.7). On the other hand the image by f of the

geodesic joining ¢; to ¢ and the one joining ¢} to ¢, will be in general different even

if f(c1) = f(ch) and f(c2) = f(ch).

Definition 2.2 We say that a C,-valued distribution p on P*(Q,) is a measure

if there exists a constant ¢ € R+ such that

wU)lp < ¢

for all compact open sets U of P(Q,).

Clearly a %Z—valued distribution is a measure since we can take ¢ = 1 if p # 2 and
c=2if p=2.

Remark 2.5 A C,-valued measure on P'(Q,) allows oneself to integrate C,-
valued continuous functions. In general C,-valued distributions only allow the in-

tegration of locally constant functions.

Suppose that f satisfies the real algebraicity condition on the set I'g(N)(ioco) for the
number field L, i.e. for all ¢ € T'o(IV)(ico) we have f(c¢) € L C C. Note that L
comes naturally equipped with an embedding in R by definition. One can also use
the imaginary part of of (2.7) to construct L*-valued distributions on P'(Q,). For
every pair of cusps (c1, ¢z) € I'g(IV)(ic0), define a L*-valued distribution v¢{c; — c2}
on P}(Q,) by the rule

. ~ _IC
i) vi{er = e} (VZy) = —Iigz—lcf”?

ii) Ur{er = e} (v(PHQ)\Zy)) :

(f(71@)|>_1
[f(y~ter)l
for all v € T'y.

Using Lemma 2.1 one can verify that v, gives rise to an L*-valued distribution

on P*(Q,) of total value 1 (the abelian group A considered is multiplicative ). Note
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that the set

{pi{c1 = e2}(B) : B € B}
is finite.

Let us fix an embedding ¢ : L < Q, and let L be the topological closure of (L)
in @p. If we fix a p-adic branch of log, by declaring log, 7 = 0 for some uniformizer

in L then we can define a L-valued measure on P'(Q,) by
vi{er = e} i=log, ovp{c1 — ca}.

We thus get that vi{c; = ¢} is a L-valued measure. Unfortunately the measure

vi{er — c2} depends on ¢ and the choice of the p-adic branch of log,.

In the present paper we only explore the case where f(c) = 1 forall ¢ € T'o(N)(ic0).
When f satisfies the latter hypothesis we see directly from (2.7) that pur{c; — c2}
is Z-valued and also that all possible L-valued measures vi{cr — ¢} are trivial, i.e.

equal to 0 on all compact open sets of P*(Q,).

3 A review of the classical setting

Let H be the Poincaré upper half-plane and X (N) = H*/T'(IN) be the modular
curve of level N where H* = H UP}(Q). A modular unit of level N is a function
u(t) € Q(¢{v)(X(N)) with 7 € H, for which div(u(r)) is supported on P}(Q). In

particular modular units are non vanishing analytic functions on H. Because of this

latter property they can be written as an infinite product in the variable ¢, = €2™".
The simplest example of a modular unit is provided by quotients of the form AA(](\Q),

where A(7) = n(7)* and n(7) is the famous Dedekind eta function defined by the

infinite product

n(r)=aqz [J(1— ).

n>1

A(7)
A(NT)

an imaginary quadratic number field. By evaluating those modular units on quadratic

The modular unit is invariant under the larger group I'y(N) D I'(N). Let K be
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irrationalities 7 € H N K one gets points in certain ring class fields of K. In order to
get points generating ray class fields of K, one needs to consider a more general type
of modular units. These modular units can be obtained by taking suitable powers of

Siegel functions.

For a pair of rational numbers (a1, as) € (+Z)? such that (a1, as) # (0,0)(mod Z),

we define a Siegel function of level N as

(31) g(al,az)(T) = E(a1,a2)(7_>77(7—)27

where £(4, 4,)(7) is the Klein form, see chapter 1 of [DK81] for the definition. The

infinite product corresponding to the Siegel function is given by

miag(a]— iB (a n n
(32) g(al,QQ)(T) = —¢ 2o 1)/2(]‘? ’ 1)(1 - QZ) H(l - qTQz>(1 - qq-qu)7

n>1

where z = a7 4as, By(z) = 22— 2+1/6 is the second Bernoulli polynomial, By () :=
By({z}) where {z} stands for the fractional part of z, ¢, = €*™",7 € H and ¢, =
e*™# > € C. Note that the infinite product in (3.2) converges since I'm(7) > 0. Using
the identity K 2. in chapter 2 of [DK81] we deduce for (ai,as) = (by, be)(mod Z?)
that

(njag—moay)

(33) g(bl,bg)(T) — (_1)n1n2+n1+n26—2m‘72 g(al,aQ)(T%

where (b1, b2) — (a1,a2) = (n1,n2). We thus see that g(a, ay)(7) and g, p,)(7) differ
only by a 2N root of unity. The function g(4, a,)(7) is not too far from being a modular

unit. Let v € SLy(Z) then

(34) g(al,az)(’yT) = 6(7)g(a1,a2)’y(7)7

where €(7) is defined by
n(yr)?* = e(v)(er + d)n(r)?
for some €(y) € py12. The subscript of the Siegel function (a, as)y on the right hand
side of (3.4) is the usual multiplication of a row vector by a matrix.
From the identity (3.4) we deduce that for any v € SLy(Z) and any r, s € Z

(3.5) 9.5 () =gz 2),(1),
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In particular when v € T'(V), using the identity (3.5) combined with (3.3), we see
that the function

(3.6) T = g( ,%)(T)IZN

=

is invariant under the substitution 7 +— 7. We thus see that a suitable power of
a Siegel function gives rise to a modular unit. A natural question that arises is:
How large is the set of modular units of X(NN)? This is answered by the following

proposition:

Proposition 3.1 The Z-rank of the group of modular units of X(N) modulo
Q(¢n)* is equal to

(3.7) number of cusps of X(N) — 1.

Moreover, the subgroup generated by modular units as in (3.6) for all integers r, s has

mazximal rank.

Proof The proof consists essentially in showing that the divisors of Siegel functions
of level N give rise to the universal even distribution on Q?/Z*N]. See theorem 3.1.
of chapter 2 in [DK81]. O

The —1 in (3.7) is explained by the trivial relation (deg(div(u(7)))=0) imposed
on the divisor of any function on X (N). In thus follows that the Z-rank of modular
units is as large as it could be. Beside their modular properties, the main interest of
modular units reside in the fact that can be used to construct units in ray class fields

of imaginary quadratic number fields.

Using equation (3.1) defining the Siegel functions, on can think of ¢g'2 as a function
on C x L where L is the set of lattices of rank 2 in C. It thus makes sense to write
g"(t,A) for any t € C and A € L. For w € A, ¢"(t + w,A) = e(w)g*(t,\) for

some e(w) € S'. Therefore g'* modulo S* is well defined on pairs (¢t + A, C/A). This

12
(a1,a2)

that g'?(a17 4 a2, Ar) = g(ay,a0)(7)"? for any pair of real numbers (ay,az) and 7 € H.

notation agrees with the previous definition of g (1) given by (3.1) in the sense

Finally one should also point out that the function ¢'? is homogeneous of degree 0
meaning that g'2(\t, AA) = ¢g'2(¢, A) for any A € C*.
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Now we would like to formulate one version of the theorem of complex multiplica-

tion for imaginary quadratic number fields. Let K be an imaginary quadratic number
field and f an integral ideal of K. Let C(f) := Io,(f)/Qox1(f) (resp. K(f)) denote

the ray class group of conductor f (resp. the ray class field of conductor f)

Theorem 3.1 Let §f = (f) for some f € Z~o and assume that f is divisible by
at least two distinct primes of Z. Let a € C(f) and choose a,b € a. Then

(3.8) u(a) == g"* (1, fat) = ¢g"¥(1, fo ") € OIX((;)
If we let rec™ : C(f) — Gal(K(f)/K) then
(g12f(17fa—1))rec*1(c) _ ngf(l,fCl_lt_l)

for any ¢ € Ip, (f).

Proof See theorem 3 of chapter 19 section 3 of [Lan94b] . [

Remark 3.1 Note that since a is an integral ideal then 1 € a™!. It is easy to see
that a~! can always be written as a™! = 2A, for some s € Zsp and 7 € (KN K). It

thus follows by homogeneity of ¢g'? that

_ S
(3.9) (1, fa ) = g (—,AT) — go.s) (D).

f

Here we emphasize the fact that for any integral ideal a coprime to f we can associate

a pair (s,7) € Z x (HN K) such that a™' = 1A.. One can then evaluate the Siegel

~|w

function on the pair (s,7) using (3.9). Note that this procedure depends implicitly
on the conductor § = (f). If we take a,b € a € C(f) and let a™' = 2A,, b7' = TA,,

then equation (3.8) implies that

90.5)(1)"™ = g0,y (7).

This is an easy consequence of the homogeneity of degree 0 of ¢'? plus the the fact

that the function 7 — go,s)(7)"*/ is I'1(f)-modular.

One can relate the logarithm of the absolute value of (3.9) with the first derivative

of a certain zeta function (depending only on the ideal class of a modulo Qo, 1(f))
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evaluated at s = 0. This is the so called second Kronecker’s limit formula. For the
remaining of the section we introduce some notation in order to define a certain class
of zeta functions associated to a positive definite quadratic form @(z) and a spherical
function P(z) with respect to Q(z). We only need the case where n = 2, i.e. when

z = (1, x9). For the general case, see chapter 1 section 5 of [Sie80].

Let z = a+ib € H. We attach to z a 2 by 2 positive definite matrix M, =

1
% ( | a|2 ) Note that M, is normalized in the sense that det(M.) = 1. We define
a |z

@Z(xla x2) = gthi = b_1|ZL‘1 + Z$2|2

T ~ ~
where z = ( ! > Note that Q.(x1,22) is normalized in the sense that disc(Q,) =
4]

—Z
1
0. The following homogeneous polynomial of degree g, P(xq,x5) := (—iz' M, w)? =

—4. The vector w := ( ) is an isotropic vector with respect to Q. i.e. @Z(—Z, 1) =

(z1 + %) is a spherical function with respect to Q. (1, zs). Following [Sie80] we
can associate to such data a zeta function

eQwi(mlurmwl)(ml + v + (mz + U2)z)g
ma + 01 + (Mg + vg)z[>+9

(3.10) ((s,u",v", 2z,9) ="b Z
m+uv*#0
where u*,v* € Q2. For any integer ¢ > 0 and s € C with Re(s) > 1 this function
(with respect to the variable s) converges absolutely. It is a fact that this function
admits a meromorphic continuation on all of C with at most a pole of order 1 at
s = 1 (this occurs precisely when g = 0 and u* € Z?). Moreover it satisfies a nice

functional equation.

Define
Z<S7 u*7 U*, Z? g) = 7]'781—‘(5 + 9/2)C(S7E*7Q*7 Z? g)'

Siegel shows the following functional equation (special case of equation (61) in [Sie80])

(3.11) Z(s,u",v* z,9) = (—1)962”1(“1”2_“2”1)Z(1 — s, 0", u", 2, g).
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0
Let g = 0, v = ( Z; > and v* = < 0 ) then after some rearrangements the
equation (3.11) looks like

(3.12)

Z (&

m#(0,0) ’Qz (mla mZ) ’28

it omsp)  p-0-0p(1

(1-5) 1
75T (s) r Z

m=(rt) (mod f) |Qz(m1, m2)|2(1fs)

where m goes over Z*. For any (%, ) € (;Z)* and z € H, equation (3.12) motivates

Sl

the following definitions

627ri(m1 ? —mg %)

|Q=(m1,m2)|2s

(0,0)#m

@ (G40 =f T o
i m=(r,t) (mod f) |Q (m1,m2)|?

Using this notation equation (3.12) can be rewritten more compactly as

rot a1 —8) ot
P T

We can now formulate the second Kronecker limit formula:

C(Sa( ),Z)

Theorem 3.2 Let (aj,as) € Q? be such that (ay,as) ¢ Z* and 7 € H then we

have

8(07 (ala &2), T) = - log NC/R(Q*UQ,(H (T))

—1
= - IOg N(C/]R(gahaz) (_> )

T

Proof For the first equality see chapter 20 section 5 of [Lan94b]. For the second
equality we use the homogeneity property of g'2. [
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4 Modular units and Eisensteln series

4.1 The Siegel function

In this section we define certain modular units that will be used in section 5 to
construct Z-valued measures on P'(Q,). For a pair (7.7) € (%Z)2 we associate the
Siegel function

S (T 1By(2) n n
g5 5)(r) = =TTV (1 — ) T - ¢Fa) (1 - gPg-)
n>1
where z = 77+ 4. As explained in the first section the function g(%%)(T)lzf is a
modular unit on X (f). Let Ny > 0 be a positive integer coprime to pf. From now

on we will be mainly concerned by Siegel functions of the form

1B (%) n n
g(?,O) (dOfT) = q;doi ! (]‘ - QTdoT) H(l - QdOquTdOT)(l - Qdofq—q—rdm')

n>1

for some do| Ny, dy > 0. An easy computation shows that g(?,o)(do fm)'* is a modular
unit with respect to the group I'i(f) N To(dy) 2 I'i(f) N LTo(No). The following
lemma gives an explicit formula for the divisor of g(?yo)(do f7)12/ when regarded as a
function on X (fNy). It is more natural to work with X (fNNy) since this curve is a

Galois covering of P*(C), therefore all its cusps have the same width namely fN.

Proposition 4.1 Let f be a positive integer and r € Z/f7Z. Choose an integer
Ny coprime to pf. Then for every do| Ny the function g(%o)(dofT)lzf is T'1(f)NTo(do)-
invariant. In particular we can think of it as a function on the modular curve X (f Ny)
with its divisor supported on the set of cusps of X(fNy), denoted by cusp(X(fNy)).

2miT

A uniformizer at ioco for the group T'(fNy) is given by T — e No . One has
Ny e rady a
“0crd B b
3o B (g7t ) 1

where (fdy,c) stands for the greatest common divisor between fdy and c. We say that
0)(do fT)'2T has primitive indez if (r, f) = 1.

div(g(%o)(dofT)uf) - Z 6/

[£]€cusp(X (fNo))

the modular unit 9z,

Proof This is a standard computation. [J
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Remark 4.1 Observe that the divisor of g(%o)(do )12/ is always an integral
multiple of 6f. So it is natural to ask if such a unit is a 6 f power of some modular
unit in C(X(fNy)). In general the answer is no. However later on we will show that
by taking suitable products of the g(%o)(do f7)127’s, one can extract an f-th root, see

Proposition 4.2.

4.2 Modular units associated to a good divisor
Definition 4.1 For positive integers f, Ny coprime we define D(Ny, f) to be the
free abelian group generated by the symbols
{[do,r] 0 < d0|Ng,7” S Z/fZ}
If 6 € D(No, f) we call f the conductor of 6 and Ny the level of §.
A typical element § € D(No, f) will be denoted by 6 = >, n(do,7)[do, 7] where the
sum goes over do|Ny (dy > 0) and r € Z/ fZ with n(dy,r) € Z. We have a natural

action of (Z/fZ)* on D(Ny, f) given by jx|[dy, 7] := [do, jr] and we extend this action
Z-linearly to all of D(Ny, f).

Since (p, f) = 1, by reducing p modulo f, we get an action of p on D(Ny, f). We
denote by D(Ny, f)®) the subgroup of D(Ny, f) which is fixed by multiplication by

p(mod f). Sometimes we will use the short hand notation
j * 0 =: 5]‘.
We want to define the notion of a good divisor with respect to the data Ny, f,p.

Definition 4.2 We say that a divisor

5 = Z n(do,r)[do,r] € D(No, f)

do|No,m€Z/ fZ

is a good divisor if it is non zero, p* 3 = 0 and that for all r € Z] fZ,

(1) > n(do,r)do =0

do|No
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More concisely one sees that a good divisor is an non zero element of D(Ny, f)®
which satisfies (1).

Remark 4.2 Note that when p = 1(mod f) the condition p x § = ¢ is automati-
cally satisfied.

Proposition 4.2 To a good divisor § = 3, ni ez 52 7(do, 7)[do, 7] € D(No, e

we associate the function

(4.1) Bs(1) == H g(§70)<d0f7_)12n(d0,r)'

d0|N0,T€Z/fZ

This function is a modular unit which is T'1(f) N To(No)-invariant. Moreover for all

c € To(fNo){ioco} we have Bs(c) = 1.

Proof Using equation equation (3.3) with the fact that for all r € Z/ fZ

Z don(dg,7) =0 (mod f),

do|No
we see that the ambiguity created by the f-th root of unity is canceled. The latter
observation combined with equation (3.5) shows that the right hand side of (4.1) is
I'1(f) N To(f No)-invariant. Using the explicit formula in Proposition 4.1 combined
with the fact that for all r € Z/ fZ, 3, v, don(do, ) = 0, we get that ord.(55(7)) = 0
for any ¢ € T'o(fNo){ico}. Finally using the infinite product of the Siegel function
plus its transformation formula, a calculation shows that for all ¢ € I'y(fNg){ico},

Bs(c) = 1. For this latter computation it is enough to work at ico after a suitable

shift. O

Remark 4.3 The first remark is that dz’v(g(%o)(dofﬂm) = div(g(%yo)(dofT)w),

so they only differ by a root of unity. So we could well assume
6 € D(No, f)+ :={6 € D(No, f) : =1x6 =6}

However we have chosen not to do this since later on we will associate Eisenstein series
of odd weight to ¢ and forcing ¢ to be inside D(Ny, f)+ would impose unnecessary

restrictions.
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Note also that a good divisor § € D(Ny, f)® gives rise to a family of modular
units indexed by (Z/fZ)*/(p) since for any r € (Z/fZ)* we still have that ¢, is a
good. If we denote the family by {85, (7)}re@/rz) /), We see that the group o(fNo)

acts transitively on it via 7 — 7.

4.3 The dual modular unit

Definition 4.3 Let 6 = >, v, rez/ 52 7(do, 7)|do, 7] € D(No, £)®) be a good divi-

sor then we define

(4.2) gn =[] 9(07[)(d07)12f”<g§”).

do|No,r€Z/ fZ

We call 55 (7) the dual unit of 55(7).

Remark 4.4 Note that the modular unit now have an f in its exponent. Also

No

@ ,r). One can

for very divisor do| Ny and r € Z/ f7Z the exponent is a multiple of n (

verify the formula

12f
9.0/ (fdoWiny ™)' = g0, =r) <—T) .

0 -1
where Wiy, = N o0 )
0

We have the analogue of Proposition 4.1 with the same assumptions.

Proposition 4.3 We have

(43)  div(gg =r)(dor)™™) = > 6f2];7—§(d0,c)2§2( re )[9}

d
[2]ecusp(X (fNo)) fle,do) ) Le

Remark 4.5 Note that contrary to g(§,0)(fd07')12f, the divisor in (4.3) is not

necessarily a multiple of f so the f in the exponent of g(07-Tr)(d07')12f is essential.

We also have an analogue of Proposition 4.2.
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Proposition 4.4 The function 55(7) is I'1(f) N LTo(No)-invariant. Moreover for
all ¢ € To(fNo){0} we have Bi(c) =

Proof The proof is identical to Proposition 4.2 except that we use Proposition 4.3
instead of Proposition 4.1 and replace I'g(f No)(ico) by I'o(fNp)(0). O

4.4 From g o (NT)" to A)

A(NT)

2\»

One can relate the modular unit fs(7) with the modular units used in [DD06]. From

Theorem 4.1 of [DK81] one may deduce for any positive integer N the identity

A(r)
A(NT)’

for some (y € pn. As in [DDO6] choose a divisor § = 3, n 74, [do] such that

Z ng,do = 0 and Z ng, = 0.

d0|N() dO|NO

-1
(4.4) H g(%,o)(NT)u = (N
j=1

To such a divisor Darmon and Dasgupta associated the modular unit

o= IS

do|No

which is T'g(Np)-invariant.

Set 6" = > 4 norezy sz ™M do,7)|do, ] € D(No, f) with n(do,7) = ng, for all r €
Z] fZ\{0} and n(dy,r) =0if r =0 (mod f). Then ¢’ is a good divisor with respect
to any prime p. Using equation (4.4) with N = f we find

By (T CH( dii;) i

for some ¢ € .
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Remark 4.6 Having in mind the construction of points in ring class fields of a
real quadratic number field K as in [DD06], we see that once the modular unit is
fixed one can vary the prime number p freely (as long as p is inert in K) since it does
not depend on the choice of the modular unit. However in the ray class field case,
for a general good divisor §, the prime number p is related to the conductor of 9,
i.e. f. Therefore one does not have the same freedom as in the ring class field case.
The additional constraint is a congruence modulo f. For example we can always let

p vary among the set of primes p congruent to 1 modulo f.

4.5 The p-stabilization of modular units

In order to construct measures one needs modular units that satisfy the distribution

relation at p, i.e. modular units which are U, ,,-eigenvectors where

(4.5) (Uponf) (7 H (T“)

J=0

Note that by taking the logarithmic derivative of (4.5) one obtains the usual additive

distribution relation for a measure on 7Z,.

For any dy|Ny the function

9(1;{0>(d0f 7)

H
I, ol

is T'1(f) N To(pdy)-invariant (the notation p~'r should be interpreted as the class of
p~'r modulo f). Moreover it is an eigenvector with eigenvalue 1 with respect to the

multiplicative U, ,,-operator.

Proposition 4.5

we U 9(30)(dof7) —H 90 dof (1) gz (dof7)
‘ o g(m o b)) og(lif TO)(p of(59) g2h, (o fT)
=iy}
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Proof(sketch of the U, ,,-invariance) One has the identity

12f (d()f’T p—1
(Zi pfdoT 12f

9(12f (pdeT i=0 f
f

(4.7)

.':1

where r; = i(mod p) and r; = r(mod f). A direct calculation shows that every term

on the right hand side of (4.7) is U, ,,-invariant i.e.

(48) Unan (9025 0 (£ o)™ ) = g2, 0y (pfeoT)'™

for all 4. The identity (4.8) relies heavily on the infinite product of the Siegel function.
U

Remark 4.7 In section 4.8 we will give a more conceptual proof of the latter

proposition using Eisenstein series, see equations (4.21) and (4.24).

Definition 4.4 For a good divisor § € D(Ny, f)) we define
Bs(7)
Bsp(T) =
) st
_ Bs(7)
Bs(p7)
Proposition 4.6 Let § € D(Ny, ) be a good divisor then Bs,(7) is T1(f) N

Lo(pNo)-invariant, U, .,-invariant and Ve € To(fNy)(ico) we have f5,(c) = 1.

Proof We already know that f5,(7) is I'1(f) N To(pNo)-invariant. Since B5(z) = 1
for all x € T'o(fNp)(ico) and multiplication by p induces a permutation on the set
Lo(fNo)(ico) we get that fs,(x) = ﬁéj(—fx)) = 1. Finally the U, ,-invariance comes
from the identity (4.6). O

Remark 4.8 A more careful study of the modular units on the curve X (Nopf)

reveals that any modular unit

(4.9) u(r) € ({g(#o)(dofﬂ12 : do|No,m € Z/pfZ})
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which is 'y (f) N T'o(Nop)-invariant, U, ,,-invariant and has no zeros and poles at the
set of cusps T'o(fNo)(ico) comes necessarily from a good divisor in the sense that

there exists an integer m and a good divisor ¢ such that

div(u(r)™) = div(Bsp(T)).

So we don’t lose much by assuming that the modular unit comes from a good divisor.
The proof relies on the fact that Eg(x) is the the universal even distribution of degree
1 on Q/Z.

Definition 4.5 Let § € D(Ny, f)® be a good divisor. We define

_ B0
B

/Bg,p(T)

We have an analogue Proposition 4.6 for the dual modular unit g5 (7).

Proposition 4.7 Let § € D(Ny, f)® be a good divisor then Bs (1) is T1(f) N
Lo(pNo)-invariant, Uy, n,-invariant and Ve € To(fNo)(0) we have 35 (c) = 1.

Proof It is similar to Proposition 4.6 except for the U, ,,-invariance which will be a

consequence of proposition 4.9. [

Remark 4.9 Note that there is no direct analogue of equation (4.6) for the dual

modular unit 9(07%)(6107')12]0 since

3

Y00,=
90,=

)(dOT)uf 90 i)(d07)12f
12 and — 12
o f

-

S

-

are not U, p,-invariant. Nevertheless it is still true that 35 ,(7) is Upm-invariant.

4.6 The involution ty on X;(N)(C)

As it is well known Y;(N)(C) := H/I'1(N) classifies pairs (P, E), up to equivalence,

where P is a point of exact order N on an elliptic curve F defined over C. We denote
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the equivalence class of a pair (P,C/A) by [(P,A)]. Any class can be represented by
a pair of the form (%2(mod Zw, + Zws), Zw + Zws) for wi,ws € C. We define a map

ty on such pairs by

w —w w w
LN (WQ(mod Zwy + Zws), Zun + Zw2> = (Tl (mod Zw; + ZWQ),ZQJI + ZNQ) .

It is easy to check that ¢y is well defined on such pairs and also on equivalence classes
of Y1(N)(C). A small calculation reveals that ¢? restricts to the identity on equivalence
classes. Therefore when N > 1, ¢ gives a non trivial involution on Y;(N)(C). If we
think of g(x ¢(N7)™" as a function on such pairs then a direct calculation shows

that

L(g(%,o)(NﬂmN) = g(o,%)(ﬂlm-

One can investigate what properties of modular functions are preserved under this
involution. For example let us look at the curve X;(pf) where N = pf. The property
of being a U, n,,-eigenvector is in general not preserved by ¢,;. For example consider

the modular unit
90 o (for)'

which is a U, ,,-eigenvector (with eigenvalue 1). A calculation shows that
Lpf(Q(ﬁ,o)(pr)mpf) = Y0 —1)(7')12pf

pf

is not a U,,,-eigenvector. However, let us take a good divisor 6§ € D(Ny, f)® and
consider the U, ,-eigenvector [5(7). Using Proposition 4.9 we see that it is still true
that

Lo (Bop(T))T = B5,(7)

is a U, ,-eigenvector. In general, the properties of modular functions which are
preserved under the involution ¢y can probably be made more transparent if one

uses the adelic point of view by viewing them as functions on double cosets.
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4.7 Bernoulli polynomials and Eisenstein series

We recall first some definitions for Bernoulli numbers and polynomials. The Bernoulli

numbers are defined by the generating function

t t"
et —1 - ZB"E

n>0

Note that By,,1 =0if n > 1.

We also define Bernoulli polynomials as

(4.10) et _ > B ()%
' et—l—n>0 "l

One can verify that

]

(4.11) B(z) = <"> B,
i=0
From (4.10) one can deduce the useful formula B, (1 — z) = (=1)"B,(z).

Definition 4.6 For n > 2. We define the n-th periodic Bernoulli polynomial as

By(z) = Bu({x})
where {x} = x — [z]. For n =1 we define

Bi(z) = {a} — % + ]122(1').

Note that El(x) corresponds to the famous sawtooth function.

Computing the Fourier series of By, (z) we find for k > 1 that

—kl ’ 62m’nm

(2mi)k = nk

(4.12) By(z) =

where the prime of the summation means that we omit n = 0. One easily verifies
that

Bn(—z) = (=1)"By(z).
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Either by using the generating function of Bernoulli polynomials or the Fourier series

one finds for any positive integer N

(4.13) N*- 123 <m+’> = Bu(a).

Remark 4.10 Let p be a ﬁxed prime number. When —k < —1 one can also

define Bernoulli numbers with negative index as elements of @, by the rule
By = lim By € Qp,

see p. 19 of [Gra97]. Proposition 4 of [Gra97] provides an efficient recursive algorithm
for computing B_j. More precisely, knowing the Bernoulli numbers B_;.... B__y)
to a precision of M p-adic digits allows one to compute B_j in polynomial time to
an accuracy of M p-adic digits. Having now a Bernoulli number for every integer k,
it is natural to define a Bernoulli polynomial indexed by k (in particular for negative
integers k) by the rule

B(z) = i (:1) Bpmi™.

m=0

When n < —1 one can show that this previous power series converges for any « € C,
with |z], < ]%. It should also be pointed out that the value B_j(x) can be interpreted

as a special value of a 2-variables p-adic L-function, see p. 275 of [Fox00].

We are now ready to define a certain class of Eisenstein series for which the constant
term of the g-expansion at ico is a certain periodic Bernoulli polynomial evaluated

at some rational number.

Definition 4.7 Forr € Z/fZ and an integer k > 2 we define
(4.14)

_ (EDtemN T e
a0 = () X gy

_—Bk’l“/f —27ibr
— +Z 2 b/fszz m+b/f+m)

mEZ n#0

_B r f —zZTor m
- kk / f’f Z il Z Zm an+b/f + (_1)kqm——b/f)

m>1n>1
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where q, = €*™*. The prime on the summation means that we omit the pair (0,0).

For the second equality we have used (4.12).

Remark 4.11 When k& > 3 the convergence of the right hand side of (4.14) is
absolute. When k = 2 the convergence is not absolute, nevertheless the g-expansion

is still meaningful. We note also that

(4.15) Ex(r,7) = Ex(—r,7).

Generally when the level f is fixed we simply write Ej(r, 7).

For any v € T'o(f) we have the useful transformation formula
En(y 1, 47)(d(y7))* = Ei(r, 7)(d7)*,

a b
where J xr:=a"'r =dr (mod f). Observe also that the g-expansion at ico
c

of Ey,(7) is defined over Q((y). In fact the g-expansion at any other cusps of Xo(f)

is also defined over Q((s). One can think of the expression
Ek (Ta 7—) (dT)k

as a system of twisted k-fold differential on Xy(f). We have used the word twisted
since v also acts on the index r € Z/ fZ. However Ei(r,7) is a true k-fold differential
on the curve X;(f).

For future reference we define Ej(r,7) and we call it the dual of Ey(r, 7).

Definition 4.8 Forr € Z/fZ and an integer k > 2 we define
Bi(rr) o (CLCTN Ty,
r,T) = :
AT (k—1)! £ (m +nt)k
The analogue of equation (4.15) is
(4.16) (=) Ei(r,7) = Ei(—r,7).
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There is a functional equation which relates Ef(r,7) to Ej (r,7). We have

(4.17) EXr,7) = By (r, ;—j) (;)k

0 -1
f 0
(4.18) Ei(r,7) = det(Wy)*Ey, (r, Wyr) (Wyr)~ .

If we denote Wy = ( > then we can rewrite the previous identity as

Remark 4.12 Note that in the case where f = 1 we have that Ej(7) is invariant
under W, therefore Ei(7) is self dual. When f > 1 it is not the case since Wy =

0
<f 0>¢F()

The g-expansion of E}(r,T) is given by

co oy (CDREED)N T
EBi(r7) '_( (k—1)! ) ~ (m + nrt)k

—f—z %ZbT/fZZ m+ b_|_fn) )

meZ n#0
+ Z 2mibr/ f Z Zm ‘J(fn+b + ( 1)kq6}n_b)7).
m>1n>1

For the second equality we have used the fact that

(S ) (e + (ke = -2

Remark 4.13 Note that the constant term does not depend on r. Moreover, if

k odd, By = 0 and therefore Ej(r,7) is cuspidal at the cusp ioco.

As in the previous case, for any v € T'o(f) we have the useful transformation formula

Ep(y s, y7)(d(y7))* = Ei(r, 7)(d7)",

a b
where ( g ) 7 :=ar = d 'r (mod f). This is exactly as in the previous case
c

except that the action on the index r € (Z/ fZ)* is inverted. It is for this reason that

we have denoted it by * instead of .
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4.8 Hecke operators on modular forms twisted by an additive

character

In this section we discuss the theory of Hecke operators on the Eisenstein series

introduced in the previous section.

Let f € Z~o and consider the complex curve Y;(f)(C) which classifies pairs (E, P),
where £ = C/A is a complex torus and P is a point of E of order f, modulo the
usual relation of equivalence, namely (E, P) ~ (E’, P’) if and only if there exists an
isomorphism of elliptic curves f : E'— E’ such that f(P) = P’. In order to simplify
the notation we will use the simpler notation (A, P) to denote the pair (C/A, P).
For every pair (A, P) we can always find an ordered Z-basis (w1, ws) of A such that
P = %wl + A. We call the pair (wy,ws) a good basis for (A, P). If (w},w}) is another
good basis then one can show that there exists a matrix v € I'1(f) (uses the fact
that f > 2) such that ~ e [ wé . The converse is also obviously true. In

w w
particular, in every equivalen2ce class of [?A, P)] € Yi(f)(C) one can always find a pair

of the form (A,, 1 + A,) for some 7 € H where 7 is uniquely determined modulo the

usual action of I'y(f) on H.

Recall that a modular form of weight k£ on Y;(f)(C) can be viewed as a complex

valued function f on the set of the set of all pairs (A, P) such that
(1) 7 — f(A;, % + A;) is meromorphic on H
(2) flaA,ax P)=a*f(A, P) for all « € C*.
where a* P = ax+aA for P = x+A. Let (A, P) be an arbitrary element of Y;(f)(C)

and let (w1, ws) be a good basis for (A, P). For every fixed integer r € Z/ fZ, consider

the group homomorphism

(4.19) YA, P): A — py

— QT

2
mwi + nwsy — € !
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An easy computation shows that the group homomorphism (A, P) does not depend

on the choice of the good basis (w;,ws). Let us denote the family of group homomor-
phisms {¢(A, P)}a,p) by ¥u.

In such a setting it makes sense to define a function Ej . on the set of all pairs
(A, P) by the rule
(A, P
B (P = Y D)

weA—{0}

For any scalar 8 € C* we define

(B By, ) (A, P) i= Epy, (BA, B % P).

If (wy,ws) is a good basis for (A, P) then for any 8 € C*, (Sw, fws) is a good basis
for (BA, B % P). From this it follows that

Ek,w*(BAa B * P) = B_k (Ek:,w* (Av P)) .
It thus follows that Ej 4, is a modular form of weight k.

We still have a notion of Hecke operators Ty (n) (k stands for the weight of the

Eisenstein series) where we define

(Ti(n) Bryp (A, P) =01 Y By (W, P,
[A:A/]=n
(A,P)—(A’,P")
where the notation (A, P) — (A’, P') means the following: we have nA C A’ and
therefore we have a natural projection w : C/nA — C/A’. Let P = A+ A and denote
by n* P =n\+nA € C/nA. Then the notation (A, P) — (A’, P’) is taken to mean
that m(n* P) = P’. Note that when (n, f) = 1 the map 7 : C/nA — C/A’ is injective
on the f-torsion and therefore n x P, which is point of order f, maps necessarily to
a point of order f. Assume that (A, P) — (A’, P’) and that (wy,ws) (resp. (wi,w}))
is a good basis for (A, P) (resp.(A’, P')). Then jw; + A = —w1 + A’. From this we
deduce that if (wy,ws) is a good basis for (A, P) then there exists A" € A’ such that
(nwy + X, wy) is a good basis for (A’, P'). In particular A/A" ~ Z/nZ.
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Now we would like to compute the action of the Hecke operators Ti(p) on Ek 4,

for p coprime to f. We have

(Te(p)Ery.) (A, P) = p ' > Epy (N, P
[A:A]=p
(A,P)—(A,P)

(4.20) = " By (A, P) + " pEg . (PA,p * P)

= pk_lEk,lb* <A7 P) + Ek,d)f (Aa P)
The equality (4.20) comes from the facts that the Up.aq=pA’ = A and that for two
distinct lattices A’; A” of index p in A we have A’ N A” = pA. When p =1 (mod f)
one has Ty(p)Eyy, = (1 + p" ) Ejy., ie., Ery,p. is an eigenvector with eigenvalue
1+ pht

A direct calculation shows that

1
Ek71/1* (A'ra ? + AT) = Ek(’l“, 7_)

where 1, is chosen as in (4.19) and FEj(r,7) is the Eiseinstein series appearing in
Definition 4.7.

Therefore the identity for the Hecke operator (4.20) holds for Ej(r, 7).
Definition 4.9 We define

Epp(r,m) = Eg(r,7) — pk_lEk(p_lr,pT).

Note that Ej(r,7) is I'1(f)-modular and Ej ,(r,7) is T'1(f) N To(p)-modular both
of weight k.

We define the additive Hecke operator U, , on the set of meromorphic functions
g:H — C to be

Proposition 4.8 The Eisenstein series Ey (1, ) is a U, o-eigenvector with eigen-

value 1, i.e.,

T+
b

124
(4.21) Uy B p(r,7) = ]32 By, (7’, ) = By ,(r, 7).
7=0
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Proof We have

p—1
Ti(p)E(r,Ar) = P> Ei(r,pZ+ (1 + §)Z) + p* ' Ey 0 (Z + prZ)
5=0
151
= =) Bilpr, Azss) + 9 E(r, Ayr)
P v
J
= Up,aEk(pT’, T) + pk_lEk(rv pT)
Replacing r by p~!r in the last equality we find
(4.22) Ti(p)Er(p™'r,7) = UpaEr(r,7) + p" ' Ex(p™"'r, p7).
We are now ready to compute the action of U, , on
Eip(r,7) = Ep(r,7) — p" L Ep(ptr, pr).
We have
(4.23) UpaBrp(r,7) = Upa By p(r,7) — " 10U, o Ex(p 7, p7).

Using (4.22) for the first term of the right hand side of (4.23) and the definition of

Up,q for the second term, we deduce

p—1

_ _ _ 1 _ .
UpaBip(r,7) = Tielp)Ex(p~'r,7) — p" Ei(p~'r,pr) — p* 1};2&;(}9 ', 7+ )

=0
= T Ex(p 'r,7) — p" ' Ex(p ' pr) — 0P Bk (p T, )

= p" U Ep i ) + Ei(r, ) — pP T E(p T e, pr) — T B (p T, T)
= Ey,(r,7).
where in the third equality we have used (4.20). O
Definition 4.10 We define

Elz,p(rv T) = EZ(Tv T) - pkilE;c(O‘? T)'

Note that there is no twist by p on the second index.
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Proposition 4.9 We have

(4.24) UpaBip(r,m) = Bi(pr,7) — 9" By (r, pr).

Proof This involves a computation similar to the one in the proof of Proposition 4.8.

g

Remark 4.14 Even if E} (r,7) is not an U, ,-eigenvector (unless p = 1(mod f))

it is still very close.

4.9 The g-expansion of Ej ,(r, )

For any rational number § € Q with (b, f) = 1 define (%), to be the unique represen-

tative modulo f between 0 and f — 1 congruent to {.

The g-expansion of Ej,(7) is given by

Eyp(r, )

_Ek T/f 1 < —2mibr/ f k_m
- B L 3 5 4
b=0

m>1 n>1

_ 17’ U
pkfl ( Bk((pk fizo QWZbT/anZN;m qinerb/f + ( 1)kqg;7-pb/f))
) (M LB wir)y)S >)

k

sz e 2mibr!d Z Zm qm+b/f+( 1)kq7TT_b/f)~

m>1 n>1
(m.p)=1

We thus readily see that for £ = k' (mod p"(p — 1)) all coefficients of Ej ,(7) vary p-
adically continuously when n goes to infinity. In particular for a fix congruence class
a modulo p — 1, if we look at all the integers k = a (mod p—1) and £k =0 (mod p™)
with n going to infinity, we see that all the coefficients are analytic functions in the

weight k. We thus have a one dimensional p-adic family of Eisenstein series.
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4.10 Relation between Eisenstein series and modular units

A calculation shows that

(1) dlog(g(r y(fr)2) =12 dlog( 0(fT)) = =24mifEs(r, 7)dT,

(2) dlog(g(0,§)(7')12) =12 dlog(g(07%)(7')) = —24miE5(r, 7)dT

where dlog stands for the logarithmic derivative with respect to the variable 7.

This motivates the following definition

Definition 4.11 Let § = >, no rezy sz M(do,7)[do, 7] € D(Ny, £)® be a good di-

wisor then we associate to this divisor four families of Fisenstein series. We set

(1) Fro(T) = >4, don(do, ) Ey(r, doT),
(2) Fys(r) = g, do (52 1) EL(r,doT),
(3) Grs(T) =>4, don(do, ) E}(r, doT),

(4) Gis(r) = Lo, d™'n (52.7) Bulr dor),
and also

Frsp(t) =Y n(do,7)doEyp(r,do7)

do,r
= Z don(do, ) Ey(r,dot) — p** Z don(do, ) Ex(p~'r, dopT)
do,r do,r

= Fs(1) — p" P s(pr),

where the last equality uses the fact that pxd = 6. Similarly we define

(1) Fys,(T) = Fis(m) = p" 1 Fy5(p7),
(i1) Grop(T) = Grs(T) — P 1Grs(pT),
(i41) Gis,(T) = G 5(T) — pk_lG,*;(;(pT).
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The motivation for these definitions is justified by the next proposition:

Proposition 4.10 Let 0 = >, n rez/s27(do,7)[do, 7] € D(Ny, ) be a good

divisor then when the weight is equal to k = 2 we have

(1) dlog Bs(7) = —24mifFys(T)dT

(2) dlog Bs,(7) = —24mifFos,(7)dT
and similarly

(3) dlog B5(1) = —24miFy 5(7)dT

(4) dlog 63‘7[)(7) = —247TZ‘F2*’5,p(T)dT.

Moreover the Eisenstein series Fys(1) and Fy 5(7) are related by the formula
(4.25) Fros(WinoT) = (—=7)"NoFy 5(7),

0
where Wiy, = (
fNo

are related by the formula

—1
0 ) . And similarly the Eisentein series G 5(7) and Gy, 5(7)

Grs(Wine) = No(f7)° Gy 5(7).

Proof All these identities are straight forward computations. [
Remark 4.15 For [ a prime number coprime to fNy; we have
To(D) Frs(2) = (1 + ") Fs(z2).
Similarly for [ a prime number coprime to pf Ny we have
Ti() Frsp(z) = (1 + 1) Flsp(2).
Moreover equation (4.21) shows that for any k& > 2 we have
UpaFrsp(2) = Frop(z).
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The group I'o(fNo) (resp. T'o(pfNp)) acts transitively on the family

{Frs.(T) Yre/rny o)

(resp. the family {Fy s, ,(7)}rez/fz)</py). The same thing also holds when we take
the dual Eisenstein series [} ; (7). Everything is straight forward except the U, q-
invariance. For the latter , we use the fact that p x 6 = § combined with equation
(4.24).

Remark 4.16 Because § = ),  n(do,7)[do, 7] is good we have for every r €
Z[[Z that 3, v n(do,r)dy = 0. This last condition implies that Fjs(2) and Gys(z)
are holomorphic at oo = §. Similarly we have that F}/ ;(z) and Gj, 5(z) are holomorphic

at 0.

5 The Z-valued measures p,{c; — ¢} and the in-

variant u(d,, )

5.1 7Z-valued measures on Pl(@p)

Let 0 # 6 € D(Ny, f)®) be a good divisor. Consider the family of modular units

{Bs,.0(T) Yre@/s2)% ) ) -

To such a family we want to associate a family of measures. Before defining the

measures we need to define some suitable subgroups of matrices of GLQ(Z[%]).

Definition 5.1 For quantities p, f, Ny fixed we define

(1) Ty = {( Z ) € GLI(Z[1/p]) : ¢ = O(mod [Ny)},

(2) Tg = {y €Ty :det(y) =1} = {( Z Z ) € SLQ(Z[%]) :c=0(mod fNy)},
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(3) Ty = {( Z Z > € SLy(Z[})]) : a = 1(mod f),c = 0(mod fNo)}.

(4) T = {( CCL 2 ) € SLQ(Z[%]) ca,d = 1(mod f),b,c = 0(mod fNy)}.

Obviously one has the inclusions fo DIy 2TI7 DTI. Note that the group fo =

(PO
(To(fNo), P) where P = < 01 )

Remark 5.1 We have an almost transitive action of I'y on B where B is defined

as the set of balls of P*(Q,). One has B =To(Z,) [[To(P*(Q,)\Z,).

We can now define a family of measures. For the rest of the subsection we assume
that § € D(Ny, f)® is fixed good divisor.

Definition 5.2 Let (c1,co, k) € To(fNo)(ico) x To(fNo)(ico) x (Z/ fZ)* /{p). Let
B € B be any ball of P*(Q,). If B is inside the coset SLQ(Z[%])(ZP) set € = 1 otherwise
set e = —1. If e =1 choose v € I" s.t. vZ, = B. If e = —1 choose v € I' such that
vZ, =P (Q,)\B. We define

v lep

(5.1) pifer = e} (B) = eg [ dloBs_, ().

e v1ey

b
where v x k = dk(mod f) for v = ( ¢ p ) eIy C SLZ(Z[%]). It makes sense to
c

reduce d modulo f because its denominator is at worst a power a p which is coprime

to f.

Note that Stabr,(Z,) = To(pNo) N To(f) = Lo(pfNoy). Therefore since the modular
units in {85, »(7) bke/r2)% ) are To(pfNo)-invariant in the sense that

ﬁ%m;p(’w—) - ﬁ&wp(T)v
we get that (5.1) is well defined.

We can now state the main theorem of the section
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Theorem 5.1 There exists a unique system of measures indexed by
[o(ico) x To(ico) x (Z/fZ)" /(p)

satisfying the following properties: For all (c1,co, k) € T'g(ico)xTg(ic0)x(Z/ f7)* /{p)

(1) m{er = e} (PHQ,)) =0,
(2) m{er = 2} (Zy) = 55 [ dlogBs, p(7),

(3) (To-invariance property) For all v € Ty and all compact open U C PHQ,) we

have

tye{yer = e} (VU) = p{er = 2} (U).

Proof The U, ,,-invariance of the (5, ,(7)’s implies that p;{c; — c2} are distributions
on PH(Q,). Also since Ve € T'o(fNp)(ico) we have S5, ,(c) = 1, the line integrals
can be interpreted as the winding number with respect to the origin of a closed path
Bs, »(C) where C is an arbitrary path joining v~ 'c; to v !¢y, So we really get Z-valued
measures. The I'g-invariance comes from the definition of the measures. Finally the
uniqueness follows from the properties (1)-(3) combined with the fact that I'y splits
B into two orbits. [

Remark 5.2 Theorem 5.1 gives us a partial modular symbol of Z-valued mea-

sures on P1(Q,) i.e.

po{_— } :Tg(ioco) x Ty(icc) x (Z/fZ)* {p) — {Z-valued measures on P'(Q,)}

(c1, 0, k) — ppf{cr — 2}
Note that the image of - {- — _} lies in the set of ['j-invariant measures.

In the next subsection using explicit formulas for the moments of those periods

we will see that this modular symbol is odd in the sense that

—C2 Cc2

dlogﬁé_k,p (T) = dlogﬂ&mp(T)v

2 ), 27 J,,

in other words p_x{—c1 = —c2}(Z,) = —p{c1 = 2 }HZ,).
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Remark 5.3 Finally it should be pointed out that the U, ,,-invariance of s, ,(2)

combined with the fact that pxd = § implies that the measures constructed in theorem

~ 0
5.1 are in fact 'y := (I, ( Z(; ) >>—invariant, see Proposition 5.13 of [Dar01].

We have a notion of a dual family of measures.

Definition 5.3 Let ¢y, ¢y € ['g(0). We define pi{ci — 2} as:
Y e

* 1 *
(5.2) pides > (B =g [ dlogd ()

where ¢ = 1 if B € TyZ, with ¥Z, = B and ¢ = —1 if B € T((P*(Q,)\Z,) and
YLy = Pt (Q@)\B.

We have an analogue of theorem 5.1 except that «xr is replaced by v *r and the set
of cusps of T'g(fNy)(ico) by the set of cusps T'g(fNy)(0). Note that yxr =~"1xr.

The reader also will have no problem to formulate the analogue of theorem 5.1.

5.2 Periods of modular units and Dedekind sums

This section might be skipped at the first reading. We included it only for the sake
of completeness. We use Dedekind sums to give explicit formulas for the periods of

the modular units considered in theorem 5.1.

Let us start with a very general principal which comes from calculus

Proposition 5.1 (general principle) Let G C SLo(Z) be a discrete subgroup. Let
X be the two dimensional compact surface (real dimensions) defined by X := H* /G
where H* = H UPYQ). Let f(r)dr be a C*®-closed 1-form on H U {oo} which is
G-invariant. Then for any fixred g € G the quantity
gx
f(r)dr

T

does not depend on the base point x when x varies inside H U G(ico).
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Remark 5.4 In the previous proposition we assume that the path of integration
between x and gx to be “nice”, i.e. that it is contained in a contractible path inside
H U G(ic0).

Proof First of all the integrals do not depend on the path of integration since f(7)dr
is a closed C*° 1-form. Let z,2" € H U G(ico) be arbitrary points. Let C,C’ be
arbitrary curves joining z, gx and z’, gz’ respectively. Let C” be a curve joining the
points x and x’. Note that the curve gC” joins the points gz and gz’. Now integrating
counterclockwise on the closed curve C' U C” U C" U gC” (the bar takes into account
the orientation) and applying Stoke’s theorem we obtain 0. Since [, f(7)dr =
— [,z f(7T)dr we deduce that [ f()dr = [, f(r)dr. O

Let 6 = >, . n(do,7)[do, 7] € D(No, )P be a good divisor that we fix until the

end of the subsection. We want to give explicit formulas for

Lo dlog(u(z))dz

271 J .,
in the case where u(z) is the modular unit B5(z) or B, (2).

Let a = (a1, a9) be rational numbers contained in the interval [0, 1[. Since g,(7)
has no zeros in ‘H we can define the logarithm of such modular units on H. We fix a

branch of log g,(7) by setting

10g(ga(7)) = miBs(a1)7 +log(1 — ¢=) + > _(log(1 — ¢'q=) + log(1 — ¢}'q_-)).
n>1
For |z] < 1 we define log(1 —x) := — ) ., "/n. Because of the assumption on ay, a
we have that 0 < [¢?¢.] < 1 and 0 < |¢lq_.| < 1 for 1 < n where z = a17 + ay €
C,7 € H. We define ~: Q* — [0, 1[? be the function for which (u;,us) € Q? goes to

(u1,us) = (a1, az) with u; = a1(mod Z) and uy = as(mod Z).

Definition 5.4 Let (a1, as) € (+Z)* and v € SLy(Z). We define the ~y-period of

the Siegel function g,(T) to be

v

(5.3) ma(7) = (log ga(y7) — log ga5 (7)) [r=ic € oL
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Remark 5.5 Up to a multiple of iw those periods are rational since

9a(77) N = gy (1) ¥y € SLy(Z).

In fact, using the I'(V)-invariance we see that any element 7 € H U T'(N)(ico) can
be used to compute the period m,(y). This is an application of Proposition 5.1 to
the 1-form -£ (log g5(77) — log gz (7)) on the curve X (N). In practice we will take
7 = ioco. Note also that (5.3) depends only on the image of a in (Q/Z)*[N].

A property satisfied by those periods 7, () is the so called cocycle condition.

Proposition 5.2 Let v1,72 € SLy(Z) then ma(7172) = Ta(11) + Tays (72)-

Proof We have m,(7172) = log ga(71727) — logg (1) where 7 is any point in the

ayiv2

upper half plane. We also have log gz (71727) — 10g ga; (727) = 7o (71). It thus follows
that 7,(7172) = 7a(71) + 108 gz (V27) — 108 gam; (T) = Ta(M1) + Tamy (72). T

b
Proposition 5.3 (Schoéneberg) Let v = ( ¢ p ) € SLy(Z) and r,s € Z, not
c

both congruent to O modulo N then

i (%Ez(%) + gég(%) — 2sgn(c)sh: sy (a, c)) if ¢ #0;
)

e (%
mi2 By (& if ¢=0

/ ) and sévr s)(a, ) 1s a twisted Dedekind sum:

)

2
=

S
>
cm
a3
—~
|~
2w
~——
VR
o Q
Q, o
~_
Il
—~
z|x
z|=

N B ~ (r+iNY\ ~ (7" +aiN
(@)= Bl( N )Bl (T :

Proof See p. 199 of [B. 74].

For N > 1 we have the double coset

SLy(7Z) ( jg ? ) SLy(Z) = HSLQ(Z)Q;,.
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where the x;’s can be chosen as upper triangular matrices of the form < 3 Z ) with
a,d>0,ad=Nand 0<b<d—1.

Definition 5.5 For a matriz v € SLy(Z) we define Tn(y) and Ry(7) to be ma-
trices such that < ](\)[ (1] ) v = Tn(v)Rn(vy) where T(y) € SLy(Z) and Ry(7y) is

equal to a unique representative x;.

c

N Lo\ [ a N
TN = 0o1) Vo 1) \en a )

Remark 5.6 Note that the map 7 +— (V) induces a group isomorphism from
[o(N) to TO(N).

a b
For any matrix v = ( > € SLy(Z) it is also convenient to define

b
Proposition 5.4 Let § € D(Ny, f)® and r € Z/fZ. For any ( ¢ p ) =7€
c

Lo(fNo) we have

(54) (o fs (7)) ~lorfs (1) = 3 3 nlde, Kmies o (Tyap (1)

(7
kEZ/ fZ do| No

and

(5.5) Tg(logﬁér(pw) log B5, (p7)) = D D nldo, K)ot ) (Typa, (7))

k‘GZ/fZ d0|N0

Proof We only prove the equality (5.5) since (5.4) can be proved in a similar but

simpler way.

Let v € T'o(fNy). We compute:

log s, (py7) — log Bs, (pT)

= > > n(dok) (logg (fdop’YT) 10gg( (fdopT))

k€EZ/ £ do|No
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do 0
We can write ( p]; 0

1 ) Y = Tosao (V) Ropao(7) for Tygay (v) € SLa(Z) and Rpjay(7)

is some primitive upper triangular matrix of determinant pfd, that will be chosen

later. We thus get

— Z > n(do, k) (loggfr(fdomf)”—loggfr(fdopf)”)=
(770) 770)

(
keZ/fZ do|No s

(56) > Y n(dok (logg(%)(Tpfdo(V)Rpfdo( )T) — logg( (pfdoT))‘

k}EZ/fZ d0|N0

But
(5.7)
log 9o (Tptao (V) Rppao(7)T) = log 9(et VT (7)(Rpfdo (N7T) + 7zt o) (Tprao (7))

Substituting (5.7) in (5.6) we get that the right side of (5.6)

(5.8) = Z > nldo, kK)mex ) (Togan (1) +

€(Z/fZ)* do|No

> n(do,k (logg(%oﬁdo(v)(Rpmo(v)T)—logg(gc,o)(pfdof))'

k€Z/ fZ do|No

It remains to evaluate the second term of (5.8).

pfdy 0

If plc we can take R,fq,(7) = ( 0 1

). However when p t ¢ we take

d dyg
Ryyan() = <f00 / v

1= %(mod p). Note that j does not depend on dy. In order to evaluate the second

) where 1 < j < p — 1 is chosen in such a way that

term of (5.8) we let 7 — ioco and we use the explicit formula for the matrices T}, 4, ()
and RPfdo (7)

Ay By A B,
Let Tpra,(v) = © " ] and Rppa,(v) = © "% ]. Note that by
pJao Cdo Ddo pJao 0 CL,io
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assumption By = 0 if p|c and B, = jdof if pfc . One finds

lim > ) n(do, k) (1ogg v o (Rygag (7)) —log g <pfdm) =
T—100 ( i ,0)T, ( 7 ,0)

keZ/ fZ do|No )Tpfag (V)
i Ay T+ By,
Jim Z Z n(do, k) (10g9(r,:;;0)(0—é0) — log g(%)(Pfdor) —0.

ke(Z/ f7)* do|No

For the last equality we have used the the fact that ), n(do, k)dy = 0 for all k €
7/f7. O

We end this subsection by rewriting the formulas obtained in proposition 5.4 in a

more compact way.

a
Proposition 5.5 Let v = (
c

b
4 ) € Lo(fNy) where ¢ # 0. Then we have the

following formulas:

(5.9) pitioo — (ico) HZy)
1 (log s, p(y7) — log Bs, »(7))

~ om

= —12- sign(c) Zn<d07 r) (Dqln,jl(ml)d f)(a, c/dy) — Dﬁ(mOd P (pa, c/d0)>

do,r

For the definition of DIE{"Od D(a,c) see Definition 11.1.

5.3 The modular symbols are odd

b —b
Let [ p ) =~ € I'g(fNy) then we define the involution v* = ( “ p ) Note
c —c

that for v1,v2 € To(fNg) we have (7172)" = vivs. Let also 2zt = —Z be the natural

involution on #H then we have y'z* = (y2)".

One can also verify that Tiy(7)* = Tw(7*). Remember also that the function B,

is odd. Using the previous observations we deduce the important equality

sé\%,o)(a, —c) = —sé\%vo)(a, c).
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It thus follows that

(5.10) T(5.0(V) = =T(5.0(7).

This last equality is important because it tells us that the family of measures con-

structed in theorem 5.1 give rise to odd modular symbols. So using the explicit

formulas in Proposition 5.4 we get the following proposition:

Proposition 5.6 Let u(z) = Bs(7) or Bs,(7). Then we have

—cC2 Cc2
/ dlogu(z) = —/ dlog u(z)

for any c1, ¢y € To(fNo)(ico).

Proof Let v1,72 € I'o(fNy) be such that v (ic0) = ¢; and ,(ico) = co.

vj(ic0) = —7;(ic0) = —¢; (j = 1,2) we find that

/ dlogu(z) = —/ dlog u(z +/ dlog u(z
c1 100 100
:/ dlog u(z / dlog u(z
= —/ dlog u(z).

where the second equality follows from Proposition 5.4 combined with (5.10).

5.4 From H to Z/fZ x HS(Ny)

Since

We would like to generalize theorem 3.1 to real quadratic number fields. Unfortu-

nately one cannot evaluate modular units on a real quadratic argument 7 € K since

K NH = 0. What one does is to replace H by the p-adic upper half-plane H, :=

P'(C,)—P(Q,), equipped with its structure of a rigid analytic space. We take the op-

portunity here to introduce some useful notation that will be used for the sequel. For
any Z-module M C C and a prime number p, we define M® := M[%] ~ M ®y Z[}l’].
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Let p be a prime number inert in K. Choose a Z-order O C K and fix a positive

integer N coprime to p. In [DDO06] they associate to such data the set

(5.11) HON) =HO = {r e H,: 0P = OF) = 0P 7 77 > 0},

p

where O, = Endg(A;), A = Z+ 77 and Gk = {1,0}.

Remark 5.7 Note that (5.11) differs slightly from [DDO06] since in their setting

O is assumed to be Z[é]—orders instead of Z-orders. Therefore there is no need to
tensor over Z[%]' This has the obvious advantage of simplifying the notation in (5.11).
However having in mind of using the notion of discriminants (covolume) of lattices,

we have decided to work with Z-modules.

@
P

be fixed. One can verify that the set ’Hf is nonempty if and only if there exists an
O-ideal a such that O/a ~ Z /N, this is the so called Heegner hypothesis. In the spirit
of the remark 3.1 we propose the following distinguished subset of 'Hf (N) = Hf .

Implicitly in the definition of H;’, there is a level N structure which is assumed to

Definition 5.6 Let K be a real quadratic number field. Let p be a prime number
inert in K. Fix a Z-order O of K. Let f(called the conductor) be a positive integer
coprime to p - disc(Q). Let Ny (called the level) be a positive integer coprime to pf.
To such data we associate the distinguished subset Hf(No, f) C HS(NO) where

HO(No, f) = {1 € H,: OP = O = 0W (AP, f) =1,7 > 17},

where Ggg = {1,0}.

The notation (A(Tp ). f) = 1 means that A?, as an O®)-ideal, is coprime to fO®). We

have a natural action of

~ a b 1 B
[y := { ( p ) € GL;(Z[]—)]) ¢ = 0(mod fNO)}

c

on the set Z/fZ x HS (Np) given by

a b ar +b
(c d>*(/€,7)— <dk’c7'—|—d>’
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b ~ -
where v = “ p € I'p. Note that the quotient (Z/fZ x HS (No, f))/To is finite
c

(This will be proved, see (5.13)). We now define a map that allows us to go from
Z]fZ x M (No, f) to OP)ideals.

Definition 5.7 We define a map Q (which depends on O,p, Ny, f)
Q:Z/fZ x HY (N, f) = Low
where Iow stands for the monoid of integral OW)-ideals of K by the following rule:
(r,7) = A AP

where A, € Z~q is the smallest integer such that the following two conditions

(1) Ay =7 (mod f),

(2) AAP s O integral,

hold true.

Remark 5.8 This remark gives an explicit description of the integer A,. Let
(r,7) € Z/fZ x HI (N, f) and let Q,(x,y) = Az® 4+ Bay + Cy>. Write A = p"Ag
where (4o, p) = 1. Let Q(r,7) = A,A”. We have

AN = (ATZ[]%] v (ﬂ) Z[i]) ,

where disc(O) = D = B*> — 4AC. By definition we have AAY is OW) integral, i.c.,
AAP C b = (Z[}l?] + \/EZ[]%]) It thus follows that Ag|A,. Because (A,, fO) =1
we have (A, f) = 1, so there exists a unique integer s such that 1 < s < (f — 1) and
sAp =r (mod f). Note that SAOAS—p) is OP)-integral. We readily see, by definiton of

A,, that A, = sAj. It thus follows that sA = p"A,.

Definition 5.8 Let (r,7),(r',7") € Z/fZ x 7—[}‘?(]\707]")' Let Q(r, ) = AAP and
Q(r', 1) = A'T,A(p). We say that (r,7) ~ (r',7') if and only if there exists a totally

T/

positive element

AE 1+ fQ@r', 7)1,
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Remark 5.9 One should be careful since in genral if Q(r,7) = A(r, T)ASP ) and
Q(r, NoT) = A(r, NOT)A%T then the integer A(r, 7) is not necessarily equal to A(r, NoT).

Remark 5.10 Note that if (r,7), (r',7') € (Z/fZ)* x HS (No, f) we have that
(r,7) ~ (r',7') if and only if there exists a A € Qow ;(fo0) such that

<ATA§p), A,,A%()JT)> = ()\ A A®) |\ A,,,A%T,) ,

We have a natural identification of ((Z/fZ)* x HS (No, f))/ ~ with

{(L, M) : pairs of Z[+]-modules of rank 2 in K, Endy (L) = Endg(M) = O

1
p

(L, fOW) = (M, fOP)) = 1,and L/M = Z/NoZ}/Qow 1(fo0)}
which again can be identified to

{(L, M) : pairs of Z-modules of rank 2 in K, Endx(L) = Endg(M) = O
(L, fO) = (M, fO) = 1, and L/M =~ Z/No}/(Qo.(fo0), (p)).
This identification will allow us to view ((Z/fZ)* x HS(No, f))/ ~ as a disjoint

union of finitely many copies of a certain generalized ideal class group attached to

0w = o[l].

Let us assume the existence of an O®-ideal a such that O®) /a ~ Z/NyZ. Then

there exists an inclusion

(5.12) Low (f)/Qow 1(foo) = (Z/fZ)* x Hy (No, f))/] ~
given by the following rule:

Choose an invertible O®)-ideal a <t O®) coprime to f such that O®) /a ~ Z/N,yZ.
Then for an ideal I € I,u) (f) we associate the pair (1, al). A calculation shows that
there always exists a A € Qo 1(foo) such that (1,al) = )\(AASP), AAS\]?ST) for some

integer A and 7 € K. Obviously this map is an inclusion. However it is not canonical
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since it depends on the choice of the ideal a. The number of distinct inclusions as in
(5.12) is in bijection with

(5.13) {a < O : ais an invertible O-ideal and O/a ~ Z/NyZ}.

Class field theory gives us an isomorphism

—1

Low ()/Qow 1 (fo0) = To(f)/(Qoi(fo0),p) "= Gy (ee)Fre) /i

where Hp(foo) is the abelian extension of K corresponding to Io(f)/Qo.1(foc) by
class field theory. We let L := Hp(foo){f"e be the subfield of Ho(foo) fixed by the
Frobenius at pO = p. Therefore in this case we get an natural action of Gk on
(Z] fZ)* x HS (No, f) given by the following rule

rec ' (b) x (L, M) = (bL,bM).

Obviously this action is simple but in general not transitive since (5.13) could be of

size larger than 1.

The next two lemmas show that ~ is equivalent to the action of fo when restricted

to the set (Z/fZ)* x HS(No, f). Before proving the two lemmas we recall some

b
useful identities about quadaratic forms. If v = ( ¢ p > € GLy(Q) we define
c

d —b
v = . For 7 € K\Q we define

—C a

@T(a:, y) = (x —1y)(z — 7%).

A formal computation shows that for all 7 € K\Q and v € GLy(Q) one has

t
~ T ~

(5.14) Q- [(fy* ( )] = Ngjgler + d)Qq- (2, y).

From (5.14) we may deduce that for any 7 € K\Q and v € GL3 (Z[3]) that

1
p

(5.15) p”A@T [(’y* ( :; )] = p" ANk g(cr + d)@w(x, y) = Qyr(z,y)
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where A is the leading coefficient of Q,(z,y) = Az? + Bxy + Cy* and n is suitably
chosen integer such that that all the coefficients on the binary quadritic form of the

left hand side are integers which have a greatest common diviosr equal to 1. Let

Q- (z,y) = A'a? + B'zy + C'y?. From (5.15) we deduce that

(1) A= Ad*> — Bdc + C¢?,
(2) B'= —2bdA + daB + bcB — 2acC,

(3) C" = Ab* + Ca* — bBay,

Lemma 5.1 Let (r,7) € Z/[Z x HS(No, f) and vy € To. Let Q(r,7) = A AP
and Q(r', ") = A’T,ASI,)) where vy xr = r’' and y7 = 7. Then there exists a totally

positive element X € 1+ fQ(r',7')~! such that
AALAD NALAY) ) = (A AP, AN ).

In other words the relation of equivalence ~ on Z/ f7. x ’HZ?(NO, f) is To-invariant.

Proof Let v = ( ¢

C

a b T 77 T T ct+d 0
(5.16) - .

c d 1 1 1 1 0 ct? +d
where 7 — 772 > 0 and 7" — 777 > 0 and ad — bc > 0. Taking the determinant we
deduce that sign(ct + d) = sign(ct® + d). Let Q.(z,y) = Az?* + Bry + Cy? and
Q. (z,y) = A2 + B'zy + C'y2. 1. Because (AP, fO®)) = (AD)| fO®)) = 1 we have
(A, f) = (A, f) = 1. Without lost of generality we may assume that B> — 4AC =

(B')? — 4A'C" = D otherwise replace T — p™7 for some suitable integer m. We have
_ —BQ—;@ o _ —BQ—A\/B  — =BAVD (o q ' — =B VD W have

b ~
p ) € 'y and set y7 = 7" and v+ r = /. We have the identity

’ 2A' 24’

- )

WA _ L oam
AN = E(’) P

'Notice that it is the only place in the argument where we used the fact that (A4’, f) =1
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From the previous equality we deduce that

A/
AP, = (A AD) T = 0@, )

(517) A;, (e

From the two equalities Q(r,7) = A, AP and Q(,7) = ALAY | we deduce that
Al, = A,d (mod f). We have

A
Ser+d) (ALAD) = 4,AP),

Because A, AY and A, AP are O®)-integral we deduce that

A, AN
(5.18) (e +d) € A AP (AL APHT

Since 1 € (A;,,A(ﬁ))_l we deduce that

et d) € 1 (ALA)

which can be rewritten as
(5.19) Arer € AL —dA, + A'Niryo

where the last relation used (5.17). Finally we can rewrite (5.19) as

rAc (#) =rc (ﬂ) € (A, —dA,) + (A'Z + (%ﬂ) Z) .

Because f|c and f|(AL —dA,) and ? (A’, f) = 1 we may deduce that

A
ATCT € (A;/ — dAT) + fA/A(T/)o' — A_/T(CT + d) c 1 + fQ(’I"/, 7_/)—1.

Now set A = jf,r (et +d). Replacing A by (1 — f)A if neccessary may assume without

lost of generality that A > 0. We have thus succeded to construct a totally positive
element A € 1+ fQ(r',7)~! such that AQ(r', 7/) = Q(r, 7).

Similarly, since O = (9%’37 = OW one has

AT C A;/ (p) AT (p)
A;, (FONOT + d) (FOA]\I;O,F/> = FOA]\I?N_,

2Notice that this is the only place in the proof where we use the assumption (A’, f) = 1
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and therefore

A, A,
A e AE\Z;O)T/ -

_A(p) ‘
NO NO NoT

This concludes the proof. [

Now we want to prove a partial converse (under the assumption that (r, f) = 1 of

the previous lemma. r € (Z/f7Z)*.

Lemma 5.2 Let (r,7),(r',7') € (Z/fZ)* x HS(No, f) be equivalent under ~ so
that there exists A\ € 1+ fQ(r',7)~" such that

AALAD NALAY ) = (AAP, AN ).
Then there exists a matriz v € Lo such that
v (r', ') = (r, 7).
Proof Let Q(r,7) = A AP and Q@' ) = A’T,A(ﬁ). Since (r,7) ~ (r',7') there
exists a A € 1+ fQ(r,7)~! such that
(5.20) AAAP AAAD ) = (ALAD ALY ).
By looking at the first coordinate of (5.20) we get MNP = A;,Ag). Therefore there

b
exists a matrix v = ( ¢ p ) € GLQ(Z[]%]) such that

C

(5.21) <ZZ><T1/>:A,§'T,<I)'

. ar’+b _
In particular we have 5= = 7.

Let ¢ : A — A% be the natural Z[;]-module isomorphism defined by ¢(1) = 1
and ¢(7') = 7. Note that the restriction |, induces an isomorphism |, )
NOT’ NOT/

AP — AP which sends 1~ 1 and No7' — Nor. Let ¢ : A® — A®) be the

Z[%]—module isomorphism induced by multiplication by A ;;‘,T ,s0 (1) = A Z‘f -1 and

Y(T) = A4=7". We thus have ¢ o ¢ € Autg1,(Ar). By equation (5.21) we readily
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see that the matrix corresponding to ¢ o ¢ with respect to the basis {1,7'} is v =
a b
¢ d)

Using the second equality of (5.20) we get A4 Ag\’,’gT, = ASQT. From this we deduce

that ¢ogp(A§§37,) = A%w- In other words the automorphism oy preserves the lattice
AS\IZT,. Therefore the matrix corresponding to 1oy with respect to the basis {1, Ny7'}

bV,
has coefficients in Z[}D]. But this matrix is nothing else than ( /C]LV do > We
C/No

thus conclude that Ny|c.

Because (', 7') € (Z/fZ)* x HS(No, f) we have (’)g) = (’)5537, = 0P Let
Q. (z,y) = Ax? + B'ay + C'y? and Q. (z,y) = Ax® + Bxy + Cy*. Without lost of
generality we can assume that B* — 4AC = (B')?> — 4A’C" = D otherwise replace

. . p— / —
7" — p"7’ for a suitable integer n. We have 7 = =BAVD and 7 = %ﬁ. From

2A7
(5.21) we deduce that

/

AL A
Zler s d)=rel Qe T =1+ fA—,/AE",’).

Now using the fact that (A/,, f) = 1 we deduce that f|c. Also one has r'd = r
(mod f). It thus follows that v € Ty and

v (', 7)) = (r,7).
This concludes the proof [

Corollary 5.1 The relation of equivalence ~ on (Z/fZ)* x ’HS(NO, f) is equiva-
lent to the equivalence relation induced by the action of Ty on (Z] fZ)* X HS (No, f)-

0
Corollary 5.2 Let (r,7) € (Z/fZ)* x HS(No, f). Since (g ) x (r,7) =
p

(pr,T) we deduce that the first coordinate is well defined modulo the action of p in the
sense that (p"r,7) ~ (r,7) for alln € Z.
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5.5 Construction of the K -points u(J,,7)

The family of measures constructed in theorem 5.1 will enable us to construct K*

points. Note that K, is the unique quadratic unramified extension of Q, so
Of(p ~ pp2_1 X (14 pOk,).

In this section we assume that § € D(Ny, f)® is a fixed good divisor. We remind
also the reader that

(1) Ty = {( ¢ Z ) € GL;(Z[%]) :¢=0 (mod fNo)},

(2) T = {7 e Ty : det(y) = 1},

(3) I't = {( b ) € SLQ(Z[I%]) ca=1(mod f),c =0 (mod fNO)}

(4) T = {( ¢ Z) € SLy(Z[L))  a,d = 1(mod f),b,c =0 (mod fNO)}.

C

Definition 5.9 Let k € (Z/fZ)*. Let also ¢1,cy € To(ico) and 11,72 € H, N K.
We define

T2 fe2 t— T
/ / dlog B, ,(7) = / log, (t ) di{cr — e} (1),
Lo P1(Qp) !

where pp{ci — ca} is the measure of Theorem 5.1 for the for the modular unit (s ,(T).

Since the measures p{cy — co} are Z-valued it makes sense also to define a double

multiplicative integral

T2 pe2 t— Ty prici—c2}(Us)
.22 dl = li ’
(5.22) 7{1 /C1 0g B, p(T) CZI{I&} 1:[ <ti — 7’1)

Where the limit goes over a set of covers that become finer and finer.

Definition 5.10 Let 7 € H,NK,, fir an x € I'y(ico) and k € (Z/fZ)*, then for
all v1,7v2 € Iy we define

1T Y1y2x
/fx,(k,r)(%;%) = 7[ / dlog s, p(7) € K;
T Y1
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We let the group I'g act trivially on K. We have the following proposition.

Proposition 5.7 The 2-cochain kg - € CQ(FO,KPX) is a "twisted” 2-cocycle

satisfying the following relation:

(dﬁx,(k,T))(%, V2, 73) = Rz, (k,7) (72, 73) = R (v tek,T) (727 73)

for all v1,72,7v3 € To. In particular (dkqr))|r, =0, i.e. kg pnlr, € Z°(T1, K)).

Proof We compute:

(d’ix,(k,’r))<’)/17 Y2, 73)
= TR, (k1) (’72, ’Ya) — R (k,7) (7172> 73) + Kz, (k,7) (’717 ’72’73) — Ra,(k,7) (’Yla 72)
= K (k,r) (72, 73) = Ky (lyr) (V1725 V3) + Ea, e,y (V1 V273) — B, (o) (715 V2)

Y23 TLV2T  LYLV2Y3T
/ / dlog fs, »( / / dlog f3s, »(2)
"2z Y1722
Y1Y2v3T T1Y2
/ / dlog 551@ P / / dlog /Bék p( )

where the second equality follows from the trivial action of I'y on K. Let m(m) =
a € Z[%]. Using the invariance property of the measures under I'y we can multiply the
bounds of the integral of the second term by ;' at the cost of replacing k& (mod f)
by ak (mod f). So we find

Y2Y3T Y273
(5.23) / / dlog S5, »( / / dlog 85, »(2)
V2T "1 7 e
TT V17273 YT Y17y2Z
/ / dlog s, (2 / / dlog fis, »(2).

Rearranging the first two terms together and and the last two in (5.23) we get

~Yoy3E Y27Y3%
— / / (dlog Bs, () — dlog S5, , (2) / / dlog f3s,,, ()
ot i e
YT Y17Y27Y3T
/ / dlog f5, (=)
Y1v2x

V2T Y273
_ / / (dlog Bs, »(2) — dlog Bs,, (=)
.

= Ko k) (V2,73) = Ka,(ak,r) (2, 73)-
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In particular if @ is congruent to 1 modulo f the right hand side of the last equality
vanishes. We thus have that g |, € Z°(T', K) and kg om0 € Z*(0, K)). O

We can now state one the main theorem of the paper.

Theorem 5.2 The 2-cocycle K/m,(kﬂ—)‘rl 15 a 2-coboundary i.e. there exists a 1-
cochain py . € C'(I'y, K)) s.t. d(pe,k,r)) = K,k T -
Proof See Theorem 6.2 where we give an explicit splitting of sy (- |r,. O

The theorem 5.2 will allow us to define points in K.

Let py ) € C’l(I’l,KPX) be such that dpg k) = K. Let I'iy = {y € Ty :
v7 = 7}. By Dirichlet’s theorem we can identify I'; . with Z/2Z x Z. Let v, be the

()7

where 1 < € is a positive generator of I'; . /{£1}. When red(7) = vy (see chapter 5 of
[Dar04] for the definition of red) we have (+v;) = Stabr,(sny)(@-(2,y)), see Lemma

unique matrix in I'y ; s.t.

9.1. In particular, when red(7) = vy, the matrix v, has integral coefficients. We have

a similar thing if we replace I'y by T'.

Proposition 5.8 The I-cochain pyr)|r, , modulo Hom(I'y, K)|r, . does not de-

pend on x.

Proof Let z,y € T';(ic0). So we want to show that
pmv(kﬂ—)h—‘lﬂ' - pyv(k77)|rl,7' E H0m<rl7 pr)’r‘ln' = Zl<rl7 pr)’FI,T'
This is equivalent to show that

(dpx7(k?77—))|rl,7' - (dpyv(va)>|F1,'r = 0

The last equality means exactly that (kg k) — Ky k7)) |1, = 0.
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Let 71,7 € I'y. We have

Y1T Y172% Y1T Y1772Y
ooty (V13 72) — Fosgomy (11272) = / / dlog 85, () — / / dlog 85, (%)
T Y T Y

1T 1Y

Y1T Y1Y Y1T Y172Y
_ / / dlog By, (=) — / / dlog B, »(2)
T Y1T T Y172
Y1T Y1Y Y17Y2T Y172Y
- / / dlog B, (=) — / / dlog B, (=)
T Y1T T Y17Y2%
Y17Y2T Y1772Y
n / / dlog B, »(2)
Y1T Y1722

Now applying ;' to the bounds of the third term of the last equality (note that
7' x k = k) and setting

YT Y
o) = / / dlog B, (=) € C' (T, K).
T ~yT

we get

Cay(V2) = Cay(1172) + Coy(M1)
= (dery)(11572)

We thus have proved that d(ps,k,r)—pPy,(k,7)—Cay) = 00n 1. SO Py (k,7) =Py, (k;7) —Cay €
Hom(T'y, KY). Finally evaluating at v, and using the observation that ¢, ,(v;) = 0

proves the claim. [

Remark 5.11 The group Hom(T';, K) is finite group. This comes from the fact
that (I'1)® = I'y/[y,T4] is finite, see [Men67] and [Ser70]. It thus follows that the
exponent of the finite group Hom(T';, K ) divides p? — 1.

It now makes sense to define the following K points:
Definition 5.11 We define the K invariant

U(ka 7_) = U((Ska T) ‘= Pz,(k,T) (77) = P(k,7) (’77) € K; /:upQ—lv

b
where (£7,) = Stabr, (1) such that ct +d > 1 for ~, = ( ¢ p )
c
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Remark 5.12 Implicitly in the notation for p(; - and u(k, 1), a good divisor
5 € D(Ny, )
is fixed. So it is important to keep this in mind!
Proposition 5.9 Let (r,7), (', 7') € (Z/ fZ)* x HS (N, f) be equivalent then

P(r,7) (’77') = P>, (77") .

a
Proof By Lemma 5.2 there exists a matrix n = (
c

b -
J ) € I'y and integers A,, A,

such that

where A € 1+ Q(r/, 7)1

Now we want to exploit the Ty-invariance of the measures in Theorem 5.1(see
Remark 5.3 for the fo—invariance) to show that p..)(v-) = per (V) (mod pye_y).
Remember that v,, v, € I';. We compute. Let vy, € fo then

Nt e
/’ix,(r’,ﬂ")(fha 72) = / / leg ﬁlsr/,P(Z)
T/ v

1z

YinT Y172%
_ / / dlog 5, »(2)
nrt Y1

now “multiplying” the bounds of last integral by ' and using the fact that gs ,(nz) =
957,—1*7»/(2) and n~' %7 =7 (mod f) we find

1

7yt e lyimm T iyenn e
[ o9 -
T 77_

tyiqn~la
1

nlynt oty e e
J dlog s, (=) =
T n

il

Bp-ta, oy (07 10,0 21)).
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We thus deduce

(524) Rz, (r' 1) (71)72) = anla:,(r,T) (77_171777 77_17277)-
Let py-1gr € C'(T'1, K)) be a 1-cochain splitting ry-15 7 €. dpy-1z00) =
Kp-1z,rr)- Lhen by Proposition 5.8 we have

pnflx,(r,‘r)|r1,f = pw,(T,T)|F1,T (mOd :up2*1)'

If we define
p:ﬂ,(’l‘/ﬂ'/)(’}/) = Py—ig,(rr) (7771'777)
then using (5.24) one finds that d(p,-1,,( ) = kg7, S0 this definition makes

sense.
Since v, = 0,1~ we find that

px,(r’,f’)('YT’) = Pyplz,(r7) (77_177’77)

—
w
2

) _ _
=" peeoy () (mod pue )
- px7(T7T) (77—)
O

Corollary 5.3 Let (r,7) € (Z/fZ)* xHS (No, f). Then invariant u(r,7) depends
only on the class of (r,7) modulo ~. Therefore by Corollary 5.1

w(r, 7) = u(y *r,y7)

for any v € L.

We are now ready to formulate the main conjecture.

Conjecture 5.1 Let (r,7) € (Z/fZ)* x HS (No, f). Then
U(T’, T) S OL[%]X7

where L = Ho(foo)me) where ¢ = pOg and Hp(foo) is the abelian extension
corresponding to the generalized ideal class group Io(f)/Qoi(foo). Moreover we

have a Shimura reciprocity law. Let

rec: Gk — Io(f)/{(Qoi(fo0),p),
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then for o € G x we have

w(k, )" = u(k',7") (mod pe_)
where rec(o) x (k,7) = (', 7"). Furthermore, if we let co, denotes the complex conju-
gation in Gk then

u(r, ) = u(r,7)"".

Remark 5.13 The last equality is in accordance with the fact that the modular
symbols defined in Remark 5.2 are odd.

Remark 5.14 In [DDO06], since the conductor f = 1, one is lead to consider
various orders of K. However in our case, since f can vary, it is sufficient to consider

only the case where O = Ok.

6 The measures {c; — ¢}

6.1 From P'(Q,) to (Q, x Q,)\{(0,0)}

The main ingredient in showing the splitting of the 2-cocycle k) (see Theorem
5.2)consists in the construction of a family of measures on Q2\(0,0) taking values in
Z,,. This family of measures encode the moments of some family of Eisenstein series

of varying weight that are U, ,-eigenvectors.

Following [DDO06] we define X := {(x,y) € Z2 : (z,y) = 1}. The group T, acts
b b
by left translation on Q2\(0,0) by ( ¢ ) ( . ) = ( o+ oy ) There is a

c d Y cr + dy
Z,-bundle map

7 : X — PYQ,) given by (z,y) — z/y.

From now on we assume a fixed choice of a good divisor § € D(Ny, f)®'. Remember
that for r € Z/ fZ we have defined

C((=DFEm)R\ T g~ 2mimr/f
s = (S25) Sy

m,n

74



for any integer £ > 2. In order to simplify the notation and have better looking

formulas we renormalize our Eisenstein series.
Definition 6.1 For every j € (Z/fZ)* /(p) we set
F(j, 2) = —12fFy5,(2) ﬁk,p(j) z) = —12fFp5,p(2)

F (G, 2) i= —12F;5,(2) Fip(d,2) = —12F5,,(2)

Since ¢ is not appearing in this notation it is important to keep in mind that such a

divisor ¢ is fixed from the beginning. The group I'o(fNy) acts transitively on the set
{FvGs 2 Yiermm o and {F (G 2) Yearm
Similarly the group I'o(pfNo) acts transitively on
{Fipls 2)Yie@irmy i and {FL, 0 2)Yie/im o)-
where the action is induced by the change of variables 7 +— ~7.

We can now state the key theorem which is used to show the splitting of the

2-cocycle.

Theorem 6.1 There exists a unique collection of p-adic measures on Q, x Q, —
(0,0) taking values in Z, (in fact in Z see Theorem 13.1) indexed by triples (r,s,j) €
To(ico) x Ty(ico) x (Z/fZ)*/(p), denoted by pi{r — s} such that:

1. For every homogeneous polynomial h(x,y) € Zy|x,y] of degree k — 2,
[ st = sha) = (=9 [ ne0EG. 2
2. For all vy € Ty and all open compact U C QZ\(O, 0),
pi{r = sHU) = fy{yr = vsH(U)

3. (invariance under multiplication by p),

pi{r = sy (pU) = pi{r — s}(U)

Furthermore the measure satisfies:
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4. For every homogeneous polynomial h(x,y) € Zy|z,y] of degree k — 2,

| aadistr = s)w) = [ b 0FG 2

0
Remark 6.1 Note that (3) follows from (2) by taking the matrix v = ( ](; > .
p

Proof We prove it in section 12.

The family of measures constructed on P'(Q,) in Theorem 5.1 can be thought
of as the pushforward of the measures in Theorem 6.1. This is the content of the

following lemma:

Lemma 6.1 For all compact open U C P1(Q,) we have

fi{r — s} (U)) = p{r — sHU).

where 7 : X — PY(Qy) is the ZX-bundle given by (z,y) — =

Proof Define a collection of measures v;{r — s} on P}(Q,) by the rule

vi{r = sHU) = fi{r — sz~ (U))

for any compact open U C P'(Q,). We claim that v; satisfy the three properties of
Theorem 5.1. Therefore by uniqueness we deduce that v;{r — s} = p;{r — s}.

Let us show the first property. Let Z, C P'(Q,). Then n7'(Z,) = Z, x Z}. We

have

vilr = $}(Z) = Fy{r — sHr ' (Zy)) = / djis {r — s}(z,v)

Zp XLy

— [ Pl

T

1 S
— dlog 55].713(2’)

2m J,

= pilr — s}(Zy)
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where the second equality follows from the 4th property of Theorem 6.1 and third
equality follows 27riﬁkﬁp(j, z) = dlog(Bs, »(2)).

Let us show the second property.
vi{r = sHPH(Qp)) = fi{r — s}(r ' (PY(Qy))) = /Xdﬁj{T — s}(z,y)
=0
= pi{r — s}HPY(Qy))
where the third equality follows from the first property of Theorem 6.1.

It remains to show the third property. We need to show that for all v € fo one
has

(6.1) Vysityr = s} (yU) = vi{r — s}(U)

for any compact open set U C P'(Q,). In order to prove the equality (6.1) we will
brake the open set U on smaller open sets on which we have a better control on the
p-adic valuation. Before starting note the 7—1v(U) C X but in general y7—(U) ¢ X.
In order to show that both sets have the same measure we want to use the third

property of Theorem 6.1.

~ 0
Since Iy is generated (without taking inverses) by the elements { P = ( ](j ) ) , P71l =

10
( g ) ) ,To(fNy)} it is enough to prove (6.1) when vy € T'o(fNy) or v = P or P71,

We define for n € Z

Up=UNp"Z; ={uel:

1
ot < Ty < )

Clearly the U,,’s are disjoint and open. So in order to show equation (6.1) it is enough

to show that

vysi{r = s} (yUn) = vi{r — s}(Uy)
for any U,.
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a b
Let v = < d) € I'o(fNp) and n < 0 then
c

1  yfau+b
T () =7 {cu—i—d

=Zy{((p " (au+b),p " (cu+d)) € X:u € U,)}
=p "Zy{(au+b,cu+d) € (Q, x @,)\(0,0) : u € Uy}

eP(Q,):ue Un}

where Z; A = {(kay, kay) € X : (a1,az2) € A} (the ZJ-saturation) for any subset
ACQ, xQ,.

On the other hand
v N U,) =2 {(p " u,p™") € X1 u € Uy}

=Z {(ap™ " u+bp", cp Mu+dp") €X:u e Uy,}
=p "Zy{(au+b,cu+d) € (Q, x @,)\(0,0) : u € Uy}

In that special case we really get the same sets. The case n > 0 can be treated in a

similar way.
Let us verify it for v = P~! and U,. We have
a ylUy) = 77t {% ceP(Q,):ue UO}

= Zp{(u,p) € X:u e Up}
=p@ﬂ§J»em%x@mvmm:ue%»

On the other hand

v (Uo) = vZ5{(u, 1) € X : u € Up}
= Z3{(1) € (@ x Q)\(0,0) s u € Up}

By the third property we conclude that ;{r — s}(y7=*(Up)) = @ {r — sHrx " (vUy)).
The remaining cases can be treated in a similar way. [
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6.2 Splitting of the 2-cocycle

We are now ready to prove the splitting of the 2-cocycle k. () appearing in Definition
5.10 where ¢ € To{oo} is an arbitrary cusp and (k,7) € (Z/fZ)* X HS®(No, f)-
We will show the splitting of k. ) by constructing explicitly a 1-cochain p. . ) €
1
CH(T'y, K°) such that
d(Pe,(kyr)) = Fe,(hr)-

To each v € V(T) we associate a well defined partial modular symbol m,{r — s}
on the set of cusps [o(fNy)(ico) taking values in the set of Tp-invariant measures on
P'(Q,). We define

1 S
My k{r — s} 1= 2_7m/ dlog s, (2), Moy ik YT — VSt = My {r — s}.

for all v € V(T), v € Lo, k € (Z/fZ)*/{p) and r,s € Ty(fNo)(ico). Note that the

assignment v — m, y{r — s} satisfies the following harmonicity property:

Z my p{r — s} = (p+ 1)my i {r — s}.
d(v',w)=1

The latter equality comes from the fact that ﬁz(k, z) is an eigenvector with eigenvalue

(1 + p) for the Hecke operator Ta(p).

Remark 6.2 Using Proposition 5.4 we get an explicit formula for m, x{c — ~c}

it terms of Dedekind sums.

Theorem 6.2 Lety €1y and v =red(r) and define

62) pecan (1) 1= " (o rydffe > re) o)
X

Then we claim that pe, .- € C(I'y, K,) is a 1-cochain such that of dp. (rr) = ke (rr)-

Note that the multiplicative integral in (6.2) makes sense since pix{c — ~c} takes

values in Z, see Theorem 13.1.
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Proof Our proof was inspired from the proof of Proposition 4.7 of [DD06]. A
formal computation shows that for every compact open set U C (Q, x Q,)\(0, 0) that
(6.3)

f @ = mdinfer > exde.n) = f (€14 D)~ mdialres > Gerty).

U

~yU

A B ~ -
where v = < oD > € I'g. This uses only the I'p-equivariance of the measure

in{cr = ¢}, ie., for all 4 € Ty and for all compact open set U C (Q, x @,)\(0,0)

one has
ﬂ'y*k{’ycl - 762}([]) = ﬁk{cl - 62}(U)

Note that the group I'; is contained in the larger group

(6.4) I = <F1(f) N To(fNo), ( g (1] >>

Let 71,72 € fl. We have

(dpe,kr)) (715 72)

(6.5)
_ pmv,k{c_)’YIC}pmu,k{C_>72C} p(kﬂ_) (Vl)p(kﬂ') ('72)
prestemonze P (1172)
(6.6)

modemact=m 1, (et K (# = yT)din{c = ye}(@,y) ¥ (= — y7)din{c = e}z, y)
ke (x —yr)din{c — nivack(z, y)

The equality (6.5) can be rewritten as

(dpc,(k,r)) (71, 72)
myleael-m. 1, (el k(@ —yr)di{c = voc}(z,y)
k(@ —yr)dii{mic = yirect(z,y)
m{eael-m 1, el K,x(C1+ D)(a — byu7)din{ e = y72c}(a,b)
k(@ = yr)di{mc = nreck(z,y)

6.7) =p

A

where v, =
- (

B
n ) For the last equality used the identity (6.3).
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Because dp.,(x,r) is a 2-cocyle it satifies the relation

(6.8) dpe, k) (V1725 73) = e,y (Y1, V273) — APe,er) (V15 V2) + Ape,or) (Y2, 73)-

From (6.4) and (6.8) we see that in order to show that

(6.9) dp(,ry(71,72) = Fe (k) (71, 72)

for all vy,v, € T it is enough to show (6.9) in the case where 7, belongs to one of

the following two sets:

(1) m € Tu(f) NTo(fNo),

2ol ()

In the first case, we deduce from (6.7) that

(dpe,k.r)) (715 72)

mv,k{c—)’ygc}—mﬂ/;%’k{c—wmc} f (ZE — y’717'> ~

(Cr+ D)Wﬂk{%c — My2c} (2, y),

X

p
t _
7[ (CTt+ D) ( %T) pe{ric = yyeck(t),
P (Qy)

t—T

t—mt
—f () b = v
P1(Q@p) -7

= Re,(k,7) (’Yl, ’72)-

where the second equality follows from the fact that 7. = p and y,v = v. The third
equality follows from the fact that the total measure of pu,.{c; — ¢} is 0. This treats
the the first case.
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0
Now let us assume that v, = < Z(j ) ) First note that

Ei=myp{c = vct —m 1, 1 {c = yec}
= my{c = 12t — myp{pc — prach
Y2C e
= / Fy(k, z)dz — / pFy(k,pz)dz
c’mc N c
= / Fyp(k, z)dz

= 7[ pdiix{c = yact(z,y),
Lyt XLy

where the last equality follows from property (4) of the measure pi{c — ~ac}.
From (6.7) we deduce that
(6.10) (dpc,(k:,r))('ﬁ; Y2)

_ g k(@ —yr)dfin{c = naci(z,y)
K (w = yr)di{pe — pyact(z,y)

Now we want to rewrite the mutliplicative integral above in a different way. First

note that
X =(Z, x Z))| |z} x pZ,)
Using (6.3) we deduce that

fx (x — yr)dfindc — vach(z, )

(x — yp1)dig{pc — pyac(z,y).

f(PZPXZ;) Up(Zy xZyp)
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We can rewrite the previous equality as
f (@ = yr)dinfe > nc,y)
X

= 7[ (z — ypr)dpe{pc — pyacH(z,y) - f (z — yp1)dp{pc = proc}(z,y)
(prXZ;) p(Zf; XZp)

= 7[ (z — ypr)dp{pc — proct(z,y) - 7[ p(z — ypr)di{pc — pract(pz, py)
PZyp XLy

Ly XLy

_ fz » (z — yp1)dii{pc — pyaci(x,y) f (z — ypr)diin{pc — pract(z,y)

Zy XZyp
: f pdiig{pc = pyac}(z,y),
Ly XLy

where the last equality follows from property (3) of ux{c — ~2c}. Finally we can

rewrite the last equality as
f @~ ym)dide = e} .0)
X

= f(fc — ypT1)dpu{pc = pyoc}(z,y) f pdpk{pc — pyact(x,y).
X ZX XZLp

(6.11)

Now because the total measure on X is 0, we deduce from property (4) of fix{c1 — c2}
that

-1
7[ pdi{pc = pract(z,y) = ( 7[ pdp{pc — pyac}(z, y))
Zy XLy pZyp XLy

— (7[2 » pdi{c — yoc}(x, y))

=p",
where the second equality follows from (6.3). Finally, combining (6.11) with (6.10)

we deduce that

(dpe,kr)) (715 72) = ?{g %ﬁk{%c = Mnyect (@, y),

t—nT
= ﬁl((@ : ( P ) {y1e = myact(t)
P

= Ke,(k,7) (717 /72)
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This finishes the proof. [J
Corollary 6.1 Let v € I'y and 7 be reduced, i.e., red(t) = vy. Then

Ordp(pc,(kﬁ) (Vr)) = My ric = Yrch.

7 Archimedean zeta functions attached to totally

real number fields

7.1 Zeta functions twisted by additive characters

For this section we let K be an arbitrary totally real number field.

Let K be a totally real number field of degree r. Let {o1,...,0,.} be a complete
set of real embeddings of K. Let 0 be the different of K and A = Ng/g(d) the
discriminant of K. Let f be an integral ideal of K. Let Og(foo)* be the group
of totally positive units of O that are congruent to 1 modulo f. Let w be a sign

character of K i.e. a product of a subset of the characters
signoo; : K* — R* — {+1}.

Let ¢ be an integral ideal of K coprime to f. Following [Sie68] we define

2miTr(p)

o)\ {0 € 5}

where Tr and N are the usual trace and norm functions on K down to Q. Note that
for any € € Ok (foo)* and p € 7 we have pp—ep € 0! C o7t thus Tr(u — eu) € Z.
So the summation does not depend on the choice of representatives of {0 # p € fia}

modulo Ok (foo)*.

Let p € K be such that pc C Ok and (pc, f) = 1, then a straight forward calcula-

tion shows that
2miTr(pp)

71 \If(pfia,w,s)=w<p>N(f%)sOK(m)Z W)

\{0#ne s}
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From this it follows that the first entry of ¥ depends only on the narrow ray class
modulo f in the sense that if a,b € Ip,.(f), p € K, p = 1(mod ) and p > 0 is such
that pa = b then

a b
(7.2) v <f—o,w,s) =V (f—a,w,s) )

Note that if there exists a p € Of congruent to 1 modulo § such that w(p) = —1 we
find using (7.1) that \If(fib, w, s) = 0. The existence of such units should be avoided.

Remark 7.1 One can relate the zeta functions \If(bﬂf, w, s) to classical zeta func-
tions L(x, s) where y is a character of the narrow ideal class group of conductor f. In

order to do so we need to recall some properties of finite Hecke characters.

Definition 7.1 We define

(1) 1o, (f) = {Integral ideals of Ok which are coprime to §}

(2) Ik(f) = {fractional ideals of O which are coprime to f}

(3) Pxi(foo) ={aO0Ox C K :a€ K,a=1(mod f),a > 0}
We identify the quotients Io, (f)/ Pk 1(foo) and Ik (f)/ Pk (foo) with the narrow ideal
class group of conductor f.

We have the following short exact sequence

1 —— (Ok/§)* /(OF(00) (mod )) — ()] P (o0) — Ic(1)/ Pi(00) — 1,

where t(a(mod f)) = aOk where a is chosen to be totally positive. From this short
exact sequence we see that every character x : I (f)/Px1(foo) — S can be pulled

back to a character
X = xou: (Or/f)* /[(Ox(00) (mod f)) — S*
where the subscript f stands for finite.

Let o € K* be coprime to f then we define y (o) := x(())/xs(a). When «

is totally positive we have x((«)) = xy(c) therefore y(a) = 1. However if « is
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not totally positive and ( is a totally positive element such that o =  (mod ) then

xs(a) = x((8)) therefore xoo(@) = x((5)). In thus follows that yo is a sign character

2
since <%> is a totally positive element congruent to 1 modulo f. Thus every character

X : Ik () / P 1 (foo) — S*

when restricted to principal ideals («) coprime to f can be written uniquely as xy =
XooXf Where xoo : (R® K)* — St and x; : (Ok/f)* /(O (c0)(mod §)) — S*. If we
think of x; as a character on (O/f)* then the pair of characters (xoo, xf) satisfies
the identity

(*) X7(€)Xoo(€) = 1 Ve € Of.

Conversely for every pair of characters (w,n) € ((R® K)*, (Ok/f)*) satisfying (x)
there exists a lift v : I (f)/Px.1(foo) — S (the number of lifts is exactly hj., the
narrow class group of K) such that ¢y = n and 1o = w.

Let us assume that O (f) = O (foo). In this case we have that P ;(f)/Pg 1(foo) ~
(Z/2)". So the index of the wide ray class field of conductor f in the narrow ray
class field of conductor f is 2". In order to simplify the notation we let Gj, =
Ik (f)/ P1(foo) and Gf = Ix(§)/Prca(§). We identify G as a subgroup of Gju. via 7*
where

WIGfOO—)Gf

is the natural projection. Let ny,...,n, be generators of the group of characters of

Pr1(F)/ P (foo)

defined in such a way that for a € P () we let ;(a) = w;(«) = signoo;(«) where «
is a generator of a congruent to 1 modulo f. The n;’s are well defined because of the
assumption on the units. For every ¢ take an arbitrary lift of 7; to Ix(f)/ Pk 1(foo)
and denote it again by 7;. By construction (7;)c = w; = sign o o;. It is easy to
see that the group generated by the n;’s is a complete set of representatives of @foo

modulo CAJ;. We thus have the disjoint union
Gfoo = U 7]in.
Note that @f corresponds precisely to the set of characters x € éfoo such that y. = 1.
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7.2 Gauss sums for Hecke characters and Dirichlet characters

Let x € @foo be a Hecke character and v € K be such that (y) = 3 where (a,) = 1.

For a £ € Ok we define

0,08 =x7(a) > Xzp)e™ T,
p (mod §)

We define xf(p) = 0 if (p,f) # 1. It is easy to see that g,(x, &) does not depend on

v, so from now on we omit the subscript 7. When £ is coprime to | we have

(7:3) 9(x:€) = x5(E)g(x; 1)-
Furthermore when x is primitive (7.3) remains valid for ¢ not coprime to f since
9(x, &) = 0.

We also define Gauss sums for Dirichlet characters x : (O /m)* — S! where m

is some integral and y € % We define the Gauss sum

TOGy) = Y x(@)em T,
z(mod m)
(z,m)=1

Let x € @foo be a Hecke character and x; be the Dirichlet character corresponding
to the finite part of y, then it is easy to see that

9,06 1) =Xr(V)T(Xr7)

7.3 Relation between \IJ(D%,XOO,S) and L(x,s)

In this subsection we would like to relate the functions \If(oif, Xoos S) to classical Artin
L-functions L(, s) where Y is a primitive character. We essentially reproduce a proof
that can be found in [Sie68].

Proposition 7.1 Let x : Ix(f)/Pr1(foo) — S* be a primitive character then

Y x(a)v <ac,xoo,s) = g(x; DL(x. 5)

of
c€lk (f)/ P (F) f

where a. € ¢ 1s any integral ideal.
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Proof We first extend x to Ix(1) by setting x(a) = 0 when (a, ) # 1. We have

L(s,x) =
agOK
- Yy
N(b)*

a=lelg(1)/Pk1(1) bea™!

b integral

x(a)
N(a)®

For every class a we fix an integral ideal a, € a. We have a natural bijection between

the elements p € a, modulo O} and integral ideals b € a™! given by p +— pa; ' € a™'.

Therefore
x((wag')
alelK%PKJ(OO) {0#u§}/0§ N((n)azt)®
(74) Z N(aa)si(ua) Z XOT(IU>Xf£M) _

a~lelk(1)/Pr,(1) {0#£u€aq}/OF%

Note that if (i, f) # 1 then x¢(p) = 0. Remember that
g(Xa 1) = g’Y(Xa 1) = X_f(a)T(Xfa 7)
where (v) = §; with (g,f) = 1. For 1 € Ok coprime to | we have

(7.5) Xr()T(X g5 7) = T(Xp5 1Y)

substituting in (7.4) we get

(76) = D N (a,)° v(a0) 3 7O 1) Xoo (1)

NI
a*1€IK(1)/PK‘1(OO) {03£Neaa7(/ﬁ7f):1}/o;<( T(Xf? Fy)’ (/’L)’

Now using the assumption that s is primitive we can remove the restriction (4, f) =1

under the last summation of (7.6) since (7.5) also holds for u not coprime to f.
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Rearranging a bit (7.6) we get

= Y N@)ve) Y 3 (X £+ 17) Xoo (12)

N s
a=1elk(1)/Pk,1(1) a (mod f) {0##6?(17(};,;))?1 OIX( T(va '7)| (,U)|
J=a(mo

LY Newe) Y T 70 17)Xoo (1)

N s
Famtenc()/Pra) o (o ) {Oncen (1<, 3 7(xs,7)IN(u)]

JM=a(mod

1 S Na) )

AfT<Xf’ 7) a=lelx(1)/Pr1(1)

- eZm’Tr(,upy) XOO<:U’)
2 2 2wl N(oP

a (mod f) {Ofg?;[()ggil JOX (joo) P (mod §)

where in the second equality every p is counted A; := |Of (mod §)| times and in the
last summation we have used the fact that Ok (f)* = Ok (foo)*. Rearranging a bit

the latter expression we get

1 S - S —
= At > > N(ad)’x(a)N(p)*x((p))
TS e (0 Prea (1) p (mod §)
Z Z 6271'7:T7“(y,pfy) |X<X(> (M:;)
N(pp)|®
a(mOd f) {07é € a,( 7f):1 X
i=almod f)} /K (1%9)
1 S — S —
= 00 > > N(a,)*¥(a)N(p)*x((p))
TS e n 0/ Prea 1) p (mod )
Z Z 2T (1) Xoo(f4)
IN ()]

o o

_ o x(e) Z Z X(pa.9)¥ (paa7y; Xoos 5)

A (X7, 7) a=1elx(1)/Px1(1) p (mod §)
1
— X(a,9)V (a7, Xoos 8
g(x, 1) Z ( ( )

a€lk ()/Pk,1(F)

The last equality comes from the observation that the set of ideals {pa,} covers every
element of Ik (f)/Pr1(f) exactly A; times. O
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7.4 Partial zeta functions ((a™!,f, w, s) as the dual of U (5w, )

Let K be any totally real number field. Let w : (K ®r Q) — {£1} be a sign
character. Let f be an integral ideal of K and 0 be the different. For a fractional

ideal a coprime to | we define

s w(p)
¢(a.f.w,s) := N(a) > N(F
Ok (foo) *\{u€a,u=1(mod f)}
Note that both functions depend only on the narrow class of a modulo §. Observe

also that if b = A~'a are integral ideals coprime to § then

(7.7) C(b,f,w, s) = w(\)N(a)? 3 li”r(—“)

Ok (foo)*\{0#£pu€a,u=A(mod f)}

Let {a;}!, be the parity of w then we define

2 T o S
Fu(s) = ldge| a2 T[T

i=1

where n = [K : Q] and d is the discriminant of K.

Theorem 7.1 We have the following functional equation
(7.8) F(s)¥ (% w, s) = TR (1 — N C(a " fw,1 — s)
where Tr(w) =Y. a;.

Proof The proof follows Hecke’s classical method and relies on the functional equa-
tion of the generalized theta function which is a direct consequence of the Poisson
summation formula. In order to prove (7.8) one needs to introduce heavy notation.
For this reasons we have decided to only prove (7.8) in the case where K is real
quadratic using a nice trick of Hecke which simplifies the argument. Moreover, this
second proof is better suited for the applications we have in mind since it involves an
integral of a classical Eisenstein series against a suitable power of a quadratic form.

g
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Remark 7.2 One can use Theorem 7.1 in conjunction with the well known func-
tional equation for L(s, x) to give another proof of Proposition 7.1. However some
difficulties arise since in order to express the partial zeta functions ((a,w,f,s) as
linear combinations of L(s, y) one needs to deal with non primitive characters x of
Ik (§)/ Prca (foo).

Applying the last theorem in the case where K is real quadratic and letting a = aA
and f = (f) one sees that

(7.9) Fu (s)¥ w1,5> = —Fy,, (1 = s)N(H)'"*C((aA,) 7, fwg, 1 — s)

( al\,
VD’
and

Fo(s)0 <fa%,wo, s) — P (1— N C((ah) ™ frwo,1 — 8).

Note that if A; Ao = (&) then (aA,)™! = 2A ..

1
A
We conclude the end of this section by discussing some parity conditions on special

values of partial zeta functions at negative integers.

For integers m > 2 which are even the quantity

F,(m)

(7.10) Foll—m)

is equal to 0 unless a; = 0 for all ¢. Similarly for integers m > 1 odd the quantity

Fy(m)

(7.11) il

is 0 unless a; = 1 for all 7. We define wy = 1 and w; = sign(Ng/qg). We thus see that
for integers m > 1 the quantity ((a,f,w,1 —m) can be different than 0 only when

w = wy and m is even or w = w; and m is odd.

Let

1
(7.12) ((a,foo,s) := N(a)® Z [NV
OIX( (foo)\{A€a,A=1(mod f),\>0}
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We simply call those partial zeta functions. Note here that the sum is restricted to

totally positive elements.

Let o1,...,0, be the different embeddings of K and let {a;}}; be such that
a; € {0,1}. We define

n S —1
((a, foo, {ai}iz,, s) = N(a) Z IN(A)J*
{A€a:A=1(mod f)
A?i>0 if a;=0
Ai<0if a;=1}/Ok(foo)*

Let A € K* have parity {a;}! ; then using orthogonality relations we get

(7.13) Z w(A)¢(a, f,w,s) =2"C(a, foo, {ai}i,, s)
w is a sign character

= 2"C(aA"!, foo, 5)

Choosing a; = 0 for all ¢ with A = 1 in (7.13) and combining it with (7.10) and (7.11))

we see that for even integers m > 2

(7.14) C(a,f,wo, 1 —m) =2"C(a,foo, 1 —m)
and that for odd integers m > 1

(7.15) C(a,f,wy, 1 —m) =2"C(a,foo,1 —m).
Using again (7.13) we get that for any sign character n

(ME€Pk 1(F)/ P 1 (fo0)

We have the following well known Theorem:
Theorem 7.2 (Siegel, Klingen) For integers k > 1 the quantities
((a,foo,1—k)
are rational numbers.
Proof See [Sie69].
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Corollary 7.1 For integers k > 1 we have
F,(k) c
=V PR k| e )
oo (o) <o

where F,(s) = |Cll(|s/27fns/2 H?:l F(SE‘”)'

Proof Use Theorem 7.2 in combination with Theorem 7.1. O

We finish the section by recording one more result:

Proposition 7.2 Let (\) € Pk 1(f) where X\ have parity {a;}!, then for odd

integers k > 1 we have
C(a\, foo,1 — k) = (—=1)=%((a, foo,1 — k),
and for even integers k > 2 we have

C(aX, foo,1 — k) = ((a, foo,1 — k).

Proof We have

(7.16) C(c™h fwy, 8) = Fﬂgi—(i)s)\p (f%’wl’ 1-— s)

Now let (A) € Pk 1(f) where have parity {a;}?_,. Without lost of generality assumes
that A € Ok. Then we have

cA ¢
v (f—a,wl,s) = w (AW (f_b’whs)

Substituting in (7.16) we find
™AL w1 —s) = (=1D)Z%C(c L fwy, 1 —s).
Now using (7.15) with s = k for £ > 1 odd we deduce
C(eTIAT foo, 1 — k) = (=1)=((c 7!, foo, 1 — k).

The proof for an even integer k > 2 is similar. We do the same calculation with w;

replaced by wy. U
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8 Archimedean zeta functions attached to real quadratic

number fields

We now specialize to the case where K is a quadratic number field of discriminant
D. Note that the different d of K is (v/D). Let f be some positive integer that we
call the conductor and N, another positive integer that we call the level. In order to
motivate the definitions of the various zeta functions attached to K we need to revisit

the involution *sx, on X (fNp).

8.1 Involution *;y, on X;(fNy)(C) revisited

For this subsection we assume that K = Q(v/D) is an imaginary quadratic number

field. Let [(+5-, rA+)] be a point of Y1 (fNp)(C). Using the definition on the involution

tfn, defined in section 4.6 and denoting it simply by * we find that

r * rr r —r
Fm“f’} - {“m’”mmzﬂ - {W”AM '

f;l\;() and T — ﬂvﬁ Define

HO% (N, f) as in Definition 5.6 but where H replaces H,. Let (r,7) € HO%(Ny, f)
then Q,(x,y) = Ax? + Bxy + Cy? where (A, f) = 1, Ny|A and B?> —4AC = D. We
readily see that QleoT(x, y) = Cf?Nox? + Bfxy + Nion. Therefore we deduce that
disc(@f%m) = f2disc(Q.). Note that the leading coefficient of Qﬁ(x,y) is not

coprime to f but its last coefficient Nio is. Remember that the group T'o(fNy) acts
naturally on HO% (f, Ny) by the rule

at +b
Y x (T, 7') = (dT, m)

In particular we can think of % as sending ﬁ —

b
where v = ¢ . There is a natural inclusion of HO%(Ny, f)/To(fNo) C
h d

C

Yi(fNo)(C) given by (r,7) = [(755, 7AL)]. IE (r,7) ~ (', 7') inside HOX (No, f)/To(fNo)
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b
then there exists a matrix ( ¢ p > € I'o(fNp) such that dr = r'(mod f) and

c
a b T T

8.1 = (eT+d .

Rewriting (8.1) in term of 7 = ;35— and 7" = s we find that

d ¢/fNg ™\ . T'*
(beO . )(1)—(beOT+a)<1>.

If we let * : fo — fo be the involution defined by

a b\ [ d  ¢/IN
c d bf Ny a
then we derive the following rule

(y* [(r, D))" = ()" %" [(r, )]

where

and

[(r, D))" = [(=r, 7).

Note however that strictly speaking [(—r,7*)] does not belong to HO% (N, f) since
Endkx (M) =2+ fwZ # 7 + wZ = Ok.

a b

Letting Stabr,(sny)@-(2,y) = (£7,-) where v, = ( p ) we also see that

C

= (’77')*'

(8:2) Stabr, (pxp) (75) 1= pe = ( d ¢/fNo )

beo a

This involution % of level fNy will play an important role later on.
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8.2 Zeta functions ¥V and U*

Let K be a real quadratic field with discriminant D. Let us suppose that f = (f)
where f is a positive integer. Let [a] € lo, (f)/@k1(f) (the wide ideal class group of

conductor f) where a is an integral ideal coprime to f. Let also
w: (K®gR)* — {£1}
be any sign character. We are mainly interested by the sign character
wy = sign o Ng/q.

Let \IJ(\FLDJ,, wy, s) be the zeta function defined in section 7.1. In this section we would
like first to define a zeta function \D*(\F%f, wy, s) where the * refers to the involution
discussed in section 8.1 Second of all we would like to write down a functional equation
for the zeta functions ¥ and W*. In order to achieve those two goals it is more

convenient to take a Z-basis for the integral ideal a.

We take a Z-basis in the following way. There always exists an integer a € Z-y,
(a, f) =1 and a 7 € K such that

a(Z 4+ 7Z) = a.

We let Q.(z,y) = Ax? + Bxy + Cy* with A > 0 be the primitive quadratic form
associated to 7. Since Endg(A,) = Ok we have B* — 4AC = D. Without lost of
generality we assume that 7 = 73%@' Note that the ideal AA, is an integral ideal

(in fact A is the smallest positive integer n for which nA, is integral).
A small computation shows that
() =N (fp) e
d d O (foo) \{0£ne 75} 8

1 —27i%n
(8.3) =wy (VD) Z szgn(QT(m,?))e o, Re(s) > 1.
) |Qr(m, n)|
e )\{(m,n)€Z2\(0,0)}

where wi (VD) = —1, Q,(z,y) = Av>+ Bay+Cy? = A(v—71y) (v —77y), 7 = _BQ_\/E,
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a
(£n,) = Stabr, (5)(7). The action of a matrix (
c

b
p > acting on the vector (z,y) is

b
given by (ax + by, cx + dy). We choose n, = ( ¢ 4 > in such a way that et +d > 1.
c

Remark 8.1 Note that the variable appearing in the exponent of the exponential

of (8.3) is the negative of the second variable of the quadratic form.

Lemma 8.1 Let (¢) = Ok(foo)* where ¢ > 1. Then the matriz n, € I'i(f)
corresponds to the matriz representation of the multiplication map by €*, for some

n > 1, on the lattice A with ordered basis {T, 1}. In particular one has thatn, € T'(f).

Proof Let O = Z + wZ and assume that w = v/D. The case where w = %ﬁ can

7‘\/5-‘1—8
t

be treated in a similar way. The element 7 can be written as 7 = where t and r

are coprime to f (this uses the assumption that (A,, f) = 1). Let e = u+ fov/D > 1

a b ) a b T
be a generator of Ok(foo)* and let n, = . Since =
c d c d 1

-
(et + d) ( . > we have by definition that ¢ + d is a norm one algebraic integer

with fl|c and d = 1(mod f). Therefore ¢t + d € Ok(foo)* (this uses the fact that

(t,f) = 1) and so e¢r + d = €" for some positive n. The matrix corresponding to €
u  fuD

with respect to the basis {v/D, 1} is < ;
voou

> . It thus follows that the matrix

corresponding to multiplication by e for the basis {7, 1} is given by

ros u  fuD 1/r —s/rt
0 t fv u 0o 1/t )

. . s2fv rfvD . . e
Computing the upper right entry we find —=+= + ~-= which is divisible by f. Tt thus
follows that the upper right entry of the matrix corresponding to multiplication by
€" is divisible by f. O

If we consider the ideal 77aA, = at°Z 4+ 4CZ = “S(Z + 47°Z) then using (7.1)
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we find that

at A\, " sign(Q-(m,n)) 2rigm
(8.4) W (—\/E,wl,s) = wy(1°VD) Z ?Q(?m(n”s))e .
f (n)\{(m,n)E€Z2\(0,0)} T

Remark 8.2 Note that this time the variable appearing in the exponent of the

exponential of (8.4) is the first variable of the quadratic form. Observe also that the
ideal at?A is coprime to f if and only if f 1 C. The reader should keep in mind that
one can pass from (8.3) to (8.4) by multiplying the ideal in the first entry of ¥ by 7.

We want to define a U*-zeta function attached to the lattice aA, where the * corre-
sponds to a certain involution. The lattice a/\, is equivalent to Q(a, A,;) N Ok modulo

Py 1(foo). Remember that we have an involution

*fNo * Y1(fNo) = Yi(fNo)

T —T
(WW ~ (WA>

Let (1,7) € (Z/fZ)* x HS*(f, No) where 7 is reduced and consider the integral

primitive binary quadratic form of discriminant D attached to 7
Q,(z,y) = Ax* + Bay + Cy?, A >0.

The lattice AA; is the integral Og-ideal corresponding to @, (x,y). Consider also the
primitive binary quadratic form of discriminant f2D attached to 7* = ﬁ

Qr+(z,y) = sign(C) (f2CNoac2 + Bfzy + %) .
0

The lattice f2CNoA, is the integral O s-ideal corresponding to Q.«(z,y) where
Ok, = Z + fwZ is the order of conductor f. Note that

17 AA,
(1) Tr(n) € sZif p € ol

: Cf2NoA,* CNoA =
(2) Tr(p) € $Zif p € 05 = Cher

Note the appearance of f? in the denominator of the left hand side of the equality in
(2). This is accounted for the fact that that the ring of endomorphisms of C f2NyA«
is Ok, . This I hope motivates the following definition
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Definition 8.1 Let al, be an integral Ok -ideal and let Q,(z,y) = Az* + By +
Cy? be the integral primitive binary quadratic form attched to 7. Note that Ala. We
define

W* ( a/AT ) (CNOaAT*>s Z S?:gTL(NK/Q(,U/))GQMTTK/Q(“)
——w,Ss | = -7
D AVD N(p)|®
f\/_ \/_ OK(foo)X\{O#/LGCNAOi;%”} ’ ( )’
(8.5)
B sign(Q.«(m,n)) 2mign
= w1(\/5) Z |QT*(m n)|5 e f
(n7+)\(Z2\(0,0)) ’
(8.6)
= wl(\/ﬁ) Z Sign<QfNo7’(m7 n)>ew
|Q oz (M, m)[*
(n+(f No))\(Z?\(0,0))
here 7 = = B Q. (0. = ign(©) (FONer + By + )

B d ¢/fNo _ a  bfNo
777'*_<be0 a )7 nT(fNO)_(C/fNO d )

The third equality follows from the change of variable (x,y) — (y,x) and uses the
identity |Qq~(m,n)| = |Q¢nyr(n,m)|. Again V* depends only on the narrow ideal

class modulo f of the integral ideal al\.

Remark 8.3 It is interesting to point out that the third equality reflects the
functional equation of a certain Eisenstein series. This is clear if one looks at the

proof of Lemma 9.2.

We want to define now dual zeta functions to W and ¥* (dual in the sense of the

functional equation).
Definition 8.2 For s € C such that Re(s) > 1 we define

= AT ) T )
o By @)
vV r\m,n)®
Df M=)\ (07£(m,n)=(%,0)(mod [))

and

~

Z Sign(QT* (mv n))

N7+ )\(0#(m,n)=(%,0)(mod f)) |@r+ (m, )|
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where A is the leading coefficient of the quadratic form Q. (x,y) = Ax? + Bxy + Cy?.
Remark 8.4 Note that the matrices 7, and 7,. preserve the congruence
(5:0)  (mod ).
We can now write down the functional equation for ¥ and ¥*.

Theorem 8.1 For s € C such that Re(s) < —1 we have
aA'r = CLAT
8.8 —Fu,(s)V | —,w1,s | =Fp, (1 =)V | —=,wy,1 — s |,
59 0 (G ) = R (1= 98 (751 -

and
al ~ ( a\
8.9 —F ()0 | —=—,wy,s | = F (1 —s)¥* [ —=,w;,1—s).
69 R (J57mns) = F0 -9 (51 )
where F,, (s) = disc(Q,)*?7~°T (%)2 and F}, (s) = disc(Q+)**n~*T (%)2 Note
that the left hand side of (8.8) and (8.9) make sense when Re(s) < —1 since ¥ and

U* admit a meromorphic continuation to C (see Corollary 8.1).

Remark 8.5 Later on we will relate special values of U and U* at negative even
integers (see Proposition 9.4). At this stage it is not clear that U can be related to

U* in any obvious way.

We end this subsection with this useful lemma

Lemma 8.2 We have

~ [ al
— wy,s | = N(HC((aA)7E fowr, s) .
B (s ) = NOPC(0d) ! fonc)

where the function on the right hand side is a partial zeta function of K weighted by

the infinite character wy = sign o Ng/q.

Proof We have

() sin(Q.(m.)
VDf MO =& O mod pyy 12T
A > sign(Q,-(m, n))
a? |5 Qre (m,n)]*

(70 )\(0#(m,n)=(5,0)(mod f))
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= N(f)*N (éATG)S Z wi ()

¢ Ok (f0) \{0£EAN 1o p=1(mod f)}
A
= N(f)SC (EATf’v f7 W1, S)
= N(f)SC ((aAT)_la f7 Wi, S)

The last equality follows from the fact that A, A = (%) The term on the right
hand side of the last equality is nothing else than a partial zeta function twisted by

the character wy. Note that this coincides with equation (7.9). O

8.3 Proof of the functional equation of ¥ for K quadratic real

The key idea in the proof of Theorem 8.1 is a trick due to Hecke relating the zeta
function of definite quadratic forms to the zeta function of indefinite quadratic form.
After it is a matter of relating the functional equation appearing in (3.11) to the one
appearing in Theorem 8.1. We have decided to include the proof for the reader but

essentially all the ingredients are already contained in [Sie68].

Part 1 of the proof of Theorem 8.1 Our strategy will be to prove a more
general functional equation (see (8.19) of Theorem 8.2) and then deduce (8.8) and

(8.9) as special cases of it. Let ( ¢
c

fixing two real points 7 and 77 such that 7 > 77. Assume furthermore that a = 1
(mod f) and ¢ =0 (mod f).

b
J ) = v € SLy(Z) be an hyperbolic matrix

Consider the normalized quadratic form Q,(z,1) = (z — 7)(z — 77) = 5Q-(2,1)
where Q. (x,y) = Az? + Bxy + Cy?. We find the transformation formula

sign(cr + d)Q-(z,1) = (cz + d)*Q, (72, 1).

We define
2mimaor/ f

e
Z |(maz — my) 26D (maz — my)?
m
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which converges for all s € C such that Re(s) > 1. We will use the functional equation

in s of ¥,(s,z) to deduce it for W(5, w1, s). The function z — ¢, (s, z) satisfies the

following transformation formula

(8.10) Ur(s,az) = [Pz + QP V(P2 + Q)% (s, 2)

R S -
for any ( PO ) = «a € ['y(f). It thus follows that the C> 1-form |Q.(2)|* "', (s, 2)dz

is invariant under the transformation z — ~z. The next identity will be used in the

sequel

(8.11) (Pz + Q)(ma(az) —my) = (mhz —m)),

(Fo)m (5 0)-0)
where o = and = )
P Q —-P R ma mb

Lemma 8.3 Let C be the half circle of the upper half plane joining T and 7°. Let
/
( i ) € 72 and ()7t ( e ) = < m/1 ) (for some integer 1) then
ma ma my

51Q: () dz

1
/C |maz — my|26=D(mgz — my)

1 ~ 1
= A2 dz.
|, o= e = 04
Note that C, as a subset of H, is fixed (the orientation also is preserved) by the

Moebius transformation z — ~'z.

Proof of the Lemma 8.3 We prove it for [ = 1. We compute:
1

o |maz — my 2= (myz — my)

(3.12) -/ ! 18- (1) dyz

“10 [maeyz — ma 267D (myyz — my)

51Qr(2)|° 1 dz

1

A s—1
== T d )
/o Imayz — ma|26=Y (myyz — my)? Q-2 dyz
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where the second equality follows from the invariance of C' by +v. We thus have

1

o Imaz —my[26=D (mgz — my)

51Q- (=) dz

1
B /C |(amg — cmy)z — (—bmg + dmy) 2= ((amy — cmy)z — (—bmg + dmy))

1 ~ 1
- T d )
/c ity — i P D (e — g Or )T

51Q- ()| dz

m) my
where S = 1 . The second equality follows from (8.10) and (8.11).

g

Let x be an arbitrary point on C'. From the previous computation we see that for
any (my,ms) € Z*\{(0,0)} we have
1

o |maz — mq|26=1 (mgz — my)

Z vz 1 N 1
B +(2)7 dz,
)/x |n22’—n1|2(5—1)(n22_n1)2|Q (2)] z

(n1,m2)€(y~1)(m1,m2

(8.13)

51Q- ()| dz

where the last summation goes over all the v~ !-translate of the fixed pair (my, ms).
Geometrically the small arc with end points z and v~ 1z gives a tessellation of C' under
the action of the (y~1). Note that we were allowed to change the order of summation

with integration because of absolute convergence since Re(s) > 1.

Fix a complete set of representatives {(my, ms)} for the action of () on (Z*\{(0,0)}).
Then for every representative (mq,ms) multiply the left hand side of (8.12) by

e?mm2r/f  Taking the summation and using (8.13) gives us

A 1 N
(8.14) p2mimar/ f / ! Gl
(m17m2)€%2(z2\(070)) o Imaz — mq[26=D (mgz — my)?

:]/ |@T(2)|5_1¢T(S,2)d2.

The orientation of C' is taken to be the orientation of the arc segment joining 77 to
7. It is therefore in the clockwise orientation. The quantity j := sz’gn(%l) takes
care of this choice of orientation. By Lemma 8.3 the summation on the left hand side

does not depend on the set of representatives which is clear from the right hand side.
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Also since the left hand side does not depend on = we get that the right hand side is

independent of the base point .

We are thus lead to evaluate the following expression

1
o Imaz — my[26=D (mgz — my)

51Q-(2)]" " dz.
This is the content of the next lemma

Lemma 8.4 For Re(s) > 1 we have

(8.15)
ey DOE)? S sign(Qr(ma, ms))
@ (2)7 dz = ey disel @) O, (my, m)|*

1
/C |maz — my|26=D (mayz — my)

Proof We omit the proof since this calculation is done in [Sie68] and a later on we

will do a similar calculation. O

Corollary 8.1 Let Re(s) > 1 then

T (£1)2 -
(8.16) / Q. ()] ", (s, 2)dz = j%disc(QT)SI/QAsgo (?,T,V,S) :

where

9

¥ (T ) = Z Sign(QT<m1, mg))ezmeT/f

—,T,7,S :
/ (M\(Z2\{(0,0)}) Q- (M1, m2)|

j = sign(“), Q. (x,y) = AQ-(x,y) = A(z — Ty)(x — 7).

Proof Combine (8.14) with Lemma 8.4. O
Note that disc(Q,) = disc(AQ,) = Adisc(Q.).
Lemma 8.5 We have

/"Yw ’@ (Z)’S_lw (S Z)dz . ] F(?)Qﬂﬁs—l Z Sz'gn(QT(mth))
T A - 2(s—1) = =,
4 Fls+1) (M\{(m1,m2)=(r,0) (mod f)} Q- (m1, m2))[*

x

for any s € C such that Re(s) < 0.
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Remark 8.6 Note that the matrix v € I'y(f) preserves the congruence (r,0)
(mod f) so that the summation on the right hand side of the last equality does not

depend of the choice of representatives.

Proof of Lemma 8.5 The proof uses the same ideas as Lemma 8.1.

O ==

Let ((s,u*,v*, z,g) (see (3.10) for the definition) with ¢ = 2, u* = (

v = we ge
0 &

T —27rzm r/f
7)) 2=y > "
0 0 ’ my 4 myz) 267D (my + myz)?

2mimar/ f

e
Y n% |(maz — my) 26— (myz — my)?

(8.17) =y (s, 2).

) and

Using the functional equation in (3.11) applied to ¥,(s, z) we get

/ 102 (2)F (s, )dz

(e (0) (7))
_ ¢|1-—s, A 5 ),22
e [l o) \ o

= d
f2(s—1)F<8 + 1) im(2)23_1 Z'm(2>1—sf2(1—s) “
7T28_1F 2 _ g yx . s—1 1
- f2(5_1)1—‘((8 + ]_)) / ‘Q (( ))2|5 1 Z |m1 — m22|_23(m1 — mgz)QdZ
x (m1,m2)=(r,0) (mod f)
725710 (2 — s ~z 1
—J f2(8—1)15(s + 1)) c L?n((z))le 1 Z |my — maz|=25(my — mQZ)QdZ
(M\(m1,m2)=(r,0) (mod f)
702 — s) Q- ()1 1

dz.

=J F26-DT(s + 1) c im(2)%7 1 my — maz|~25(my — maz)?

(M\(m1,m2)=(r,0) (mod f)

We are thus lead to evaluate the integral

7. /T: Q-(2)

(m —nz)?

2s—1 dz

(m —nz)?

5—1‘ (m —nz)?

im(z)
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The two end points of C' correspond to 7 and 77. We integrate from 77 to 7, therefore

since 7 > 77 this is integrating along C in the clockwise orientation.

In order to compute this integral we do a change of variables. The variables are z
and w and ¢ and we fix a pair (m,n) € Z?\{(0,0)}. We let

z:”q’;ﬂo,w:—z;f; v=nT—m, 1" =nt° —m

nz —m = j = sign(*t) _
Q-(5) = —(r =)Vt g = sign(ve?) = sign(Q-(m, n))
w=|%|it (nz —m)2dz = i(t — 77)Jvv° |1

(1 +igt)~2dt

The of variables z +— Tﬁﬁa sends the hyperbolic triangle C' on the positive y-axis.

Applying this change of variable we find

J = /ioO ‘ - 70)2(w$1)2
0 (
w (vw + v°)?

vw—i—v")Q
- /0 (vw + v7)? im(w)

w—+1
[ 0
Jo (1 +igt)? (vv)—Lit
> t
_ o|—(1-s)
= i|vv?| /0 ‘1 P

(o.9) t —S
(8.18) :i|m;“|_(1_s)/ (1+t2) (1 +igt)2dt.
0

(1 +igt) 2dt
So we need to evaluate the quantity I := [ (1) *(1 +4gt)~*dt. Doing the change

of variables t +— % in the right hand side of the last equality we find that I =

— fooo(ljtz)_s(l —igt)~2dt = —I, so I is purely imaginary. Therefore

2s—1

s—1
(7 — 7)) (vw + v7) " *dw

(e2r)°

im(w)
lw+1]2

(r =)

2s—1

s—1
(vw + v7) " 2dw

25—1
i|lov? |71+ igt) " 2dt

)s—ldt

2 1+t

o t t -
— 9 dt
Z9/0 (1+t2)2<1+t2)

= —2ig/ 51 4+ #2)5 2t
0

J=- /Om (L 41igt)™> = (1 —igt) %) (
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Doing the change of variable 1 + t? = u followed by u % in the right hand side of
the last equality we find that

oo 1
I = —Qig/ t5HH 1+ 7)) 2dt = _Z'g/ (1 — u)~2u*/du.
0 0

Using the well know formula fol w1 — u)Vldu = L@l 5 the last equality we

T'(z+y)
obtain
T
T YT )
Substituting the latter expression of I in (8.18) we find
(LN [(52)2r2 ! sign(Q,(m,n))
[ 181 s, s = G > - i
) (s & 1 -
@ / 5+ 1) \omm260) moa 1) 1@ (1)

This completes the proof of Lemma 8.5. [

Lemma 8.5 suggests the following definition:

Definition 8.3

@ (Z T, s) = % sign(Q.,(m,n))
f (V)\{0#£(m,n)=(r,0) (mod f)} |Q7(m,n))|

We have the following functional equation:

Theorem 8.2 We have

(8.19)

s+1 2 L s r R = 2—5)° 25—1 gl—s 5 [ T
r 5 disc(Q,)2A%p | =, 7,7,s | =disc(Q;) 2 ' 5 T AT =y, 1 — s )

f f

Proof Combine Corollary 8.1 with Lemma 8.5. [J

We can now finish the proof of Theorem 8.1 by using the functional equation
(8.19).

Part 2 of the proof of Theorem 8.1 We only prove the functional equation
(8.8) since (8.9) can be proved in a similar way. Let K = Q(v/D) where D is the
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discriminant and let Ok be the maximal order of K. Let (r,7) € Z/ fZ x HJ* (No, f)
and let A be the coefficient of the z2-term of the primitive quadratic form Q,(x,y) =
Ax® + Bay + Cy?. Since 7 € HJ*¥ (Ny, f) one has (A, f) = 1.

Let (y;) = Stabr,(p(7)/{£l} where 7, is chosen in a such a way that v, =

b
( ¢ p ) with ¢7 +d > 1. Since (A, f) = 1 we deduce that c¢r + d is the unique
c

generator of O (foo)” such that ¢r 4+ d > 1. Using the previous observation in the

definition of ¥ (}‘i‘/% , Wy, s) a computation (see for example (8.3)) shows that

Y <%,w1,5> = —(((r,s),wn,s)

(820) = - (?77—7 Vrs 8) )

Note the appearance of the sign —1 on the right hand side which is accounted by the
fact that w; (v D) = —1.

Now unfolding the definitons of ¥ and © one immediatly sees that

(8.21) U (%,wl,s) =@ <§,7, ’yT,s) .

Now combining (8.20) and (8.21) we may rewrite the functional equation (8.19) in

the following way

—F,, (s)¥ (%,wl, 3) = F,, (1 — 3)@ (%,wl, 1-— s) .

This proves the functional equation (8.8). [
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9 Relation between special values of zeta functions

and Eisenstein series

9.1 Archimedean zeta function associated to a class in

((Z/ FZ)* x H(No, f))/To

In this section we want to associate to any class in ((Z/fZ)* x HS (No, f))/fo a well

defined Archimedean zeta function. We first start by proving an elementary lemma.

Lemma 9.1 Let 7 € H, N K s.t. (disc(Q;),p) =1 and let

(£yr) = StabSLg(Z[%])(T)v

then v, € SLo(Z). Note that 7y, is well defined up to +1.

a
Proof Let (

b
p ) = 7,. Since det(y;) = 1 this implies that Ng (et +d) = 1.
c

Since the denominators of ¢ and d are at most powers of p and N(ct +d) = 1 we
have that ¢r + d is norm 1 unit of Og)x. But since p is inert in K we have Og)x o~
+1 x p? x OF. Therefore this forces ¢t +d € OF.. We also have c7?+ (d—a)7+b = 0.

Therefore there exists a rational number of the form £ ((m,p) = 1) such that

(9.1) %S(cﬁ—i- (d—a)r+b) =Q.(r) = Ax* + Bz + C.

let E = B? —4AC then without lost of generality we can assume 7 = #. We

have (¢ 4+ d) — (¢77 + d) = ¢(7 — 77) € Ok. Therefore %E € Ok. But ¢/A =m/p*

we thus have %E € Ok. Since (E,p) =1 and (m,p) = 1 this forces s = 0. Because

A, B,C are integers, (m,p) = 1 and a,b,c,d € Z[%], we deduce from (9.1) that
¢, b, (d — a) € Z. Finally note that Alc so we find that ¢r € Ok and therefore d € Z.

g

We would like to attach now a zeta function to certain pairs (r,7) € (Z/fZ)* X

H;?(Nlbf)
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Remark 9.1 It is easy to show that if 7 is reduced, i.e. if red(r) = vg where vy
is the standard vertex on the Bruhat-Tits tree and red is the reduction map, then
(disc(Q;),p) = 1. However the converse is false. We can therefore think of the reduced

requirement as a finer notion compare to the more naive condition (disc(Q,),p) = 1.

Definition 9.1 Let (r,7) € (Z/fZ)* x HS (No, f). Assume that T is reduced i.e.
red(t) = vy. We set

<:|:777—> = Stabrl(fz[%])(T)
Then by Lemma 9.1 we know that n, € T'1(f), in other words Staby, ;z1))(T) =

b
¢ g ) i such a way that ct +d > 1. We define
c

Stabr, (7). We choose 1, = (

several zeta functions associated to the pair (r,T) by

(1) ¢, 7). 5) =0 (2202w, 5)

@) (7)) = 0 (2209 w5

and stmilarly

(3) C((r,7),8) i= 0" (2709 wy, 5,

(4) (7). 8) = 0 (2200 w5
where wy = sign o N /g and 0 = (VD).

The reader should keep in mind that the map € (see Definition 5.7) depends on the
quantities O, p, f and Nj.

Proposition 9.1 If (r,7), (', 7') € (Z/ fZ)* x HS (N, [) satisfy the assumption
of the definition 9.1, namely red(t) = red(1') = vy, then if (r,7) ~ (r',7") we have
(1) ¢((r,7),8) = C((",7'), 5),
(2) C*((T, T)v 3) = g*((rla Tl)? 5)'
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Proof Let Q(r,7) = A AP and Q' ") = A;,,A(T’f) (where the exponent ®) means
that we have tensored the Z-lattices AA, and A’A,/ over Z[%]) Since (r,7) ~ (', 7")
a

b ~
there exists a matrix v = ( q ) € I'y such that

C

S H I !

where A € 1+ fQ(r',7)7Y, (fNy)|e. Because 7 and 7' are reduced this forces v €
GLy(Z,). 1t thus follows that v € SLy(Z). Using (9.2) we deduce that A, A, = A/, A
(mod Qp,1(fo0)). Finally since 7 and 7’ are reduced we have AAP MO = A\, and
ALAY O = AL A, Tt thus follows that

This proves (1). The proof of (2) is similar. [

We have thus succeeded to attach well defined Archimedean zeta functions to any

class of (Z/fZ)* x HS(No, f)/ ~.

So far we haven’t used the level No-structure build in inside (Z/ fZ)* x 1S (No, f).
The next object we define is a zeta function attached to a good divisor § € D(Ny, f)®
and a pair (r,7) € (Z/fZ)* x HS(No, f). From now on, in order to simplify the

calculation we make the following assumption

Assumption 9.1 We assume that the good divisor

0= Zn(d07 T)do € D(N07 f)<P>
do,r
is primitive i.e. n(do,r) =0 if (r, f) # 1.

Definition 9.2 Let 6 = >, . n(do,7)[do, 7] € D(Ny, ) be a good divisor and
(J,7) € (Z) L) x HS (No, f) with red(r) = vy then we define

~

(1) C((Sj,(l,T),S) = Z n(d07r) dSC((Tj, dOT)7S)?
do|No,re(Z/ fZ)*
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@) C@ )= 5 ) (5) C(-ridor).s),

do|No,re(Z/ fZ)*

*—_
where T = Vo

It is an easy exercise to show that ((d;,(1,7),s) and ¢*(d;,(1,7),s) depend only

on the class of (1,7) modulo ~. We also have the useful formula ((d,;,(1,7),s) =

C(éj’ (CL, T)’ 8)'

Remark 9.2 First of all note that there is a hat on zeta functions appearing on
the right hand side of (1) and (2). Note also that the lattices Ay, has endomorphism
by Ox = Z + wZ and A4y, has endomorphism by Z + fwZ which is the order of

conductor f of Og.

Remark 9.3 In the case where f = 1 as in [DDO06] one has that ((d,,7,s) =
C*(6j,7,s). In general if f > 1 then ((d;,(1,7),s) # (*(d;,(1,7),s). In proposition
9.4 we relate both of them under the assumption that the primes dividing f are inert
in K.

9.2 Special values of ((9,, (A, 7),1—k) as integrals of Eisenstein

series of even weight Fy

We are now ready to relate periods of Eisenstein series with special values of the
Archimedean zeta functions (0, (1,7),s) and *(d,, (1,7), s). For this section

5= Y n(do,r)do,r] € D(N, )P,

do|No,m€Z/ fZ

is a fixed good divisor.

Lemma 9.2 Let (§,7) € (Z/fZ)* xHy (No, f) where Q- (x,y) = Az’ + Bry+Cy?
and red(T) = vo. Then for all odd integers k > 1 we have

(1) 37 (0, (1,7), 1= k) = = N3 [ Qe (2, 1) Fg (5, 2)d2

= 22 [ Qu (2, 1)F P, 2)dz,
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(2) SC(5J7 (17 7'), 11— k) - g;& QT(Zv 1)k_162k (]7 Z) dz;

where for any integer w > 2

(1) Fu(j,2) = —12f ZdolNO,TGZ/fZ n(do, jr)doEw(r, do2),

(2) ﬁ':/(ja Z) = —12 Zd0|N0,reZ/on <g_gajr> dZJU_lEfZ;(Tu doz);

(3) Gu(j,2) == —12 Zd0|N0,r€Z/fZn(doajr>d0E:u<_T7 doz).

b
Here & = 00, & = 0, (£v,) = Stabr, (1) where v, = ( ¢ p ) is chosen in such a
c

way that ct +d > 0.

For the definition of E,(j,2) and E (j,z) see Definitions 4.7 and 4.8. Note that
because 4 is a good divisor the Eisenstein series F,(j, z) and G,,(j, z) are holomorphic
at oo = %. Similarly, the Eisenstein series ﬁ:} (7,2) is holomorphic at %. Therefore all
the integrals appearing in Lemma 9.2 make sense. From the identity (4.25) one may

deduce the following relation

03 () 7 0 7) = P

Remark 9.4 Note that since 7 € ’HS(NO, f) we have 7 > 79. Since ¢7 + d is

a unit and ad — bc = 1 we have necessarily ¢t +d > 1 > ¢77 +d > 0. Moreover

Tr(v,) =a+d= (ct +d)+ (¢t +d) > 1. We thus deduce that

. (a—i—d)
sign | —— | > 0.
c

Since

we have




d C
and therefore v« = fNo ) and bfNym* + a = cr + d. From this we may
beO a

stgn ¢td <0
T \bfnNy) =

Remark 9.5 In the case when f = 1 one has G,,(z) = F,(z) and therefore

deduce that

g*(djv (A’ 7_)7 S) = g((sj (A7 T)v S)'

If we use Proposition 5.1 we see that we can replace & in (1) by any point in H
without changing the value of the integral and similarly for the integral in (2). Note
also that if (disc(Q,),p) = 1 then

(9.4) Stabr, (1) = Stabr, (5)(7).

In particular the equality (9.4) holds true when red(7) = .

Proof We only prove (1) since (2) can be proved in a similar way. We compute

s k=1 F [ T k—1 No 2k—1 s ().
/ Qr+(2,1) F%(j,z)dz:—m/ Qr+(2,1) Zn d—o,r de" B (rg, doz)dz

&2 &2 do,r

(2mi)?* )1 (No ) 2k—1 /%*52 k—1 e*rinrilt
= —12 (— n{—,r)d Qr(2,1) ——dz
(9.5)

(—1)F(2m)?\ N e _
=12 (w > n d—jﬂ’ dg* 1/f Qr+ (2, 1)F710,;(k, doz)dz,
do,r 2

where
627r7Lnr‘/f

(9.6) Ou(r,z) =Y '

— )2k
< (nz—m)

Note that since 2k is even one has O (—r, z) = O(r, z). Note also that the the right

hand side of (9.6) converges absolutely only for integers k larger or equal to 2. Fix a
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do|No. Applying the change of variable z — = - to the integral of the right hand side
of (9.5) we get

’77*52 b1 N
/ Qr (2, 1) 5 (5, 2)d
1)

(9.7)

() ) [ (- (o)

do,r

Let Q-(z,y) = Az + Bay + Cy?. Since (r,7) € (Z/fZ)* x HS (N, f) and 7% =

we have for any dy| Ny fNOT
Qure(.9) = sign(C) ( FCJL + By + 5007
Thus
(9.8) Quaor-(doz, y) = doQr+ (2, y).
Substituting (9.8) in (9.7) we obtain that
Yrx€2 "
J AR T
(9.9)
=12 <<_(21]2;k£2f))|2k) ) Z n (];[—(f, r) dy ' /;dm*& Qapr (2, 1)1 O (=rj, 2)dz.

do,r

Now using the absolute convergence of of ©4(—rj, z) for odd integer k£ > 3 one may
apply the Hilfssatz 1 of [Sie68] to the integral on the right hand side of (9.9). From
this we may deduce that

’Ydor*g
(9.10) / Quore (2, 110 (=1, 2)d2
3

a+d \ T(k)? o1 ( rj )
disc(Qayr+ )" 2 | ==, doT" , Yagr=, k | ,

where the ¢ is the function which appears in Corollary 8.1. We want to point out
here that the Hilfssatz 1 does not apply for £ = 1. The case k = 1 will be treated

= (=1)*sign (
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separately. Note that the matrix 74,,+ satisfies the property that ( u v >7d07* =
( u v ) (mod Z?) for all (u,v) € Z? such that (u,v) = (—7r4,0) (mod f) so that

© <_’”TJ'7 doT*, Yaor+ k;) makes sense.

Now from the functional equation which appears in (8.19) one may deduce that

f

where F*(s) = n*disc(Qqyr-)2T(21)%. On the other hand note that

r] R r] N
(911) F*(S)QO (__jad07*7’7d07'*7k> = F*(l - 8)90 (_?jdeT 7’7d07'*>k:) 3

~ rj * - . *
(912) 2 (_7j7d07- 77d0T*7S> = C ((_Tj7d07— )75)'

Substituting (9.11), (9.12) in (9.10) we may rewrite the equality (9.9) as

77’*52 & 1~
/ Qe (2, ) B (G, 2)dz =

&2

(9.13)
F*(1—k) [(=DF@m)2*\ " 1 D(k)? No NP
R ( (2k — 1)! ) disc(Qr+) 2F(2k)2”<d—0>7") (d—0> C((=rj,dot™) 1 = k).

do,r

We have used here the fact that &k is odd, sign (ﬁ) < 0 and disc(Qgyr) =

disc(Q,~). Recall that the gamma function satisfies the following identities:

™

C(s)I'(1—s) =

1
d I'(s)l = | =2'7%/70(2s).
Sn(rs) an (s) (s—|— 2) Vrl(2s)
Using the Euler’s reflection formula with s = g

5= % we may deduce that

(9.14) 1y DG F(k)2:1(_1)'f7r—2< i ) _ !

e ()7 w(@)

and the duplication formula with

where for the last equality we have used the fact that k£ is an odd integer. Finally
using (9.14) in (9.13) we obtain

Vrx€2 ~
SN[ Qe e ) Bl ) = 365, (1), 1 ),
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This conclude the proof of the first equality in (1) of Lemma 9.2 for positive odd
integers k > 3.

Now, let us prove the first equality of (1) in the case where the convergence is
not absolute, i.e., when k£ = 1. We want to use the identity (8.16) and let s — 1~.
Let us first try to evaluate lim, ,1- 1,(s, z) (see equation (8.10) for the definition of
(8, 2)). Intuitively this limit should not differ too much from

627rim27"/f

—A4AT?E}(r,2) = e ——
Note that originally 1, (s, z) was only defined when Re(s) > 1 in order to have
absolute convergence. But from (8.17) we may deduce that v, (s, z) has a meromorphic
continuation to all of C and lim,_,;- 9,(s, z) makes sense. We have the following key

lemma:

Lemma 9.3 We have

(1) limg_; ¥ (s, 2) = <1n;?z) — A E3(r, z)), if r =0 (mod f)
(2) limgyy ¥,(s,2) = —4n?E3(r,2) if r Z 0 (mod f).
Proof See Theorem 7 of chapter 3 in [B. 74]. O
With this lemma we thus obtain that for any r € (Z/fZ)* one has
(9.15) lirr% (s, 2) = O1(r, 2) = =472 E3(r, 2).
5—

Using (9.15) in Lemma 8.5 we deduce that

YT
/ E3(r, z)dz

1 [(2=8)2 251 on(O.
A D VAN e
! i (M\{(m1,m2)=(r,0) (mod f)} |Qrr (M1, ma))]
1 r
9.16) =—=53o(—=.7.4".0
( ) 4] SO (faT a77 )
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!/ /

a

where x € H, v = ( ;o > € I'y(f) is a matrix which fixes 7/ € H and j' =
c

sign (#)

d N,
From (9.16), the fact that -, = ¢/ fNo and sign (}?Jvd) < 0 we may
beO a 0

deduce that

Ve R
(9.17) —/ E3(r,z)dz =3¢ ((r,7),0) .
From (9.17), it is easy to deduce
Vrx€2
(9.13) 3@ ()0 =12 [ il 2
&2
V€2
—— [ B2
&2

This concludes the proof of the first equality of (1) in the case k = 1.

It remains to prove the second equality of (1). For this we do the change of

variables z — —— in equation (1) of Lemma 9.2 and we use the identities

fNoz
~ 1 1 ~ dz
1 F* s d — —(fN, 2k—2 Qk‘F . haied
Qrr (L’ 1) - SZ‘L(C)(C'Z*2 +Bz'+A) and v, = d o . This conclude
JNoz No bfN, a

the proof of Lemma 9.2. [

Remark 9.6 The relation (9.18) continues to hold even if the divisor ¢ is not

primitive because the non holomorphic terms cancel since § is good.

At this point it makes sense to draw the following corollary from (9.19)

Proposition 9.2 Let § = ioco and & = 0. Then for v € To(fNo) and k > n — 2

we have

761 . -7 &2 .
/ 2"Fy(7,2)dz = (—1)k+”(fN0)_”/ 2R (5 2)d .
&1 &2
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b d N,
where for v = ¢ we denote v* = ¢/ No :
c d bf Ny a

Proof From (9.3) we may deduce that

_ L _ — ~ dz
(9.20) ( Niz) 7 (j, f]é(]) d(fNiZ) = ()N A )

Apply the change of variable z — f;zvl() and use (9.20). O

Proposition 9.3 Let d = >, n(do,7)[do,7] € D(No, f) be such that

Z n(do,r)dy = Z n(do,r)% =0 forall re€Z/fZ,

do
do|No do|No

then the Eisenstein, series Fy5(r, ) is holomorphic at the set of cusps Do(f No){0, ico}.

Using Proposition 5.1 we may deduce

7(io0) ~7(0)
/ 2"Frs(r, 2)dz = / 2" Fy 5(r, 2)dz
7 0

100

~(0) ico
:/ 2" Fy 5(r, z)dz—l—/ 2" Fys(r, 2)dz.
i 0

100

b
]fweletyz(a )weget
c d

a b .

< d 100
/ 2" Fy5(r, 2)dz :/ 2" F (r, z)dz+/ 2" Fy5(r, 2)dz.
100 0

100

Remark 9.7 This is a reciprocity formula.

9.3 Some explicit formulas for (*(9,, (A4,7),0)

We record in this subsection a special value of particular importance namely ¢(;, (1,7), 0).

From Lemma 9.2 we have

Y7100 —
(9.21) C*(0,,(1,7),0) = % : / Fy5(r, 2)dz
1 1
=3 2—m(10g Bs,(vr2) — 10g B35, (2))] s=ico
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a b
Let v, = E Using equation (5.4) of Proposition 5.4 and using the fact that
c

0 is a good divisor we deduce

C'(05,(A,7),0) = ~d-sign(e) Y nldo,r)s], (0

T‘GZ/fZ,do‘NQ de

=—4-sign(c) > n(de,r) Y. B (]Z/ti;f) B (%)

=)

€2/ fZ.do| No i (mod ¢/fdo)
. ~ (gr/f+1 gr/f+i
= —4 - sign(c) Z n(dy,r) Z By ( o7 )B (a o/ 7
€2,/ fZ,do| No i (mod ¢/ fdo) 0 0

(9.22)
= —4 - sign(c) Z n(d, )DT’J (mod f)(a, c/dy).

T€L/ fZ,do| No

9.4 Relation between ((d,(1,7),s) and ¢*(d, (1,7), s)

For later purposes it will be important to relate those two zeta functions. We have

the following

Proposition 9.4 Assume that f is divisible only by primes that are inert in K

then we have
-1
~ al aly
U —=, wy, E U — wy, s
(ND 1) e ( FVD’ 1)

where Ay q i an algebraic integer chosen so that A, , = (u@ + 77)(mod f), Ay 1S

coprime to p and totally positive.

Corollary 9.1 Using Lemma 8.2 we deduce

-1

g()‘ua 5( NOT) ) C*((;?(aﬂ_)?s)'

~

g
i
o
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Proof of Proposition 9.4 We have

,28(1\,* al\; . Sign(QfNoT<m’n))
/ WD )T 2 Qs (m, )
(v (f No))\{0#(m,n)=(0,%)(mod f)} 0
1

~

_ Z sign(Q ny-(m, n))

|QNO7'(m7 n) |S

[e=]

u=

(Vo) \{0#(m,n)=(u, ) (mod f)}

Note that the discriminant of @y, (z,y) is equal to D. Since yy,. € I'(f) the second
summation makes sense since the congruences (u, §)(mod f) are preserved under the
action of yy,,. Now because the primes dividing f are inert in K we get automatically
that the algebraic numbers {\,,}/_ are coprime to fp. We have that the right hand
side of the last equality equals to

-1

<~

s wq ()\)
N(Axer) 2 NP
O (50) \{O£NEA Ngr A=t Nor(mod f))
A/NO B w1 (/\)
N An o
( M > 2 NP

O (foo) \{0#AE A0 N o A=2N0 4y 70 (mod )}

A/N,
C()‘;}I /CL OANO'rgaf?wlaS)

C (()\UvaaANOT)ila f7 wy, 8) .

[
ilng

—_

~

[
i{ng

~
=

~ g
= O

o

S

where for the last equality we have used the fact that Ay, Anyro = (ﬁ) U

10 P-adic zeta functions and p-adic Kronecker limit

formula

Definition 10.1 We define the p-adic zeta function attached to a good divisor

0 € D(N07f)<p>
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and a pair (j,7) € (Z/fZ)* x HS(No, f) with Q,(x,y) = Axz® + Bxy + Cy* and
(disc(Q,),p) =1 to be

100) G (A).5) = g [ (Quelf ) *distioe = 1elio)} oy

1

=307 [ @ulan) s diiivo = 2.(i)}a.0)

where (x) denotes the unique element in 1+ pZ, that differs from x by a p—1 root of
unity. This zeta function makes sense for any s € Z,. As usual (£v,) = Stabr, (7).

Corollary 10.1 Forn <0 an even negative integer congruent to 0 modulo p — 1

we have

(1 —P_Q")C*(f%, (17 7—)7 n) = C;((Sj’ (L T)’n)'

Proof Combine (1) of Lemma 9.2 with (1) of Theorem 6.1. [

Remark 10.1 We thus see that our p-adic zeta function interpolates rational

values of the Archimedean zeta function (*(d;, (A, 7), s) at negative integers.

Lemma 10.1 The derivative ((;)'(;, (A, 7),0) at s =0 is given by

(G @5 (4,7).0) =~ [ dog, (@l )RS 218} z0)

X

where £ = 100.

Proof This is a direct calculation using equation (10.1). Note that the integral over

X of log,(Qy+(fx,y)) = log, f* +log, Q-(x,y) is the same as log, Q,(z,y) since the

total measure is zero so that the constant term log, f? vanishes. O

We can now deduce a p-adic Kronecker limit formula

Theorem 10.1 Let (r,7) € (Z/fZ)* x HS(No, f) with T reduced, i.e. red(r) =

vg. Then we have
(10.2) S(C;)’(ér, (A,7),0) = — log,, Nk, /q, (w6, 7))
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Proof From Theorem 6.2 we may deduce that

(103)  log(u(dr)) = f log, (o~ ry)difioo - 11(io0)} z. )
X

Replacing 7 by 77 in the previous identity gives us

(10.4) log(u(6,, 7)) = / log, (x — 77)dfiy {ioo — 7 (i00)} ()
X

But 7, = ;0. Therefore multiplying (10.3) with (10.4) together and taking the p-adic
logarithm of this product combined with Lemma 10.1 gives us (10.2). O

We end this subsection with the following useful proposition

Proposition 10.1
3¢ (6, (A, 7),0) = ord,(u(d,,7)).

Proof Use Theorem 6.2 with equation (9.21). O

11 Dedekind sums and periods of Eisenstein series

11.1 Dedekind sums

In order to give explicit formulas we need to introduce certain Dedekind sums. Let
B, be the n-th periodic Bernoulli polynomial, see Definition 4.6. It is easy to show

that they satisfy the following distribution relations

N-—1 .
~ + M1 ~ /ax
11.1 NS By (o - B (—)
(11.1) 2 ’“(a MN ) "\ M

where M and N are nonzero integers and a is coprime to N.

Definition 11.1 Let a and ¢ # 0 be two integers, not necessarily coprime with
fle. Let s,t > 1 be integers and choose a residue class r € Z] fZ. We define

3 B,(h/c) Bi(h

(112) D;t(m"d f)(a,c) B ( /C) t( CL/C).

1<h<c § t
h=r(mod f)

where En 1s the n-th periodic Bernoulli polynomaial, see Definition 4.6.
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When the level f is fixed we omit the mod f notation.

Lemma 11.1 Those Dedekind sums satisfy the following useful identities:

1) primed P ad,dc) = primed f) a,c
st

st

s—1 c
—(t—1 r(mod c -
(2) dy 3 )Ds,(t f)(a’ c/dy) = (%) }; s ¢
hEr(io

for any a,c,d € Z s.t. dyf]c.

Proof Let us prove the first identity first.

B B,(h/dc) By(ha/c)
DT(mOd f) — s—1
s,t (Cld, dC) (dC) Z t
h(mod dc)
h=r(mod f)

d—1 i+cji\ p ali+cy
B, (54 By(4£ly

i(mod c¢) =0

i(mod c) t Jj=0
i=r(mod f)
_ (dey! Z By(%) B(i/c)
gt t s
i(mod c)
i=r(mod f)
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This completes the first part of the lemma. Let us prove the second part.

Co1 ~~  Bi(h/(c/dy)) Bi(ha/c)
DD S
0 S t
h=1
h=r(mod f)
C/dO do— lB h+JC/d0>Bt( h—‘,—jc/do)

(dio)sl Z Z C/Ulo . _

h=r( mod f)
c/d 1D h+‘C/d
C\s—1 S B, ( /d0> Bt( do(jc/do(;)
CRAED DI e —

h=1
h=r(mod f)
c/d n(_h \do—1 Ry (,htic/do
ZO By() %! By(a )

c/d do(c/do)’
S Z t N

c/d, 53
0 d() S t

h=1
h=r(mod f)
dy VDL D a, ¢/ dy).

11.2 A technical lemma

Here is some technical lemma that will turn out to be essential later on.

Lemma 11.2 Let s,t > 1. For any rational number ¢ (p could divide c), we have

inside Q, the following identity:

r(mod r(mod S— —Lr(mod
Jim DS (. €) = DI Pla,e) = p 7 DL D (pa o)

The proof is similar to [DDO06] but it avoids the use of Dedekind reciprocity formulas.

Proof Let z = ¢ € Q with (a,c) = 1 and assume first that p { c. Let b be an
integer such that abp = 1(mod c).
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Note that

_ By(lbp/c) Bu(l/c)
r(mod f) o os—1 s\tOp t
(113) Ds,t (Cl, C) =cC Z S t
1<i<ec
I=ar(mod f)
therefore
. I By (p-1ypi (Ibp/€) By(1/c)
(L4) DI ey =TT ST
per 1<i<c 5 t
I=ar(mod f)
and similarly
. B By p-1ypi (Ib/€) By(1/c)
(11.5) Dt D (pae) =ty
rrn 1<i<c 5 t
I=ar(mod f)

Write y = {lbp/c} and 3 = {Ib/c}. Since ¢?~D” — 1, then subtracting p*~! times
(11.5) to (11.4) we see that it suffices to prove that

(11.6) lim By (y) = Buly) = p" 7 Bo(y)).

For s > 0, this follows from the proof of Theorem 3.2 of [You01]. In the course of the
proof of Theorem 3.2 of [YouOl] he gets that for any positive integer b coprime to p
the following equality

(11.7) (b8+(p71)p" — 1)BS+(P71):DJ' (z) — er(pil)pf By p-1)p (')
s+ (p—1)p
Bs _ s—lBS / )
- )BT B iz,
S

where ' is such that p2’ —x € {0,1,...,p—1} and s > 1. The denominator of % at
p is well behaved. If (p — 1) t n then = is p-integral. If (p— 1)|n then v,(£22) = -1 —
vp(n). Using the previous observation it follows that lim;_,, p®~ V¥’ By (p-1ypi(2) = 0.
Letting 7 — oo in (11.7) we get that

Bs B (x Bs _ sles /
(11.8) (b° — 1) lim —e=r ) o (7) _ ) (z) =P Bo(@).

j—o0 S S

When s > 1 we can always choose b such that b°* — 1 # 0. Therefore we can cancel

the two factors b* — 1 in (11.8) to get (11.6). It remains to treat the case where s = 0.
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We have v,(y) > 1. Let g = (p — 1)p’. Note that

(11.9) B,(y) = Z (Z) Byy*™

k=0
g—1

— 9 g-—1 @g—k B

y+g<;(k_1 v + By

If (p — 1)tk then B € Z,. If (p — 1)|k then we can write k = (p — 1)p“m with
(m,p) = 1. So v,(BEys™*) > —1 —u+ (p — 1)p* > 0 since p’* — 1 > m. We thus
deduce from (11.9) that lim;_,o Bp—1)pi (¥) = Bp—1)p-

Let w be the Teichmiiller character at p. If we look at L,(s) the p-adic L-function

twisted by the trivial character. We have the formula

B, -

Ly(1—n)=—-1—-w"@p" ") -

n

Here w™™ means the primitive character associated to w™" (so w™"(a) is not necessarily

equal to w(a)™™). So letting n = (p — 1)p’ therefore w™"(p) = 1 we get

B (p—1)p?

Lp(l - (p - 1)]9]) = _(1 - p(pil)pjil) (p _ 1)p]

Now we know that limy_,1(s — 1)L,(s) =1 — %. So letting j — oo we get

. 1
]lglolo Bpnp =1~ "

this proves the claim for s = 0.

We need to treat now the case where p|c. This case turns out to be simple. Let

us prove the following elementary lemma

Lemma 11.3 Let h be any integer and 0 # ¢ € Z such that p|c. Then we have
the following:

(1) llmJ*)OO Cs+g§5+g<%) = CSES(%)? Zf (h7p) =L

(2) lim; o0 9By y(2) = 0, if p|h.

127



where g = (p — 1)p7.

Proof of Lemma 11.3 Let us prove the first case. We have

h <3 s+g
stg B _ stg—k k
(11.10) c gBSJrg(E)f E ( i >Bkh I e

k=0

*[(s+g sta—k k A s+g s+g—k k
(11.11) => L Bkt > L) Bkt

k=0 k=s+1

Now since |c|, < 1, |h[, = 1,](})], < 1 and |B|, < p, the limit in (11.11) exists when
j — oo. Since (h,p) = 1 the limit of the first term is CSES(%) and the limit of the

second term is 0. This proves the first part of the lemma.

Assume now that p|h. If v,(h) > v,(c) then 2 € Z,. In this case we know that

lim; o §S+(p,1)pj (2) exists by (11.6). Finally since p|c it follows that lim; cs+9§8+g(h) =

0. Assume now that v,(c) > v,(h) =m > 1. Then by the first part of the Lemma 11.3

we know that limjﬁoo(pim)sﬂgﬁg(%) exists. It follows lim; . c5+9§8+g(%) =0

sincem >1. O

With Lemma 11.3 it is now easy to prove Lemma 11.2 for the case where p|c. We

have
~ h.~ ah
. r(mod f . st+g—
Jim Dy )(a,C)Zjlggo >~ 'Byrg1(2)Bi(—)
1<h<c
h=r(mod f)
~ h. .~ ah
_ s—1 o -
(11.12) = > By (7)Bi(~)
1<h<c
h=r(mod f)
(p,h)=1
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On the other hand we have

DIt N (a, ¢) — p>= D2, T D (pa, )

s,t

_ Dr(mod f) <a7 C) . ps_lDZ;lr(mod 1) <a7 C/p)

s,t
135 h.= ah c1,C s 1S h  ~  ah
= Z C 1Bs—1(z)Bt(?>_ Z p 1(_) lBs—1(7>Bt(7)
1<h<c 1<h<c/p p p p
h=r(mod f) h=p~tr(mod f)
~ h. ~ ah ~ h = ah
_ s—1 s—1
= Y Bor(2)Be(—-) = > e Bso1 () Be()
1<h<c 1<h<c
h=r(mod f) h=r(mod f)
h=0(mod p)
~ h .~ ah
_ s—1 - -
= Y BB,
1<h<c
h=r(mod f)
(p,h)=1

Compare with (11.12). This concludes the proof of Lemma 11.2. [

11.3 Moments of Eisenstein series

In this section we compute the moments of certain Eisenstein series. This will turn

out to be essential for the proof of Theorem 6.1.

We remind the reader that for r € Z/ fZ we have defined

(11.13) Eu(r, 2) = (M)‘l 5 (e_Q—m/f

(k—1)! m+nfr)k
where r € Z/ fZ.

Remark 11.1 When k£ > 3 the convergence of the right hand side of (11.13) is
absolute and therefore Fy(r,7) is a modular form of weight & for the modular group
['1(f). When k = 2 the convergence is not absolute. Nevertheless, the corresponding
g-expansion of (11.13) still converges and therefore we take it as the definition of
Es(r, 7). In the case where r Z 0 (mod f) and k& = 2, one can show that Ej(r, ) sat-
isfies the correct transformation formula and therefore corresponds to a holomorphic

modular form of weight 2 for the modular group I'y(f).
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Those Eisenstein series are modular with respect to the group I'g(f), in the sense

that for all v — ( ¢
C

) € I'o(f) we have the transformation formula

(11.14) Ep(y*7,y7)(cr +d)F = Ey(r, 7).

where v x r = dr(mod f). In order to simplify the notation we define only for this
section
Ekﬂ«(T) = Ek(T, 7').

Let
Pir(r) = Y as,, ()

n>0
be the g-expansion at ico. We want to compute the behaviour Ej,(7) in a neigh-

bourhood of a cusp ¢ € I'g(f)(ico). For that we will use the transformation formula

b
(11.14). Let v = < ¢ p ) € I'y(f). Then we have the identity
c

ait' +b  a 1
cit +d ¢ cfcit' +d)

y(it') = , t'>0.

From (11.14) we deduce

where it = —m. When t' — oo, t — 0. We thus deduce the formula
;
3 a 3 t aEk,ar(O) o

Observe that the convergence to 0 in (11.15) is exponential.

Let 6 = > 4 inorezy sz (do, 7)[do, 7] € D(Ny, f) be a good divisor. Remember
that

Fro(j,2) = >_ n(do, r)doEy jr(do2).

do,r
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Because of the choice of the n(dy, r)’s we have

Frs(d,2) = Z n(do, 7)doEy, jr (do2)

do,r

=" n(do,r)do <Ek,jr(doz) - Zka}(itT(O))

do,r

- Zn(dm 7)do (Ek,jr(d02> — OBy q)r (0)) :

do,r

For the last equality we have used the assumption }_, v n(do,7)do = 0 for every
r € Z/fZ. Let 2 € ['y(f)(icc). Since

. . ikaEk gr (O>
151(1) (Ek,jr(a/0+ Zt) — W) =0

we find
(11.16) limy_0Frs(j,a/c+it) = 0.

The limit (11.16) is valid for any j € Z/fZ, ¢ € To(f)(ico) and it converges expo-
nentially to 0 when ¢t — 0F.

It thus makes sense to consider line integrals of the form
(11.17) / Frs5(j,2)2" 1dz

since Fy 5(j, z) tends to zero exponentially for both endpoints of the line integral. In
the sequel we will compute (11.17) for the integers 1 < s < k—1. In order to compute

(11.17) it is enough to compute integrals as in the next proposition.

Proposition 11.1 Let ¢ € I'y(f) with ¢ > 1 then we have

- a ; s—1 3, i r(mod f)
/t . (Ek (E + zt) - aEkm(O)> vt = i D D ae)
Before the proof of Proposition 11.1 we remind the reader the Fourier expansion of

periodic Bernoulli polynomials:

| 2minx

Bi(a) = Bulle)) = o 3

n#0
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For integers s > 1 we also define

A direct calculation shows that

. . 275 ~
Lis(e%rzac) + (—1)8Li5(€_27rw) _ _( '/T'Z) BS(ZL‘)
s!
Proof of Proposition 11.1 We have
(11.18) / (E,w(% +it) — ag,, (0)°* " dt =
t=0
f-1
e 3 [ | S s+ )|
m>1n>1

Let us evaluate first the interior of the integral on the right hand side.

/ [Z Z TTL 27mm (n(2+it)+b/f) + (_1)k€27r1m(n(z+2t)b/f))] 514t

m>1 n>1
_ Z Z mk71<€2m'm(n%+b/f) + (_1>k€27rim(n%fb/f)) / e~ 2mmntys—1 1y
m>1n>1 0
2mim(n2+b/f) | (— 1)k627rim(n%—b/f)> 1 :
m>1 n>1 (mn)

. a 1
27T’Lm n +b/f + (_1)k€27rzm(nz—b/f))m

m>l n>1

2m(c;+l)(n +b/f) k 2mi(cj+)(n%—b/f)
stﬂ- Zzznsj+l/c ks)< +( 1> )

n>1 1=1 j>0

Since f|c we deduce

[(s

—(k—s)

27rzl(n +b/f) _1\k 2mil(ne—=b/f)
BEUNED ) ) DR B S

n>1 =1 520

=) (2n n>1 1=1 e >0 (G +1/e)=t=
c (eQﬂil(n%+b/f)_‘_(_1)k627ril(n%fb/f)) l

== =D - - (k). )

n>1 1=1 p

)
(
B I'(s) L (e2rneHb/ ) 4 (—1)ke2milng=b/1)) 1
T 3 2 2
)
(
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where for the second equality we have used ((z,1 — k) = —B’cT(x) where ((z, s) is the

Hurwitz zeta function.

c 27rzl (n2+b/f) +< 1)k627ril(n%—b/f)) ék,S(L)

S)27T ZZ ns l k—§

n>1 =1

c l
—I'(s) 2milb) f k_—2milb Bis(;,) €

_ L -1 wilb/ f p
g T (e S

1—(k—s) (271—)5 — et
()

—I'(s) ~ 5 i1b/ f k —2milb By
— = \°) i —1 milb/f1_ """ \p/
. 3

2min(12)

nS

. 27rzl“
1—(k—s) (271')5 LZS(G )

Substituting the latter expression in equation (11.18) we get that (11.18) is equal to

f-1 B, (L
_ _F(S) e 27rzbr/fz 2mlb/f+( 1>k€72m‘lb/f] Bk*5<p)LiS(€2m%)

T fkal—(k—s s _
fhet=(k=s)(2m) ot — s
—I(s)f - - onitajey Bros(l/©) - - omitajey s (1/0)
_ Lig(e*™ a/c —1 k Li, 2mila/c
Fhel=(k=s) (277)s 2 is(e ) b— s +(=1) 12—1: is(e ) R
I=r(mod f) I=—r(mod f)
—I'(s)f N Bis(l/) o ——
— T wila/c —1)*L 2mila/c
fhet=(k=s)(27)s =1 k—s [Lis(e )+ (1) Lis(e )
I=r(mod f)
etk Z By_s(1/c) By(la/c)
o fkl — k—s s

We take the opportunity here to prove a functional equation between the L-
function of ﬁk’g and F ns- Before we need to introduce some definitions and prove a

analytic continuation result.

Proposition 11.2 Let f € M(G,C) where G is a discrete subgroup of SLo(Z)
and % € G(ico). Define

As(s;a,c) = e”s/gcs_l/ (f(it +a/c) —as(0))t5 dt
0
then Ay (s;a,c) admits a meromorphic continuation on C.
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i{: Ei))) k) converges to 0 exponentially we find that

Proof Since lim;_, (f(it +a/c) — (

Aj(s;a,c)

is holomorphic for Re(s) > k. We want to extend it to C\{k, 0} where k is the weight
of f. We have

Ag(s;a,c)

_ emin/2e] / (Flafe + it) — ag(0))*dt

to

+e”5/2c8—1/0t0 (f(a/c+it)— (af(o) + 2 (0) —af(o)) tLdt

—cit)k  (—cit)k

to

_ em's/QCs—l/ (f(a/c+zt) _ af(O))ts_ldt+€7riS/QCS_1/

to 0

. to 1
wis/2 s—1 -1 s—1
+ ™ ¢ af(O)/O <—(—Cit)k ) t°dt
— Tis/2 51 Oo(f<a/c+it) _a s—1 Tis)2 s—1 o Y az(0) s—1
= F(0) 7 dt 4+ ™ =¢ fla/c+it) N dt

to 0 (—cit)*

) ts—k: s
+ ems/QCs—laf(O) ( 0 o _0) )

(f(a/c +it) — (a_fc(;z;k) tdt

(—ci)f(s—k) s
U

From this computation we can deduce a very nice functional equation between
F; 5,k and F g k-

Corollary 11.1 Define
L(ﬁk,g, s) = /OO ﬁk,g(it)ts_ldt
0
and
L(ﬁ;ﬁ, s) = /00 ﬁ,:’(;(it)ts_ldt
0

then L(ﬁk,(g, s) and L(ﬁ,:,(;, s) are entire functions in s related by the following func-

tional equation
(11.19) *F(fNo)* ' L(Fys,8) = L(F} 5.k — 5).
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Proof Since Fj 5(z) and 13,:75(2) decay exponentially to 0 when ¢ tends to 0 and ico
we get that s — L(F}s,s) and s — L(ﬁ,;a, s) are analytic on all of C. Let us prove

the functional equation.

Using the calculations in Proposition 11.2 and setting t;, = ﬁ we deduce that

0o 1
L(ﬁk’,ﬁ» 5) :/ Fk,é(it)ts_ldt + /\/W Fk75(it)ts_1dt
L 0

fNo

Now applying the change of variable ¢ +— ﬁ in the second term and using equation
(9.19) we find

(11.20) L(Fys,5) = / BTt + (fNo) T (1) / o Fpg(int e
ViNs e

Doing a similar computation we find that

(11.21) L(E’;‘,»S):/l ﬁz;",(s(it)ts‘ldtqt(fNo)’“‘s‘lz"f/1 Frs(it)th ="t
VIt V%o

Comparing (11.20) with (11.21) we obtain (11.19). O

Proposition 11.3 Let 2 € I'1(f)(ico). Forthe integers1 < s < k—1 Ag, (s;a,c)
admits rational values. More precisely we have

—1)8 s—1
(=1)%c pr(med f)(a’c)‘

AEk,r (S; a, C) = fkil k—s,s

Proof It is a direct consequence of Proposition 11.1. [J

We can now write down an explicit formula for the moments

/ 2" F5(4, 2)dz.

a
c

Proposition 11.4 Let ¢ € I'o(f) and 1 < s <k —1. Then we have

n

ioo n , 1 ny\, a.,_ _ ir(mo
[ G = s X () O o DI o
P =0 do,r
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Proof We have

7ris/2cs 1

AF,s6.2)(s:a,¢) =€ Frs(j, = + it)t=dt
’ e

[
_ mis/2,5-1 / Fos(G, & +it)e—de

0 C
— oTis/2p5— 1/ Zn do, T dOEkm(dO( +it) )t dt

0 do,r
_ is/2- 1/ dz n(do, ) Epr (( /d +idot)) " d(dot)

0,7
= S g, r) () / Brrs (=5 + idot)) (dot)* d(dot)
do,r 0 / 0

= Z n(do,r)Ag, ,, (s;a,¢/dy)

do,r

Therefore

/ 2"Fr5(j, 2)dz :/ (g +it)" Fr.s(J, — —i—zt)zdt
a 0

n\ a <. .a
= <l> (=)t / (it) Fy. (4, — + it)idt
1=0 € 0 ¢
_ Z <TL> <g)n lC legl (l+1)c(l+1)71 /OO Fk,é(j; g + 'lt) (1+1) ldt
— l) ¢ 0 c
" /n\ a., , _
=X <l> (2) ' Ap . (1 + La0)
1=0
— (1 @y,
— Z l (z) c Zn(do, 7)Ap, (I +1;a,¢/dy)
=0 do,r
= <TZL> n ! Z d(), —) l+1)+1A (l + ]., a, C/do).
=0 do,r

Using Proposition 11.3 we find

1 - (1o
= 2 () O S o) DL /),

1=0 do,r
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11.4 Moments of ji,.{c; — ¢}

We can now give explicit formulas for the moments of fi;{ico — ¢}.

Proposition 11.5 Let { = 2 € I'o(fNo)(ico) with ¢ > 1 and let ji;{ico — ¢} be

as in Theorem 6.1. Then we have
n,mjy f; a n+m o0 n :
/x y"dpfico = —}(z,y) = (1—p™" )/ 2 Fymaa(j, 2)dz =
X 13
(11.22)

—12 ntm - n a.,_ r(mod
=Y (1)@ (o, g DI /o).
1=0 do|No,r€(Z/ fZ)*

Proof Using the first property of Theorem 6.1 we have

/x y"i{ioo = “}(w,y) = (1 —p™" )/ 2" Frninsa(d, 2)dz
X

a

12 ndtm u ny a.,_ r(mo
= (= Y () D) S (o DI o)

C
=0 do,r

where the second equality follows from Proposition 11.4. [

Remark 11.2 In the case where 6 = »_, [do,r] € D(No, f)* and n +m =

1(mod 2) we have

r(mod
> " n(do,r)dg' DY) (0, ¢/do) =

do,r

Similarly when 6 =}, [do,r] € D(No, f)~ and n + m = 0(mod 2) we have

r(mod
> nldo,r)dy' DL 1 (ase/do) =

do,r

Proposition 11.6 Let fi;{ico — 2} be as in Theorem 6.1 with ¢ > 1 then we
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have
. a o .
[ araitioo s S = [ Fuemianli2)d:
Zp XY c ¢

- 72 ()

r(mod n m— r(mod
S o)t (D) asefdo) = DI L (pa e/ do). )
(:l0|]\/0,7‘€(Z/fZ)><

Proof Using the fourth property of Theorem 6.1 we have

100

/ "y Ti{ioo = 2 (e.y) = / Pz (s 2)d2
Lp X LY ¢

a

:[1 z”(ﬁm+n+2(j7) pm+n+1Fm+n+2<JapZ))dZ

100 100
= / 2" Fini2(J, 2)dz — pm+n+1 [L 2" Finint2(J, p2))dz

pa
c

= / Znﬁm+n+2 (]7 Z)dz —p" / Znﬁm—&-n-i-?(j? Z)dz
and using Proposition 11.4 and the assumption that px 9 = § we deduce
F 2 () e
r(mod n m— r(mod
Z nldo, 7)dg" (DI E) s e/ do) = DI L (pa, e/ do) )

do|No,re(Z/ fZ)*

This conclude the proof. [

12 Proof of Theorem 6.1

In this section we prove Theorem 6.1 following essentially the same steps as [DDOG6].

We brake the proof in four steps.
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12.1 Measures on Z, X 7,

Let § = ¢ € I'g(fNo)(ico) with p 1 c. In this subsection we prove the following crucial

Lemma

Lemma 12.1 There exists a unique family of Z,-valued measures on Z, X Z,
indexed by (Z]fZ)* /(p) denoted by ve; for some j € (Z]/fZ)*/{(p) such that

(12.1) / h(z,y)dve j(z,y) = (1 — ka)/ h(z,1)F (4, 2)dz,
Zp XLy ¢
for every homogeneous polynomial h(x,y) € Z|x,y] of degree k — 2.

If we use the equation (12.1) to the monomials z"y™ we get

/ m”ymdy&j(;p, y) = _12f(1 - pn—i-m) / ZnFn—l—m-‘rQ(jv Z)dZ
Zp Xy 3
(12.2)

12 ntm u n r(mod
= 1= S (1) 1 X o s DI (o)
=0

do,r

for all integers n,m > 0. We set

i) i= (=55 35 () -0 X b )5 D /)

=0 do,r

Our key tool in showing the existence and uniqueness of {v¢;}jcz/z)x /() is the

following result, which is a two variables version of a classical theorem of Mahler.

Lemma 12.2 Let b,,, € 7Z, be constants indexed by integers n,m > 0. There

exists a unique measure v on Z, X Z, such that

Lo, ()t =t

We define rational numbers ¢, ;’s to be



forany 0 <nand 0 <i <n.

For j € (Z/fZ)* /{p) we define

So in order to prove Lemma 12.1 it is enough to show that J,,,(j) € Z,. Note that

we can ignore the denominator f in the expression in (12.2) since f is coprime to p.

Proof of the p-integrality of .J,,,,(j) In order to show the p-integrality of the
terms J,,,,(j) we need to analyze more closely the terms I, ,,,(j). By definition we

have

& n (Mo
)= =™ 3 ()P0 303 nl g DA )

1=0 €(2/f2)* do|No

Let us concentrate on the terms >, v n(dy, r)dg' D" D (a,c/dy). Using

n+m—I+1,1+1
(2) of Lemma 11.1 we find

1 myr(mod f) _ 7 C k-2 - Ekflfl(h/(c/do)) Elﬂ(ha/C)
(12.3) dy Dk 1-1041(a; ¢/do) = (d_o) ; -1 1
h=jr(mod f)

We would like to think of (12.3) as the coefficients of a generating function. For the

sequel we construct such a generating function.

We have by definition

=B

n>0
We set 0(h) = {22} for 1 < h < c. For the value of h in this range we let Fj, = 1/2
when h = ¢ and 0 otherwise. We thus have

xe@(h) h@ .’L'H_l
Fy, = B .
1+I h Z t+1 c)(t—{—l)!

t>0

el‘
Rearranging a bit we find that

eG(h)m 1 §S+1<h_a) .’L't
——+ 5 = ——c¢ = B(h
et —1 [L’+ 4 Z t+1 ¢! (h, )

s>0
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We also define for 1 < h < ¢

{hdo/c}(y/do) 1
(&
A(Ta h7 y) = Z ’I'L(do,?”) ( ey/do 1 - + Fh)

dolNo y/do
_ Z Z Bsi h/(C/dO))( ).
520 do|No 5+ 1 do
We have
Buy1(h/(c/dy)) Bia(hafe) ()" (x)"
A(r,h n(d = 0
(rh9) B S;OMZNO 0" s+ 1 t+1 sl ¢
So
S° A(rhy)B(h,a)
1<h<c
h=jr(mod f)
_ Z Z (do, 7)c>(c/dy)? Z Bs1(h/(c/do)) Bt+1(ha/0>y_8$_t
s+1 t+1 st
5,t>0 dg|No 1<h<c
h=jr(mod f)
t 1yri(mod f) ys xt
(124) =) ) n(do,r)e*dy DAY, )(a ,c/do)gy.
5,6>0 do| No T

Now taking the summation over the r’s in (Z/fZ)* of equation (12.4) we find

(12.5) Z > A(hy)B(h)

€(z/fz)*  1<h<c
h=jr(mod f)

_ s d tDT‘](mOdf d ys :Ut
= Z Z Z 0,7 s+l (asc/ 0)35-

st>20re(Z/f7)* do|No

In the summation (12.5) some cancellations occur and it is important to take them

141



into account. We have

Z > A(rh,y)B(h,x)

€(Z/f7)*  1<h<c
h=jr(mod f)
= > B(h,x)A(hj ", h,y)
1<h<c
(h,f)=1
A 1 e{hdo/c}(y/do) 1
— 4+ F do, hj ™" - F
Z(ex—l {L‘+ h)zn(Oa] )( ey/do—l y/d0+ h)
1<h<c do|No
(h7f):1
Hhz . elhdo/c}(y/do) 1
(126) = Z (ﬁ +g($)) Z n(dg,h] )( ev/do _ 1 - y/d())
(1}L§}1)S:cl do|No

where g(z) := =15 — 2. Note that the term F}, has vanished since f|c and (h, f) = 1.

61'7

Now we want to use the fact that >,y n(do,7)do = 0 for all r € (Z/ fZ)*.

Expanding (12.6) we find

ez 1 ethdo/c}(y/do) 1

20 = 3 (o) X el e —

1<h<c do| No
(h,f)=1

@{hdo/c}(y/do) 1

Z Z dO?hj €y/d0—1 _y/do)

1<h<c do|No
(h,f)=1

Because 3, n, 7(do, hj~")dp = 0 the first term in (12.7) is equal to

e _ q elhdo/c}(y/do)

>0 () 3 o b )

1<h<e do|No
(h,f)=1
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For the second term of (12.7) we find

1y g+ B () (c/do)) o'
1 t DPt+1
©) Y D nldo,hj Ny =S
1<h<c do|No
(h,f)=1

Z Z Z n(do, hj_l)datBHl(th_}/_(f/dO))% _

re(Z] fZ)x 1<h<c d()|N0

h=jr(mod f)
_ - §t+1(h/(0/d0)) y'
=glx) > > dt Y n(dehih) 1 i
re(Z/ fZ)* do|No 1<h<c '
h=jr(mod f)

128) =g 3 S % don(do, hjVya-+ B/ (€/do)) v

t+1 t!
r€(Z/f2)* do|No 1<h<g-
h=jr(mod f)

But using equation (11.1) we have

§t+1h c/dy §t+1h c/dy
3 (h/(c/do)) _ 3 (h/(c/do))

t+1 t+1
IShS% T h(mod ffflo) +
h=jr(mod f) h=jr(mod f)

[ c _t§t+1(j7r)
_(fdo) t+1 -

It thus follows that (12.8) vanishes completely since >, . n(do, hji~Y)dy = 0.

So with all those cancellations we find the important identity

o(h)z _ 1 eB(doh)(y/do)

S XY Amhy)Bha) = Y () Y nldo b ()

re(2)f2)*  1<h<c 1<h<c do|No
h=jr(mod f) (h,f)=1
s ot

S S ey D )

5,t>0re Z/fZ X dQ|N0

(12.9) —: H(x,y),

where (doh) := {C/Ldo} We have

& at —S rj(mod
oy* %H Z Z (do,7) tDsi(l t+1f (a,c/dy)
€(Z/ fZ)* do|No
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and also

o 0 s _s rj(mod
a—w%Hj(xp,y e Z > n(do, r)dy " DI (a, ¢/ do).
€(Z/ fZ)* do|No

Combining everything we obtain

. n4+m & n r(mo
L) = =) 3 () S e DI el

€(Z/ fZ)* do|No

n-+m - n a n—I I n+m—I1 an-l—m : al+1 D D
= (1 -Dp ) l (E) (_1) c ayner,l Oplt1 (H]<l',y) + H](x Y ))|(070)-
=0

In order to ease the notation we set
(12.10) Hi(2,y) == Hj(z,y) + H;(a",y"),
and D, = 8 . With this new notation we have
(1) f; (}) &
1=0
1= ()

=D Y (a0 Dy L ol =

(1- pn+m>(CDy>m<aDy - Dm)an* (z, y>|(0,0)'

D Bx

(—1)lcn+m_lD;L+m_lDiH;(CL’, y)|(070) —
an l

(=)' Dy DL H (2, y) | 0,0) =

[en]

: _ T Ly __ 0 0u 9 0v __
Now we do a change of variable, we set u = e and v = €¥ so D, = g-5* + 5-9° =

a = D, and similarly and D, = 88ugz + aavg_z = v% := D,. Note that
o) _ 1 8(doh) /do
u 1\, U
(1211) Hj(U,’U) = Z (ﬁ) Z n(do,h] )(m)
1<h<c do|No
(h,f)=1
So H,(u,v) is a rational function in u!/¢ and v'/¢
We do another change of variable. We set (u,v) = (%,wcza). So the inverse

change of variables is given by (z,w) = (1, u?/“v'/¢). We let D, := uZ. So by the

144



J 0z 0 Oow 0

chain rule we get D, = u(5 52 + 5-52) = —z% + wy-. Similarly, D, := v

0

If we set D, := wa% and D, := 22

p(20z 4 0 dwy _ 1y, 0 2

500 T o0on) = Wy we get
[n,m(j) =(1 —p”+m)D£’}D2H;(u,U)|(171).

Consequently we have

(12.12) Jnm() = (D“’) (DZ) H (u,v)|(1,1)-

m z

0

ov

Now the p-integrality of J, ,,(j) will be a direct consequence of the following lemma:

Lemma 12.3 Consider the subset R of Z,(u/¢,v'/¢) defined by

P
R := {6 where P,Q € Z,[u"*,v"°] and Q(1,1) € Z;} -

Then R is a ring stable under the operators (D“’) and (%). Furthermore H;(u,v) € R

m

forall j € (Z)fZ)*.

Proof The stability of R under the operators (LZ,}:) and (Z z) follows directly from
the proof of Lemma 4.12 of [DDO06]. It thus remains to show that H;(u,v) € R for
all j € (Z/fZ)*. We note that if H;(u,v) € R, then H;(z?,y”) € R and therefore
H?(u,v) € R. Looking at the right hand side of (12.11) and using the fact that R is

a ring it is enough to show that for all 1 < h < ¢

(i) (“™=1) ¢ R and

u—1

(i) 3 n(do, hj ™) () € R,

d()|N()

For each integer d € Z>, let us define
(Ul/d)d -1
vt/d—1

We note that ¥;(v)|,=1 = d.

Uy(v) = =14+ 4+ (Ul/d)dﬂ'

Let us show (i). Let 6(h) = £ for some 0 < b < ¢ — 1. We have

u@(h) -1 B (ul/c)b -1 B 1 (ul/c)b -1

u—1 u—1 U.(u)  wlle—1
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Since (211//?:1 is a polynomial in u!'/¢ and ¥.(1) = c and p { ¢, it follows that % €
R.

Let us show (ii). We have

B pB(doh)/do 1 B

D> nldo,hj™") (vl/do . 1) = — D nldo, hj ) (0T ()

do|No do|No
1913 1 D gy Pdo, hj =) (1 /40)Plh)y (v)
( : ) - ‘IJC(U) ’ pl/e — 1

Now using the assumption that >, . n(do,r)do = 0 for all r € (Z/fZ)* that the

polynomial (in the variable v'/¢)

> nldo, b)) DM B (v),
d0|N0

is divisible by v'/¢ — 1. Since ¥.(1) = ¢ and p { ¢, it follows that the right hand side
of (12.13) is R. This concludes the proof of Lemma 12.3. [

Finally from Lemma 12.3 we obtain that (LZ:) (ZZ)HJ* (u,v)|(1,1) € Zy and therefore
Jnm(j) € Zy. This concludes the proof of Lemma 12.1. O

12.2 A partial modular symbol of measures on Z, x Z,

In this subsection, we use the family of measures {vg;} cz/z)x/(py of lemma 12.1
to construct a family of partial modular symbols (supported on the set of cusps
To(fNp)(io0)) of measures on Z, X Z, encoding the periods of {Fy(j, 2)}Yie@/ 5z ) p)-
Note that Z, x Z, is stable under the action of I'y(fNy).

Lemma 12.4 There exists a unique family of partial modular symbols {v;} ;e z)< /)
supported on the set of cusps T'o(fNo)(ico) of Z,-valued measures on Z, X Z, such
that

/Z )y = sha) = (1= 1) / bz D, 2)dz
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forr,s € To(fNo)(ioco) and every homogeneous polynomial h(x,y) € Z[x,y| of degree

. a b
k — 2. Furthermore if v = . d € I'o(fNo) then vi{r — s}(U) = vyy{yr —

vsHU). So in this sense the measures are I'o( f No)-invariant.

Proof Uniqueness is easy. We must show the existence. Let M denote the
Lo(fNp)-module of degree zero divisors on the set I'o(fNo)(ico) = I'(ico). Let
M’ C M be the set of divisors m € Divy(I'o(f No)(ico)) for which there exists a fam-
ily of Z,-valued measures indexed by (Z/f7Z)* /(p), {vi{m}}jc@/rzy< )@y o0 Ly X Zy,
such that

/Z ) h(:p,y)dl/j{m}(x,y):(1—pk_2)/ Wz, 1)F(j, 2)dz.

Here [ is defined by f[cl]—[cQ] = ff, and extend by linearity. We must show that
M' = M.

It is clear that M’ is a subgroup of M. We will show that M’ is I'o(fNp)-stable.
A B
Let m € M’ and v = ( oD ) € I'o(fNo); for compact open U C Z, x Z, we

define

vi{ym}b(U) = vy {m}(y"'0)

A B
Also for v — ( oD ) € I'o(fNy) we define polynomials in two variables by

hl,(z,y) = h(Az + By, Cx + Dy),
and

u(v,2) =Cz+D.
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We calculate
/ h(u,v)dv;{ym}(u,v)
Lp X Lp
[ buo)d s {mbo w0)
Lip X Ly

:/Z Bl (o) )

where 77! (u,v) = (z,y). Therefore we have

/ h(u, v)dvi{ym}(u,v)

Lip X Ly
= [ )i o)
Lp XL
= (1 - pk_2) / h(’)/Z, 1)”’(77 Z>k_2ﬁk<ry_l *jv Z)dZ
— (-7 [ bR
ym
where in the last line we use the change of variables © = vz and the fact that
E(y gy ou(y ! 2) TP d(y ) = Filj, 2)dz.
Therefore M’ is a T'g(f No)-submodule of M. Lemma 12.1 shows that
la/c] — [icc] € M’

when p does not divide c. Finally we claim that

Z[To(fNo){[a/c] — [ico]}pe = M.

Let us prove this last assertion. Let us take 1, fNy € Z which a are obviously

coprime. Note that p {1 f Ny so [ico] — [ﬁ] € M'. Let ¢ € I'o(fNo)(ico) with ple.

b
Let v = ( ¢ p ) € I'o(fNo) so y(icc) = 2. Then
c

(-7 ]) = [ [
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Note that pt (¢ + df No). We thus have

SN

2] tisel = a(ioe] - | )+ (| ol

‘ | - fiso) € ar

Finally the I'o(fNp)-invariance of v;{m} follows from the definition. [

12.3 From Z, x Z, to X

In this section we show that the family of measures {v;{z — y}};ez/2) /¢p) (Lemma
12.4) are supported on the set X C Z,, x Z,, of primitive vectors. We start with some

lemma.

Lemma 12.5 Let ¢1, ¢y € I'(ico). We have

| hewdn{a s e = [ he DR
Zp XLy

Cc1

for every homogeneous polynomial h(x,y) € Z|x,y] of degree k — 2.

Proof The characteristic function of the open set Z, x Z is (v, y) limjﬁooy(p_l)pj.
Let £ = ¢ € T'g(fNo)(ic0) then for n,m > 0, we have

/ "y dv{ioco — £z, y) = limjﬁoo/ x”ymﬂp*l)pjduj{f — oo} (x,y)
Zp XL z

pXZLp

—19 .
— lim — = (1 — prtmte-1p’
B Jlggo frotmt(p=1)pI 1-p )

_ ny\ a,,_ — ir(mod f)
Z <l) <E) (=1 Zn<d07T)dolDil-l—m—l—I—l—i—(p—l)pj,l-‘rl(a”C/do)

1=0 do,r

Jj—00

—12 " n a n— 1 9. ir(mod
= i S () e S o ) tan DI /)

do,r
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Meanwhile we calculate
/ 2" Fry(j, 2)dz

:/ Znﬁk(ju Z)dz_pk_l/ Znﬁk(]upz>dz

100

ole

100

fﬂu@M—ﬁ%*/ B, 2)dz

pa

n\@\n

12 - n a,, _ — j7 (o
rua 2 () ) X s DI s ol
=0

do,r
_12 n+m —n— & n pa n— — jr(mod
e R DI () [CO U ER SR A P e
=0 do,r
(12.15)

— ir(mod n4+m— jr(mod
: Z n(do, )d, Z(Diim—zﬁ,zH(av c/do) —p"™* nglim—lQ,zH(PG, c/do))

do,r

Combining Lemma 11.2 with the assumption that p x § = § gives us that (12.14) is
equal to (12.15). O

Let r,s € I'(ico). We want to show that the measures v;{r — s} are supported

on the set X C Z,, x Z, of primitive vectors.

Lemma 12.6 Let r,s € I'(ico). Then the measures v;{r — s} are supported on
X.

a b
Proof Let v = ( p € Lo(fNo). We set u(y, z) := (cz+d). Let h(z,y) € Z[z,y]
c

be a homogeneous polynomial of degree k —2 =m + n — 2. Then

/(Z ) h(z, y)dvi{r — s}(z,y) = / h(y(z,y))dvi{r — s}(y(z,y))

ZpxZy

=1/ Wy 9))dvs {7 — v s} (@)
Zp XLy
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v~ ls _
= [ b a2 gl w2
Y

- / Bz Dl 2) 6D By 5oy 2)d(y ).

Let M(p) C My(Z) be the set of primitive matrices of determinant p. Let

p+1
. a; bl
=1

be a complete set of representatives of SLs(Z)\M (p). Then we have

p+1
(12.16) Ti(p)Bx(j, 2) = P> Br(dig, miz)u(mi, 2) 7,
=1

where T} (p) stands for the Hecke operator at p. For some background about Hecke

operators in this context see Section 4.8.

+1
p 0 a; b ’
Let P = 01 and < v; = J be a complete set of represen-
Ci G

i=1
tatives of To(pfNo)\[o(fNo). Note that the set {Pv;'}*| is a complete set of

representatives of SLa(Z)\M (p). From (12.18) we deduce that

e o o )
WZFk,pWi ! * 7% 12)#(% 1’2) (k Q)d(% lz)
i=1
pt+1
(1217) =Y nldo,r)do Y Eplairj,doy; ' 2)uly; ", 2) " 2d(r; ' 2)~
do,r i=1
p+1
P! Z n(dy,r)do Z Ey(agrj, pdoy;  2)u(v; 1, Z)*(k*Z)d(,yzflz)'
do,r i=1

Because
Ex(r,v2)u(y, 2)" % 2 d(yz) = Ex(y™" 1, 2)dz,
for any v € Tg(f), we have that

Ex(airj, doy; ' 2) (vt 2) " 2d(y ' 2) = Ey(vi x (airj), doz)dz
= Ex(jr,doz)dz.
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From equation (4.19) one may deduce that
(12.18) Te(p)Er(j, z) = p* " Ex(j, 2) + Ex(pj, 2).
Using the fact that (12.16) is equal to (12.18), that u(P7y, z) = u(y, z) and pdyy; 'z =
doP~y; 'z we obtain
p+1 p+1

PP Barg, do Pyt 2)p(yt 2)d(y e) = 0 Brlarg, do Pyt 2) (Pt 2) "B d(Pry )

i=1 i=1
= (pk_lEk(rj, doz) + Ex(prj,doz))dz.

Now because p x 6 = ¢ we find that

Zn(do,r)do(pk_lEk(rj, doz) + Ex(prj,doz))dz = (p" + 1) Zn(do,r)doEk(rj, doz).

do,r do,r

Substituting the last expression in (12.17) we find

—12f((p+1) = (" + 1) D nldo, r)doEx(rj, do) = (p — p" ) Filj, 2)-

do,r

Finally note that UP*/ Yi(Zy X 7)) is a degree p cover of X. Hence we get

p+1

p | bl =Yy - Z/ B, y)dv;{r —}(z,y)

p+1

—2/ (5 ) By (07 % 407 2, 2) "2 ()
=) [ hDF s

~o- [ RSN I

_ /Z )y = s} y)

Since this holds for any h homogeneous of degree k we get that the support of v;{r —
s} is included in X. [
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12.4 The measure [, {c; — ¢} is fo invariant

The compact open set X is a fundamental domain for the action of multiplication by

p on Q2\{(0,0)}, ( g
UCX:

0
) > (z,y) = (pz,py). Hence if we define for compact open

pi{r — s}(U) == v;{r — s}U)

then f1; extends uniquely to a I'g( f Ny)-invariant partial modular symbol of Z,-valued

measures on Qg\{@} which is invariant under the action of multiplication by p:

pi{r — sHpU) = f{r — s}(U)

for all compact open U € Q2\{(0,0)}. This almost proves Theorem 8. It remains to
show that f; is T'g-invariant i.c. for all compact open set U C Q2\{(0,0)}

frsi{nr = ys}(VU) = py{r — s} (U).

. 0
Note that Tp = (To(fNo), P) where P = ( g : )

Lemma 12.7 The partial modular symbol pi; is invariant under fo.

~ 0
Proof Since Iy is generated by I'o(fNy) and P = ( }(; ) ), and that z; is I'o(f No)-

invariant, it suffices to show that f; is invariant for the action of P. For a homogeneous

polynomial h(z,y) of degree k — 2, we have

/Xh(x,y)dﬁp_l*j{zﬂr — P s} (P (z,y) = /Xh(:v,y)dﬁj {% — ;} (z/p,y)

— /PIX h(pz, y)dfi; {% — ;} (2,9)

Writing P~!X as a disjoint union

P

_ 1
P7'X = (Z, x L)) |_|(52X x Z,)

0 p

(12.19) =z, x2})| | ( o ) (ZX x pZ,)
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Using the invariance of ji; under multiplication by p, (12.19) becomes
| hwedis (oo = sipta) + [ hey/pdi{e/p - s/}
ZpXZy Zy XpZyp

= (P 1 (1)) / hpe, y)di r/p — 5/p}(,5)

Zp XLy

+p2"“/zx ) h(px,y)dp{r/p — s/p}(x,y)
 ph / Wz y)dfi; {r/p — s/p}(z,y)

+(1 - pZ"‘“)/Z e y)diidr/p = s/pHe.y)

s/p _ s/p ~
) [ 0BG 40 [ b DEG
r/p r/p

s/p _
_ o) / h(pz, 1) Fu(j, 2)d=
r/p

s/p - .
L (1—ph / s () o Flpe)s
r/p
s/p

=p"(1 —pM)/ h(pz, 1) Fy(j, p2)d=
r/p

=(1—p"?) / h(w, 1) Fy(j, w)dw
= /Xh(x,y)dﬁj{r — s}(z,y).

This concludes the proof of theorem 6.1. [

13 The measure [, {c; — ¢} is Z-valued

In this section we want to prove the integrality of the measures ji;{ico — 2} of

theorem 6.1 for ¢ € I'y(fNy)(ic0). We use the same approach as in [Das07].
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Let e > 1 be a positive integer divisible by f Ny but not by p and let

(13.1) ZZT&HZ/(Q])”ZZZ/GZXZP

Definition 13.1 Let 6 = Zdo\No,re(Z/fZ)X n(do,7)[do,r] € D(No, )P be a good
divisor. For each integer k > 1 and r € (Z/fZ)* we define a distribution on Z by
the rule

(ep”>k_1 Bi(Gr7as)

(13.2) Fiplatep"Z) = n(do,r) k

do‘No

where a 1s any integer.

We have a natural action of (Z/fZ)* on the measures Fy, given simply by jx Fy, =
Firj- Note that for any compact open set U C Z we have

(133) fk,r<pU> - pk_lfk,ra])'
For x € Z we let x, denote the projection of x on Z,.

Proposition 13.1 The distributions Fy, are Z,-valued measures, and for every

compact open set U C Z and every k > 1,r € (Z/ fZ)* we have

ForU) = / T (2).
U

Proof See [Das07]. O

Remark 13.1 From the previous proposition we deduce that for any compact
open set U C Z and any integer k > 1, lim, o Fypr)—kr(U) exists. Therefore
it makes sense to define F_j,(U) := lim, o Fyr)—kr(U). Note that one cannot
define directly F_j, using (13.2) since Bernoulli polynomials with negative index

can only be evaluated on elements z € C, with |z|, < Il). The fact that (13.2) is

formally the summation of the special values “é,k(my’weighted by the integers
k—1

n(dy, ) (%:) can be viewed as a way to regularize the convergence.
Theorem 13.1 The measures jij{occ — ¢} take values in Z.
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Proof We adapt the proof of Theorem 1.3 in [Das07]. By Theorem 6.1, we know
already that the measure v; := fi;{c0 — 2} takes values in Z,, so it is enough to
show that it takes also values in Z[%]. First, we want to find a closed formula for the
quantities v;(Z, x (v+p°Z,)) when (v,p) = 1. We claim that for any ball of the form
v + p*Z,, we can always find a sequence of polynomials {h;(y)} in Q,[y] such that
lim; hi(y) = Lpypez,)(y), where L, 4pe7,)(y) is the characteristic function of v + p°Z,,.
We can write down such a sequence of polynomials explicitely by setting
p'(p—1)
hi(y) = o II w-5
Jj#v(mod p*)

where m = v,((p* — 1)!). Let V' C ZX be a compact open set. Since any compact
open set can be decomposed as a finite disjoint union of balls of the form v + p°Z,,
it follows from the above that there exists a sequence of polynomials {f;(y)} in Q,[y]
such that lim; f;(y) = Ly (y). Write f;(y) = Zf; o Cn(1)y". We have

d;
/prv dvi(z,y) = /Xlign fily)dvj(z,y) = lizm/xfi(y)dyj(x,y) = lizrn;cn(i) /Xyndyj(x,y)

(13.4)

d;
znlm—uzcn(z‘) p n(do,r) D2y, §% D (a, ¢/ do),

do|No
reZ/fZ

where the last equality uses Proposition 11.5.

We have
d; s—1 c B ( h )
. . —p n+1\¢/dy /) ha
11?’1—12 E Cn(Z) d(), <—) n——l—lBl (7)
n=0 do|No h=1
r€Z) 7 h=jr (mod f)
d: [y h
. - ~ ha c\" BnJrl(C/do)
= >R 3 Z B (%) 30 (1) nlenn =t
n=0 r€Z/fZ do|No

h=jr (mod )

d.
- ~ (h 1
=—12 hlnl E Cn E E B, (_a) F(-FnJrl,r(h + CZ) - -FnJrl,r(ph —i—pCZ)),
n=0

reZ/iz h=jr (mod 1)



where ¢ = ep’ with (e,p) = 1. For the last equality we have used the definition of
Fi and the identity (13.3). Applying Proposition 13.1 to the last equality, we get

(13.5)

- T £ B(2) L)1)

7HEZ/th—jr (mod )

Now let us assume that V' = v + p°Z, for v € Z coprime to p and ¢ < s. With
this Spe(nal choice of V' the limit as ¢ — oo for f,( 2) converges to 1 or 0 according to

Whether is V' or not. The sequence fl( £) always converges 0. It now follows that

vij(Z, x V) Z Z B <:§)}—1r({$€h+epsz zp € fV})

c(&/z) h=jr (mod f)
h= fv(modp )
~ ( ha = Yn
13.6 E E By | — E do,7)By | ——
139 €(Z/ ) 1 <€Pt) b (o) (eps/d()) 7
0lNo

h=jr (mod f)
h=fv(mod p')

where yj, is chosen so that y, = h (mod e) and y, = fv (mod p*). Therefore,

y(Zyx V)=—-12 Y Z B (@> 3" nlde,r)By (epf’;do)

t
TE(Z/fZ)X ep d()lN()

h=jr (mod 1)
h=fv (mod pt)

ep?
ha |:h,a:| 1) Yhn Yhn 1
S S (el do, ) - -1y
¢ ¢ 92 Z n(do, s s 9
re(Z) f7) heir h?éod f ep €p do|No ep /dO ep /do
h=fv (mod p')

From the last equality we deduce that

Z Z (25_; 7 L?Zﬂ - 1) 2 nldo:1) (2€Pgl;do o7 Lpg;do} - 1)

c(Z/2) h=jr (mod 1) do[No
h=fv (mod pt)
Yn
(13.7) = — h n(do,r) [ } —1) (mod Z).
%Z Z dmZNo v /do
hE r (mod 1)
h=fv (mod p')
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So if the right hand side of (13.7) is in Z for a = 1, it will be in Z for any integer a.
Thus in order to prove the integrality of the measure v; it is enough to show that the
right hand side of (13.7) is in Z for a = 1. If we go back to (13.6) and set a = 1 we

can rewrite it as

(13.8)

ept
N h\ ~ Yh
ZyxV)=—-12 n(d B|(— | B
(2 S awn > B (o) B ()
do|No re(Z/ fZ)* h=1
=jr (mod f)
fv (mod p*)

T = h = Yn
=-12) Y nldyn) Z o <6Pt/d0> o (epS/do) ’

do|No re(Z) f7,)*

h=
h=

h =jr (mod )
h=fv (mod p')

where the second equality comes from the facts that if h = h/(mod ep’/dy) then
Yn = yw(mod ep®/do) and that >° .4 a0 B (x+ 1) = El(dox).

Now fix r € (Z/fZ)* and consider the term

s ¥ n(A)n (20

e/ fdo
~ L p A\ ~ [(pPfu+eA
13. E d E B s tm B, (2L
13 i) 2 1<p epfdy )\ epfdy )

where A € Z[%] is chosen in such a way that eA = jr (mod f) and eA = fv (mod p®).
Note, in particular, that eA € Z and (eA, f) = 1. We obtain (13.9) by performing
the change of variables h = p®fu + eA and y, = h. This is justified as:

{h (mod ep’/dy) : h=jr (mod f),h = fv (mod pt)} = {psfu—l—eA (mod iii)}

0

fd

This equality of sets results from the fact that p°fu = p°fi’ (mod %) if and only
1f |(u p'). Finally, since y, = h, we readily see that y, = h (mod e) and that

yh = fv (mod p®).
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Using the notation in [Hal85] (see the top of page 23) we find that

fso

_ s AN ~ [ A A

(13.10) S B (pstp—f’itle > B <p—f’ize ) —-C (1, 1,p* e/ fdy, — 8,0) .
pr 6]9/ 0 ep/ 0 Ip

0 —1
Using the Dedekind reciprocity formulas for such sums for the matrix ( Lo )

(see Theorem 2 of [Hal85| for the exact formula) we find

o e eA ) L st \g (€A Int
C<1’1’p ’fdo’fps’o)_u Z Bl<p5‘t)Bl(fp5 pst

(mod ps—t)
1 1 ~ [eA Fo1 1p5t~ [eA 1 7 ~ ~ [eA
P2 Y h(S - (S LR R0 B ().
w (modps—t)% fp p fdo fp p fp

Since (dp,p**) = 1 and eA = y (mod fp*) for an integer y (not depending on dy)

such that y = jr (mod f) and y = fv (mod p*) we may rewrite the right hand side

of the equality above as

(13.11)

~ ~ Tl 1 1 ~ S
> B(E)E(A-E) e X (k-2
po(modp—ty NP PP i (mod po—t) Tdo pop

1p“~(y) T ~<y)
+22 B + 1% By (0)- B .
24 “\Jp) 2pt 200 =Bl 5,

If we take the summation of (13.11) over do| Ny, weighted by n(do, r), then we see that

the second summation and the third term of (13.11) vanishes since » _; n(do, 7)do = 0.
The fourth term does not contribute to any denominator dividing f. It remains to deal
with the first summation and the last term. Taking the summation over all r € Z/ f7Z
we get cancellations for the prime dividing f by pairing the elements jr (mod f) with

their additive inverses —jr (mod f). This uses the fact that Bi(—z) = —B; (x).

Because the right hand side of (13.7) is in Z[%] this implies that v;(Z, x V') €
Z[]l?] N Z, = Z. Finally, since the I'y translates of the sets Z, x V' form a basis of
compact open sets for (Q2\{(0,0)}/p”) ~ X, the Tp-invariance of the {vi}iew/rm)<
implies that {v;};ez/fz)« are Z-valued. [
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14 Explicit formulas of i,{c; — ¢2} on balls of X

We want to give an explicit formula of those measures on the compact open sets of

the form (u + p°Z,) x (v + p°Z,) for u,v € Z and (u,v,p) = 1.

Proposition 14.1 Let u,v € Z such that (u,v) € X. For a positive integer s, let
Uu,s denote the ball of radius ;% around (u,v) € X i.e.

Uiw,s = (u+p'Zy) X (v+p°Z,) € X

Let 2 € To(fNo)(ico). Let A, be an integer such that A, = fv(mod p®) and A, =
r(mod f) then

(14.1)

M]{ZOO_) }( qu)
(14.2)

¢/ fdo Arj dofu ~ 1 Arj
=-12) > nldyr) Z B <c/fd0 <h+ ) P )Bl (C/fdo (h+ fp$>>

do‘No TE(Z/fZ

- ~ ah dofu h
R SIS S Y (LSO Y (S

do,r 1<h<psc/do
h=fv(mod p*®)
h=rj(mod f)

where as usual {x} denotes the fractional part of a real number. Note that if we

replace v — v + p° or u — u + p° the quantity is unchanged as expected.

Proof The proof follows essentially from the explicit formula obtained in equation
(13.8) for balls of the form Z, x V. We just sketch the proof. Let ¢ = ep’ where
(e,p) = 1. Assume that p { v. Let [ be such that u = lv(mod p®). In the case where
s >t using (13.9) we have

(14.3)

e/ fdo s <
fitioo = 232, x 0+ 9Z,)) = =12 Y nldo,r) Y- B (LR By (BIE S
j o ’ do| N, 7 —1 ep'/do ep*/do
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Similarly when s <t we have

o a s
(14.4) fij{ico — E}(Zp X (v+p*Zy))

PLC S pfuteA) 5 (0 futeA
14.5 =12 n(do,r By (o2LETE2) By (LA O
(143 d%\;o " ; 1 ( ep'/do ) 1 ( ep'/do )

S

Consider the matrix v = ( ]Z)

)
) ) and observe that

'Y(Zp X (v +pSZp)) = Uyp,s-

The Tg-invariance of fij{ico — 2} implies that

a—lc s
o HZyp x (v +p°Zyp))

HJ{ZOO_> }( qu) IEJ{ZOO_>

Let (a — lc,cp®) = p™ and assume that ¢ —m > 0 then using (14.4) we deduce

(a—lc)/p™

'E{ZOO - W}(Uu,v,s)
—_12 Z d epi/fdoé ((a—lc) psflu_’_eA)é (psfu‘i‘eA)
do| No,r 0,7 — 1 P epstt—m/d, 1 epsH=m/d,
¢/ fdo
= ((a—lc) psf/ureA) - (pSfHeA)
dc%; " uzl ¢/do P "\ e dy
¢/ fdo i
eA eA\ ~ (BT 5
=-12 n(do,7) > B (o + 2 —ld—)B 5
do%r ’ Z 1(/fd fp5> "p 1(C/de)

which is nothing else than (14.1). The second equality follows from the distribution
relation of By (). A similar computation holds when ¢ — m < 0. To handle the case

when p|v one can use the exact same idea as in [Das07]. This concludes the proof.
0

Let us verify if (14.1) is in accordance with 4) of Theorem 6.1 on a simple compact

open set. First note that
(zy x pz,) [[(Z, x 2)) = X.
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It thus follows that
-~ . a - . a
(14.6) ~fislioo > THE; x py) = figlioo — 2} 2y x Z;).

Since [ 172} Unoy = (Z) x pZ,) we deduce from (14.1) and (14.6) that

~ o a ha dofu ~ h
dioo = 212y x ;) = 123" n(do,7) Bi( )Bi(—1-)
. C} ’ ’ %r 1<h<zpc/d0 ; pc/do p pe/dy
h=jr(mod f)
h=0(mod p)
Y Y SRR
do,r | 1<h<c/dy u=1 pc/do pe/do

ph=jr(mod f)

h
(14.7) Y Y S B

do,r 1<h<c/dy u=1
h=gjr(mod f)

where the second equality uses the fact that (dof,p) = 1 and the last equality uses
the assumption n(dy, p~'r) = n(dy,r) for all r € (Z/ fZ)*.

On the other hand if we use 4) of Theorem 6.1 combined with the explicit formula

given by equation (12.15) we find

~ . a rmo jir(mo
fij{ico = ~}(Z, x Z) =—12 " n(dy, ) “Da,c/dy) — DI D(pa, e/ dy))
do,r
ah
=—12 d B
Sndar) X BB
do,r 1<h<c/d0
h=gjr(mod f)
h pah
14. 12 d B By(—
(148) FYndr) Y BB
do,r 1<h<c/do
h=jr(mod f)

Now using the identity B, (pz) = Z?;é By(z + f;) and substituting it in (14.8) we get
after simplification the right hand side of (14.7).

15 Stability property of the measures

In this section, we show that our measures ji;{c; — co} satisfy a certain stability

property when evaluated on a family of balls of decreasing radius for which the center
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is fixed and has integral coordinates.

Proposition 15.1 Let ¢;, ¢y € To(fNo){oc} be two fized cusps and let (u,v) €
Z?*NX. Then there exists a positive integer C(u,v) such that for s > C(u,v) one has
that

fi{cr = 2} (Uyws) =M € Z

where M is an integer independent of the center of the ball (u,v) € Z> N X. In the

special case where ¢; = 00 and ca = 2 one has that

M]{OO — }( uvs) =—12 Z n(dOaT>D{T1 (mod f)(CL,C/dO)
do|No,r€(Z/ fZ)*

for s large enough.

Proof In order to prove the proposition it is enough to show that for s large enough

one has

(15.1) fir{oo — } wws) = =12 n(do,r) Dy, M (a, c/dy).

do,r

Because n(dy, ) = n(do, pr) for all r € Z/ fZ we deduce from Proposition 14.1 that

(15.2)

fi{oo — }( Unp,s) =

¢/ fdo
Apr\  dofu 5 (1 Ay
_ n(do, ) h pir | Qo )B ( (h » )>
12d0|ZN07‘€Z§”Z§ ’ (C/fdo ( i fp$> p° "\ ¢/ fdo i fp®

Set A, = fv+ rp°. Substituting in the right hand side of (15.2) we obtain

—12) > C/Zfdjon(do,r) <c/fd0 (h+—+§)_dgu>'§1 (c/]lfdo (h+1%+§))

do|No €7,/ 17, h=1

(15.3)

B ~ ah av dofu\ = h v
=12 Z Z Z n{do, ™) By (c/do - (c/fdo)p*  p° ) o (C/do " pSC/fdo> '

do‘No TEZ/fZ Oghgc/dofl
h=r (mod f)
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No fu
pS

+

< % The right hand side of

(15.3) is then equal to

2y 8 (b e ) (T )

do|No r€Z/fZ 0<h<c/dp—1
h=r (mod f)

This previous expression can be rewritten as

(15.4)

—12) Y > n(do,r){%}%lﬁ

d0|N0 T‘EZ/fZ Oghgc/dofl
h=r (mod f)

Z >, 2. () Kc/fdo dOf“> (c/]iio +1950;}fdo) i {CC/L_ZO} ﬁ] '

do|No r€Z/ fZ 0<h<c/do—
h=r (mod f)

Now observe that the second triple summation in (15.4) can be bounded by a positive
12Cq
pS

constant C independent of s. Now choose s large enough so that < C% Since the
expression (15.4) is an integer (this follows from Theorem 13.1) and the first triple
summation of (15.4) has denominator dividing ¢* we conclude that the second triple
summation has to be equal to 0. From this it follows that the expresion in (15.4) is
equal to the first triple summation , i.e., =123, n(do, T)Dil(mOd Na,¢/dy). This

concludes the proof. [J

We make the following definition

Definition 15.1 Consider the measure ji;{c; — c2} on the space X where ¢y, co €
Lo(fNo)(ico) and j € (Z) fZ)*. Let (u,v) € X then we say that a ball U, ,, is stable
with respect to the marked center (u,v) for the measure pj{ci — co} if for all s > r

one has

Mj{cl — 02}( uvs) ,uj{cl — 02}( uvr)

Remark 15.1 Note by Proposition 15.1 that every point (u,v) € XN Z? is con-
tained in some stable ball of centre (u,v) for the measure fi;{c; — c3}. Indeed take

the ball U, , s where s is big enough.
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We have the following interesting theorem which a priori seems very surprising taking

into account the compactness of X.

Theorem 15.1 Consider the Z-valued measure ji,{c; — c2} on the space X and
assume that the integer M in Proposition 15.1 is not equal to 0. Then there exists no

cover of X by stable balls with marked centres in X N Z2.

Proof Assume that

U Uy o0 = X

iel
where [ is some indexing set and the U, ,, s,’s are stable balls with respect to the
centres (u;,v;) € XNZ2 If Uy, 5, N Uuyys; # O then either Uy, 4, 50 € Uy, ;s OF
Uujj,5; © Unyors;- We can thus discard the smaller ball and still get a cover of X.
By repeating this we can assume without lost of generality that the balls covering X

are disjoint.

By compactness there exists a finite set J C I such that

U UUj,vj,Sj =X

jedJ

By Proposition 15.1 we have that
ﬁr{cl — 62}<Uu]~,v]~,3j> =M

for some integer M independent of j. By additivity of the measure on compact open

sets we deduce that
prfer = e} (X) = [J|M.
On the other hand we have
fir{c1 —= 2}(X) =0,

which gives us a contradiction. [
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16 Explicit formulas of ((§,(A,7),1 — k) in terms of

the measures ji,{c; — ¢}

In this section we would like to relate the value at s = 0 of linear combinations of
partial zeta functions of K to the measure fi,.{c; — ¢} evaluated on a certain ball of

X. Roughly speaking we would like to relate the value

¢(a,p" foo,0)

to the value
(16.1) frict = e} ((u+p"Zy) x (v+p"Zy)),

for suitable r,u, v, c; and ¢ which depend on a. Remember by Lemma 8.2 that if a
is an integral ideal of K coprime to pf then
~ a
C(a_lapnf7 Wi, S) = f—25\11 (—7 wi, 8) )
fp'v'D

and also by equation (7.15) we have

4C(Cl_1,pnf00, 0) = C(Cl_l,pnf, Wi, 0)

So instead of relating the value ((a™!, p"foo,0) to (16.1) it is enough to relate the
value U <fp+\/5,w1,0> to (16.1).

Let us start with some explicit formulas obtained by Siegel where he relates special

values of a zeta function attached to an indefinite binary quadratic form to Bernoulli

a b
polynomials. Let v = ( ) € SLy(Z) be a hyperbolic matrix with its two real

c
fixed points 7 > 77 where G0 = {1,0}. Let Q. (z,y) = A(x — 7y)(x — 77%) =
Ax? + Bxy + Cy* ( A > 0 ) be the indefinite primitive quadratic form attached to
7. Let u,v be two rational numbers not both integers. Assume furthermore that

— / / 2 m . m/
mu + nv = m'u + n'v(mod Z) for all m,n € Z* where ~ = . For

n n'
s=2,3,... define

2mi(mu+no)



and for s =1 set

€2wi(mu+”v) Sign (Qq— (m, n) )

|Qr(m, n)*

o ((uw,v),7,1) == lim Z

s—1t
(Y\(m,n)€Z?\(0,0)

Note that the limit exists since u and v are not both integers. We also let
Ry(z) = /_Zd Qr(w,1)* dw.
Siegel proved the following theorem:
Theorem 16.1 The quantity

72 disc(Qr)2 ¢, ((u, ), 7, 5)

s a rational number that can be expressed using periodic Bernoulli polynomaials. More

precisely for s > 1 we have

(16.2) sign(a + d)(s — 1)!2(27?)_25617;86(QT)8_%§07((U, v),T,S)

zz%w)(%) S B (a(uc+l)+v) éZs—k(uz_l>

l(mod ¢)

where ng)(z) is the k-th derivative of the rational polynomial Rs(2).

Proof This is the main theorem of [Sie68]. [
We obtain the following corollary:
Corollary 16.1 We have

(16.3)
, | AN AC )
C*(8, (A,7),0) = 4-sign(a+d) Y _n(do,r) ) )B1 <a Cf/fdo > o ( Cf/fdo > |

do,r l(mod ¢/ fdo

a b

where Q,(x,y) = Az? + Bxy + Cy? and vy, = ( p > with ¢t +d > 1.

C
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Proof Using the functional equation between ¥* and T* we get
(16.4)
¢*(6, (A7), 8)
F*(1—ys) No s sign(Qayr~(m,n))e
:_—Zn(d—,r)do 3 o

F* - , 1-s
&) ‘ (e (FA0)\{(0,0)%(m,n)EN 14y -} [Qagr ()

N ) > n(do, r) (ﬂ) 3 5197(Q paor) (M, n)e

F* - , 1—s
(5) RN S S L il O]

2min/ f

2mim/ f

do,r

Now evaluate (16.4) at s = 0. Using the assumption that § is a good divisor with the
explicit formulas in Theorem 16.1 we deduce (16.3). O

Remark 16.1 If we compare (16.3) with (9.22) we see that the two formulas

coincide since sign(a + d) = 1 and sign(c) = 1.

Now let \yp = A = a + BvV'D be an algebraic integer coprime to f where o, are

integers to be specialized later on. Consider the zeta function

v ()\AAT >

- W1,s |,

VD
where Q,(z,y) = Ax*> + Baxy + Cy? and 7 = _BQ_A‘E. Using equation (7.1) we find
that

(16.5)
)\AAT €2ﬂi(m(#)+n(—B?—a))Sign(QT(m n))
— wy, 8 | = wi(A :
v(frpms) =uvD) 3 Q- ()l

(yr)\{(m,n)€Z>\(0,0)}

Now we want to specialize a and 5. Let u be an integer coprime to f and v be any

integer. Choose integers o and [ such that
(16.6) B = (24) u(mod f), o = —B(2A)'u — v(mod f), a+ vV D > 0.

Note that (8, f) = 1. In general we cannot guarantee that (a+£+v/D, f) = 1. However
if we assume that all the primes dividing f are inert in K then we get automatically

that (o + VD, f) = 1.

168



Proposition 16.1 Let AA. be the integral ideal associated to Q. (x,y) = Ax* +

a b
Bxy + Cy? and v, = (
c d

f and v be any integer. Let Ao p := X be chosen to satisfy (16.6). Assume that the

) be as in section 8.2. Let u be integer coprime to

primes dividing f are inert in K. Then if s > 1 is an odd integer we have

_ sign(a+ d)2*wl(55)?
YESEYE

2s—1 U

( 1)k02$ k—1 (k: _|_l) v\ ~ 7+l
. A B Bo. EA—
; (25 — k) DX B L e N

l(mod c)

AAN, )

= ,wi, 1 —s .
<N 1

(16.7)

Proof When s > 1 is odd we deduce form (16.5) that

PG Pwns) = ()\%w)

Now using the functional equation of U (see equation (8.8)) combined with the the-
orem 16.1 we deduce (16.7). O

We would like to relate the special values

~ Aa
Y
(fp "\ D o )

where a, A are coprime to fp with the evaluated measures p;{icc — 22 }(Uy,, v,) for

certain
j? un7 UTL? a”rL7 C'I’L
depending on a, A and n. We will make a simplifying assumption. We will assume

that € # 1(mod p) where (¢) = Ok (foo)* and € > 1.

Proposition 16.2 Let u and v be fized integers not both divisible by p. Let a =
AN, where Q. (z,y) = Ax? + By + Cy* and 7 is reduced. Assume that (a,pf) = 1.
Let X = a + Bv/D > 0 be an algebraic integer coprime to fp. Let (€) = Ok (foo)*

where € > 1. Assume furthermore that € # 1(mod p). Let v, = ¢ be the
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matriz corresponding to the action of € on the A, with respect to the ordered basis
{r,1} then

~ [ MA, = (an (248 CBfta\ = [(BEtL
16 qj(fp”\/ﬁ’wl’o)_zl,;&(cn(fp"H) fr )Bl< Cn

()

an, bn a b . ,
where = . If we choose o and (B in such a way that

CTL n

8= (2A) u(mod fp*), a, = (—BR2A) " u—v(f+y)) (mod fp*), a+ BVD >0

then we have

(16.9) —3 n(do, )@ [ 227 0) Z i tico — 0.
y,

y=1 do|No,re(Z/f2)*

e
3
SN—

where Ay = oy + BVD.

Proof The proof of (16.8) follows directly from Proposition 16.1. It remains to prove
(16.9). We have

0% E e ()

y=1 do|No,r€(Z/ fZ)*

=12 > oy i%fB (cn/do (ru +h) B W) & (%>

do|No,r€(Z/ £7)) y=1 h=1

— 19 Z d C§OB fa" ﬂ_{_h _Q E (Jc%—+h
- ! "\ en/do \ fp p) T\ en/do

do‘No,TG(Z/fZ)

— 192 d Cn/deB —th) - B Gtk
=12 ) ldr) ) 1<cn/fdo< )UW) e/ fo

do| No,re(Z/ 7)) h=

Qn

= Uy {ZOO — — c } (U%,?,n)

where the third equality follows from the distribution relation of él(aj) and the last

equality is a consequence of Proposition 14.1. [
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Remark 16.2 Note the similarity with the formula (14.1) which corresponds to
pfico — 2} (Uywn) for a = ag and ¢ = ¢p. The difference with the formula (14.1)
is the variation of the cusp 2* as n vary and the dependence of i with the first

coordinate of the centre of the ball U, .

We have the following corollary

Corollary 16.2 With the same notation as Proposition 16.2 we have
r N . a,
=33 Ay %6, (4,7),0) = i {m E —} (Us.5.0);
y=1

where the index p" f emphasizes the fact that the conductor is fp™ and not f. In
particular, when n = 0, the zeta function Cp(\, * 0, (A, 7),0) is exactly the same as

the one appearing in Definition 9.2.

17 Some evidence for the algebraicity of the u(r, 7)

invariant

In this section we would like to prove a norm formula for our p-adic elements wu(r, 7).
But before this we would like to remind the reader some functorial properties of the

reciprocity map and apply it to the number field K(foo), i.e. the narrow ray class
field of K of conductor f.

17.1 The reciprocity map of Class field theory applied to
K(foo)

Consider the following Hasse diagram
L/
L —
K/

-

K
171



with L/K and L'/K’ finite abelian extensions of number fields K and K’ where
K CK'and L C L. Let S and S’ be the set of real places of K and K’ respectively.
Let cond(L/K) = foor be the conductor of the extension of L /K where § is an integral
ideal of Ok and ocop is a product over all real places of T" where T" C S. Similarly
we let cond(L'/K') = foor» where T C S’. Class field theory gives us the following

commutative diagram:

res
GL’/K’ GL/K

recr /K TeCL/K

Nt
Lo (7)) T M

Ix(f)/ o/

where Ik (f) is the group of fractional ideals of K which are coprime to § and

Jik = Pr1(foor) Nk (1L(fOL))

where Py 1(foor) is the group of principal fractional ideals of /K that can be generated
by an element A € K congruent to 1 modulo f such that A > 0 for all 0 € T". The

vertical arrows of the diagram are isomorphisms given by:

recz/lK Ik (f) = Gk

p — Frob(p/p)

where p is any prime ideal of L above p (p is assumed to be unramified in L/K) and
Frob(p/p) is the relative Frobenius of p over p. It thus follows from the commutativity
of diagram that the set of prime ideals of K that split completely in L are precisely
the prime ideals inside J; k. In the special case where K = K’ we again deduce from

the commutativity of the diagram that Ji,x/Jr/k ~ Gr/L.

Let K = Q(v/D) be a real quadratic number field with D = disc(K) > 0 and
Gal(K/Q) = {1,0}. Let f be a positive integer coprime to D. Let p be a prime

number inert in K which is coprime to fD. We denote the two infinite places of K
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by ooy and ooy and also oo = 00005, Consider the Hasse diagram

K(foo)
|
K(¢y)
/
Q(¢r)
K

|

where K(foo) C Q stands for the narrow ray class field of conductor f. By class
field theory K(foo) corresponds to the maximal abelian extension of K for which
a fractional ideal a of K splits completely in K(foo) if and only if a = (m) for
some totally positive element 7 = 1(mod f). Let 7 € Gal(Q/Q) then the extension
K(foo)"/K is again abelian over K. The ideals of O which split completely in
K(foo)™ are the principal ideals (77) € Ok where m = 1(mod f) and 7 is totally

positive. Since 77

is totally positive and congruent to 1 modulo f we get, by the
maximality of K(foo) with respect to the latter property on ideals of Ok which
split completely in it, that K(foo)” C K(foo). Since T was arbitrary it follows that

K(foo) is normal over Q.
We denote by OK[I%](f)X (resp. OK[I%](foo)X) the group of units (resp. totally

positive units) of OK[%] which are congruent to 1 modulo f. In order to have the

existence of strong p-units in K (foo) we make the following assumption
Assumption 17.1 We assume that the index
n=[0k[;](f)" : Ox[;](foo)"]

is equal to 1 or 2.

Under this assumption one can show that K(foo) is a totally complex number field.
In the case where the index n = 4, one can prove that K (foo)fmt®/e) = K ( f)Frebs/e)

is a totally real field (p = pOk and p is a prime ideal of K (foo) above p). When the
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class field K (foo)fmb®/¢) is totally real, it is easy to see there are no strong p-units
in K(foo)fro®/¢) other than {£1}.

The maximal CM subfield of K(foo)

Let K = Q(v/D). For any integer f > 0, let us denote by Ox(f)* (resp.
Ok (fo0)*) to be the group of units (resp. totally positive units) of Ok which are

congruent to 1 modulo f. We have the following commutative diagram
1 —— Pga(f)/Pra(foo) — Ik (f)/Pra(foo) —= Ix(f)/Px(f) — 1

l | |

res

1 —— Gal(K(foo)/K(f)) — Gal(K(foo)/K) —= Gal(K(f)/K) — 1
with exact rows and where the vertical arrows are isomorphisms given by class field
theory. Using class field theory one can show that K(foo) and K(f) are, in fact,
Galois extensions over Q (see Section 17.1). Moreover, because the infinite place of
Q is unramified in K and that K(f) has finite conductor fOk, it follows that K(f)
is a totally real Galois extension of Q. From the diagram above, the normality of
K(foo) over Q and the fact that K(f) is a totally real field, one deduces that K (foo)
is a totally complex number field if and only if the index n = [Pk 1(f) : Px1(foo)] =
is equal to 2 or 4. Note that if n = 2, then K(foo) is a totally

[OK(f)XIéK(fOO)X]
complex quadratic extension of the totally real field K (f) and therefore is CM.

We would now like to determine the maximal CM subfield LZ,, of K(foo) in the
case where n = 4. It turns out that in this case [K(foo) : LE,,] = 2. Fix once
and for all a complex embedding i : K(foo) — C and denote again, for simplicity,
i(K(foo)) € C by K(foo) so that K(foo) can be viewed as a subset of C. Note
that since K(foo) is a normal extension of Q, the subset K(foo) of C is, in fact,
independent of the chosen embedding i. From this, it follows that every element

g € Gg(f)/0 induces a complex embedding g

C C
U U
K(foo) & K(foo).

Definition 17.1 We say that an element ¢ € Gal(K(foo)/K) is a complex con-
jugation if ¢ # 1 and if there exists an element g € G (to)/q Such that ¢ = g ' 79

174



(the composition is understood to be from right to left) where T, is the complex con-
jugation of C. In particular, a complex conjugation is an element of order 2 which

acts trivially on K(f).

Remark 17.1 Note that K(foo) will be a CM field precisely when K(foo) is
a totally complex number field such that all its complex conjugations are equal to

Too| K (o), 1-€., for all g € Gal(K(foo)/K) one has gTo = Toog.

Let
recK (foo) K GK(foo)/k — T (f)/ Pra(fo0)
be the reciprocity map given by class field theory. We would like now to characterize,

in terms of generalized ideal class groups, the largest CM subfield LZ,, which is
contained in K (foo).

Proposition 17.1 Suppose that [Ok(f)* : Ox(foo)*] = 1. Then the largest CM

field LE,, which is contained in K(foo) corresponds under recy ooy i t0

(17.1) I () /{Pra(foo), (f = 1)Ok).

In other words, the prime ideals in K which split completely in LE,, are precisely the
prime ideals in the group (P 1(fo0), (f —1)Ok).

Note that since [Og(f)* : Og(foo)*] = 1 we have that (1 — f)Ok ¢ Pk1(foo) and
therefore [K (foo) : LE,,] = 2.

Proof It is sufficient to show that (17.1) is the largest quotient of I (f)/ Pk 1(foo)
for which all complex conjugations are equal. From the commutative diagram and the
fact that K (f) is totally real we deduce that every complex conjugation of K (foo)
has to be in the kernel of res : Gg(fo0)/k — Gk (f)/x and therefore can be represented
by one of the ideal classes: [c], [¢”] or [cc?], where ¢ = (1+ fv/D)Og and o corresponds
to the nontrivial automorphism of K. Note that since [Ox(f)* : Ok (foo)*] =1 we
have that [¢] and [¢?] are distinct nontrivial elements of order 2 of Ix(f)/Px1(fo0).

We have the following split short exact sequence:

(17.2) 1 _>GK(foo)/K_>GK(foo)/Q_>GK/Q_> 1.

175



Let ¢ € Gg(foo)/0 be a lift of o, ie., t|[x = o|x and * = 1. From class field theory,

the following diagram

Conj(t)
Gk (foo)/ K GK(foo)/ K

TECK (foo)/K TECK (foo)/K

Ik (f)/Pra(foo) Ik (f)/Pra(foo)

commutes, where the top horizontal arrow is given by Conj(t)(g) = ¢t"*gt and the

lower horizontal arrow is given by [a] — [a?]. For every r € Z~( prime to f set

Gr = T€Cx o0y i ([TOK]) € Ge(foo) /-

Let ¢ = recj(l(foo)/K([c]) € Gk(foo)/k- From class field theory one has that 7|k (foc) =
c. Let us compute the complex conjugation on K (foo) induced by ¢, i.e. ¢~ !ct. From

the commutativity of the diagram above, we deduce that

(17.3) Conj(t)(c) = reci(foo)/x (¢7) = cg(s-1),

where the second equality follows from the fact that cc” is equivalent to (f — 1)Ox
modulo Py 1(foo) and that ¢! = ¢. Note that g(y_1) # 1 since [Ok(f) : Ok (foo)] =
1 and therefore K (foo) cannot be a CM field. When one replaces ¢ by ¢?, a similar
set of equalities as (17.3) also holds. Finally, note that (¢c?)(cc?)? = (1 — f2D)?Ok
is an element of Py 1(foo). It thus follows that Ix(f)/(Pk1(fo0), (f —1)Ok) is the

largest quotient of Ix(f)/Pk.1(foo) for which all complex conjugations are equal.  [J

17.2 A ”norm” formula for u(r, )

In this section we want to compute a certain norm of u(r, 7) in order to relate it to a

product of normalized Gauss sums. In order to simplify the notation we set
Apoo =1k (f)/Pr(foo) and Goo := Gal(K(foo)/K).

If (r,7) € (Z/fZ)* x HS*(No, f) then the basis {r,1} is oriented i.e. 7— 77 > 0.
Let A,A. be the integral ideal corresponding to (r,7) then (A,A;)” = A,A;- and

176



the basis {77,1} is no more oriented. Nevertheless we can still define u(r,77) in the
obvious way. If we denote again by o the non trivial automorphism of Gk, g, then

one readily sees that u(r, 7)7 = u(r, 77).
To any divisor 6 = >

coprime to p we associate the zeta function

(17.4) C6,5) = > nad¥ (f%,wl,s)

aEAfoo

wed,., Nall € Z[Ajs) and a set of positive integers {da}aca,..

= Z nade%C(a;la f7 wr, 5)

GGAfOO
where a, € ais an arbitrary chosen integral ideal and w, = signoNg q. To any divisor
0 = Y, n(do.7)[do, 7] € D(Ny, f) and element (1,7) € (Z/fZ)* x HO (N, f) we
can attach a divisor
§ = > nldo, r)[Q(r/do, do) N Ok € Z[Aysl]
do|No,re(Z/fZ)*

where the map {2 is the map appearing in Definition 5.7. Having such a divisor

allows us to associate a zeta function (similar to the zeta function appearing in 1) of
Definition 9.2)

~ (Q(r/dy, doT) N O
C(d,s):dzm;n(do,r)dg\ll< (r/ o\/%;)ﬂ K,wl,s)

= A’!’dAdT
=Y n(dy,r)d5V (#,w ,s)
dzm; (0 )0 \/Bf 1

= n(do, )d5 f>*C((ArjayNayr) ™" frwr, 9).

do,r
where Q(r/dy, doT) NOx = Ay 4y \dy- is an integral ideal of Ok and A, 4, is a positive
integer such that A, 4, = r/do(mod f). We have suppressed the 7 in the notation of
¢(0, s) since it already appears in the writing of §. In a similar way, one can define a
zeta function ¢*(d, s) (similar to the zeta function appearing in 2) of Definition 9.2)

(17.5) C(55) =S n(do, ) @—s) B (Q(T/dO%? NOk . s) |

do,r

For the definitions of U and ¥* see Definition 8.2.
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Remark 17.2 In general the zeta functions (*(, s) and ((6, s) are different. Later
on, it will be crucial to be able to compare one to each other. This is the content of

Proposition 17.4.

In section 9 we have constructed a p-adic zeta function (;(5, s) which interpolates
special values of (*(d, s) at negative integers congruent to 0 modulo p — 1. We have
proved also a p-adic Kronecker limit formula relating special values of (;(a x 9, s) to

our p-adic invariant u(a) € K. More precisely we have proved that

(1) 3¢*(ax6.0) = vy(u(a))

(2) 3(¢;)'(a%6,0) = —log, Nk, q,(u(a))

for any a € Ajo. Having in mind the theory of CM for imaginary quadratic number

fields we have formulated the following conjecture

Conjecture 17.1 Let a € Ajo be an ideal class of the narrow ray class group of
conductor f. Then the element u(a) is a strong p-unit in L := K(foo)¥") C K,
i.e. for all places vt p of K(foo) (including the infinite one) we have |u(a)|, = 1.
Furthermore if we let

7’66_1 : IK(f)/JL/K — GL/K
be the inverse of the reciprocity map given by class field theory then

w(a)™ ) = y(ad').

Remark 17.3 The field L = K(foo)f7¢) is the largest subfield of K(foo) for
which o = pOp splits completely.

By construction u(c) lives naturally in KX so we can write it as
u(e) = P00
where €(c) € O . If conjecture 17.1 is true then the polynomial

(17.6) fay= I (@—u®)

belr(f)/ Ik

should have coefficients in Ok[].
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Remark 17.4 From conjecture 5.1, since u(a) is a strong p-unit, we have that
u(a)™ = u(a)~* where 7o corresponds to the complex conjugation in G k. It thus
follow that if o is a root of f(x) then a~ ! is also a root of f™ (z) = f(z). From this we
deduce that f(z) = 299 f (%), i.e. f(x)is a palindrome polynomial with coefficients
in (’)K[%]. Similarly g(z) = f(x)f7(x) € Z[%][m] is a palindrome polynomial with
coefficients in Z[%].

Let us fix a prime p in L = K (foo)") above p. Conjecture 17.1 tells us that it is
possible to take an embedding L — K, such that

1,0 3¢ (6%5,0)
o= T ()
belr (f)/ Ik
where we think of u(c) as a root of f(z). We should point out that up to a root of

unity in L the strong p-unit u(c) is completely determined by the set of integers

{37 (6% 0,0) byt ()01 e -

since two such units would differ by an element of norm 1 for all places of L, therefore

a root of unity in L.

Constructing a subgroup of p-units of maximal rank in K(foo) is a very difficult
problem since we don’t even know how to construct explicitly the field K (foo). How-
ever, much is known about the strong p-units of the subfield K ((y) € K(foo) which
is nothing else than a subfield of the cyclotomic field Q((f,(p). For the cyclotomic
field Q(Cy), with N coprime to p, the construction of a subgroup of the group of
strong p-units of maximal rank is provided by normalized Gauss sums. Let r be the

smallest integer such that p” = 1(mod N) and set ¢ = p". Let
Wy : F; — Mg—1

be the Teichmiiller character. Let also ¢, be a primitive p-th root of unity. We define

as usual an additive character of F, as



A Gauss sum with respect to the character wg is defined as

T(UJZ) = Z wé(a)wq(a) € Q(Gps Gg-1)-

aclFy

Because the Frobenius automorphism of F,, x — 2P, is bijective and that v, (aP) =
1, (z) we deduce that

(17.7) T(Wh) = 7(wl).

J
A normalized Gauss sum is an expression of the form 7(2)3)1 . We set

7(wgq *)

g (5) =900 ¢ v

T(wg® )
where c is any integer. From (17.7) we deduce that g(%?) = g(5;). Normalized Gauss
sums are strong p-units and one can compute explicitly their factorization in the
number field Q((p, (;—1). An example of a subgroup of strong p-units of maximal
rank in Q((y) is provided by

(173) U= <{g (%)N} ) C QG-

JELJNZ/{£1}

Note the presence of the exponent 2N. Since g (%)ZN =g (%)m € Q(¢n) we deduce
that

o(£)" o ey

In particular in the case where —1 € (p) < (Z/NZ)* we have that Q((y) ™ is totally

2N

real and therefore g (%) = #+1. This can be proven in purely elemantary way. Let

us prove it without appealing to the notion of strong p-units since the computation

is instructive. Let s be such that p* = —1(mod N). Then since g (&) = g (psc) we

get that v
()= (5).

On the other hand a direct computation shows that
(%) -o(F
g N - g N *
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Combining both we conclude that g (%) is a real number with absolute value 1 so it
is equal to {£1}.

From now on let us assume that —1 ¢ (p) < (Z/NZ)*. In this case one can show
that the Z-rank of U is % This is proved essentially by showing that the divisors
of Gauss sums give rise to the universal odd distribution of degree 0, see Lemma
2.3 of chapter 17 of [Lan94a]. Using Proposition 1.1 and the fact that —1 ¢ (p) <
(Z/NZ)* we deduce that the Z-rank of the group of strong p-units of Q({y) is equal
to @ From this we conclude that U has maximal rank. It follows that one can find
% elements inside the set (Z/NZ)/{£1} that give rise to Z-linearly independent
normalized Gauss sums (inside the multiplicative group Q({x)*). Note that in order
to get a subgroup of maximal rank one really needs to go over all j € Z/NZ/{£1} and
not just over j € (Z/NZ)*/{£1}. In fact one can give an example of an integer N
(divisible by three distinct primes) such that the group generated by the normalized
Gauss sums arising from the indices j € (Z/NZ)*/{£1} has not a maximal rank.

For a basis of universal odd distribution of degree 0 see [Kuc92].

Even if we don’t know the algebraicity of u(c) the Shimura reciprocity law for-
mulated in conjecture 17.1 allows us to define a pseudo norm of u(c). Note that the
p-adic element u(c) € K* depends only on the ideal class ¢ € Ay, as the notation

indicates.

Definition 17.2 Let M and M’ be number fields such that
K CMCM CK(fo).
The reciprocity isomorphism gives us canonical isomorphisms
rec]\’j,/K Ak (f)/ Ik — Gal(M'/K)

and
rec;j/K A (f)) Ik — Gal(M/K).

Therefore recyp i induces a canonical isomorphism between Jur i [ e /x and Gal(M'/M).
We define

Num(u(e) == [ u(bo).

beJny /I x
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If we have K C M C M' C M" C K(foo) on can verify that this pseudo norm

satisfies the usual transitivity property namely
NM’/M 0] NM”/M’(U(C)) = NM///M(U<C))
From this we deduce that if u(c) is expected to lie in M' i.e. if it is constant on all

cE JM’/K/JM“/K then

N r(u(e)) = (Nagpagu(e))™ ™M

Suppose that M C K(foo) is an abelian extension of Q contained in M such that
M-K=Mad MNK = Q. Let Gal(K/Q) = {1,0}. Then there exists a unique
embedding ¢ : M — C such that 7|k = o|x and ol = Idy. Since u(c) € K we
have a natural action of Gal(K/Q) ~ Gal(K,/Q,) = {1,0} on u(c). This allows us
to define

NM//M(U<C)) := N, /q, © Ny (u(c)).

For the rest of the paper we set

and

2

Note that L N K(¢) = K - Q(¢)¥) 2 M since Fry((s) = Fri((s) = ¢¥ where
o = pOk. Note also that
Jryx = (Pr(fo0), (p)),

and
Iy = Nie(pooym (K (foo)™) - Pri(fo0).

We want to prove the following theorem which is the main result of this section:
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Theorem 17.1 Let p, f, Ny be chosen as usual and let 6 € D(Ny, f)®) be a good
divisor. Assume that all the primes q|f are inert in K and that —1 ¢ (p) < (Z/f7)*.

Then one has

(17.9)

N, 3z (u(r, 7)) = S(mod pr),

where S is a product of normalized Gauss sums in F = M - Q&) € Q) (Gp)-

Corollary 17.1 The quantity NL/M(’LL(T, 7)) lies in K NF = M = Q(¢p)fe C
Q" Note that because of our assumption we have that M is a CM field.

There are 4 steps in proving the "norm formula” of Theorem 17.2.

(1)

Calculate (¢;)'(c*9,0) (where (;(d, s) is the p-adic zeta function appearing in
Definition 10.1) and relate it to the p-adic invariant w(c). This is the content

of the theorem 10.1.

For the second step one considers a slightly different p-adic zeta function denoted
by (,0(d,s) (see the proof of Proposition 17.2 for the definition). This step
consists in expressing

Tr i (foo)mCpo(Cx 0, 8)
as a linear combination of p-adic L-functions that behave well under the base
change from G i to G37,,. More precisely if we let X € G+, then the base

M/Qr M/Q
change translates as a factorization of L-functions of the form

(17.10) L(s,X o Nkjg) = L(s,X)L(s, X (2) ).

where X o N /g is a character of Gy/x. We can interpolate special values of

(17.10) p-adically and we obtain

- — _ D
Ly (5, Top © Nicsa) = Lp(5, X0y L(s, Kooy (f)»

The appearance of the Teichmuller character raised to the power 1 is an artifact
of p-adic interpolation. Note that only odd characters x’s of Gal (M /Q) will
contribute to the p-adic interpolation since we are only interested by the values

of L(X,1—m) for odd integers m > 1.
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(3) Compute Ly (0, xw,) for odd characters of Gy, (note that Ly (0, xw,) = 0 since

X(p) = 1) and relate it to normalized Gauss sums. This is accomplished by
combining a limit formula for L,(s, yw,) that was proved by Ferrero-Greenberg
([FGT78]) with the Gross-Koblitz formula ([GK79]) relating the p-adic gamma

function I',(s) to Gauss sums.

(4) Relate ¢(9,5) to (p0(6,s) and ¢*(4,0) to ¢(,0).

The steps 2 and 3 are proved in the next proposition:

Proposition 17.2 Let § = )

integers coprime to p. Set

0,8) := nadfl\/l} L,wl,s).
c0.9= 32 mitd (75

(lEAfoo

nala] € Z[Ajs] and {da}aca,.. be a set of

aEAfoo

where a, € a is chosen to be an integral ideal. Then for every fized congruence class
i modulo p — 1 there exists a p-adic zeta function denoted by (,;(d,s) (s € Z,) such
that for alln <0, n =i(modp — 1)

(1) (Tromép:)(6,n) = (1 — p=*)Trp (6, n) where Try i is taken under the
natural action of Gal(L/M) on 0 under the reciprocity map. Note that the

action is well defined since p* 6 = 0.

(2) In the case where i =0 let

g: Zn(d07r)[d07T] € D(N07 .f)<p>
do,r

be a good divisor for the data p, f, Ng and let

(17.11) o= Y nldo,r)[Arjaghayr] € Z[Asad]
do|No,r(Z/ fZ)*

where (1,7) € (Z/ fZ)* x HJ¥ (No, f) with T reduced. Suppose that —1 ¢ (p) <
(Z)fZ7)* then

(1712) S(TTL/MCp,O)/((Sa O) =-24 logp S,
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where S is a product of normalized Gauss sums in MQ(C,}) C Q,. Moreover we have
(17.13) 6fTrrnC(8,0) = 12v,(S*).

Note that S2f € M C Q)" so it makes sense to take its valuation at p.

Proof of Proposition 17.2 Let § = ) n,[a] € Z[A]. Recall that

¢(0,s) = Z nadfl\il (fa—a\/ﬁ,wl,s> )

aEAfoo

Since W is essentially a partial zeta function attached to K (see Lemma 8.2) then
applying the main theorem of [DR80] to every term of ((d, s) we get that for a fixed
i (mod p—1)s and a fixed b € Aso that the values

(17.14) (1—p 2™ (bx6,n)

vary p-adically continuously when n ranges over integers n < 0 and n = i(mod p).

By density this gives us a p-adic zeta function
i, 8) : Zy, — Q,

which interpolate the values of (17.14) on this fixed congruence class modulo p — 1.

Let

(1) TTL/M<<57 S) = ZbeJM/K/JL/K C(b* 0, 8)

(2) TromCpi(0,8) = Dve sy /iy u Spilb* 0, 5)
By the definition of Ty /0(p:(9, s) the values

(1— pfzn)TTL/MC((Sa n)

coincide with T'rr/np:(6,n) for integers n < 0 and n = i(modp — 1). Since the
values in (17.14) vary p-adically continuously when n < 0 and n = i(mod p — 1) this
implies that Ty ((d, s) varies p-adically continuously on this subset. This proves

the first part of the theorem.
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It remains to prove the trace formula (equation (17.12)) and the valuation formula
(equation (17.13)) for the p-adic zeta function (, (9, s). Since (,0(d,0) = 0 we have
L (d3Cp0(0,8))|sm0 = 50(6,0).  Also we have (d;((9,s))|s=0 = ((6,0). Therefore
without lost of generality we can assume that all the d,’s are equal to 1. We have
that

T (%,wl,n) = fC((AN)7Y fow,n)

= 4f"C((ArA-) 7, foo,n)

for integers n < 0 and n = 0(mod 2). The second equality comes from equation (7.13)

proved in section 7. From this we deduce that

TroipeC(@,n) =4 Y nldo,r) Y ((Arjahar) ™" - a, foo,n)

do,r a€Jy i /I m

for integers n < 0 and n = 0(mod 2) and a € a. We let
g IK(f)/JM/K — GM/K
[a] = o4

be the isomorphism induced by class field theory where o, is the Frobenius associated

to the ideal class of a. We have

Trom(C8n) =4 Y nldo,r) Y C((Arahanr) " - a. K(foo) /K, n)

do,r a€Jy i /JL K
(17.15) = 4f* > nldo, )07k s K - Q)T /K ),
do,r

where

I(do, ’I“) = AT‘/dOAdOT = Q(’I"/do, doT) N OK
We have a natural isomorphism between Gal(K((s)/K) and Gal(Q(¢)/Q) induced

by the restriction. At the level of the ideals class groups the restriction map corre-

sponds to the norm Ng/g. Under this natural identification we have
(17.16) {X € GM/K} = {X € Ix(f)/Pr1(fo0) : Xl n = 1}

= {)”( o Nk : X € ]Q(f)ﬁ)QTl(foo)’X(p) - 1}

186



If we restrict to odd characters of Gal(M/K) then we have
(17.17) {X € I Pea(150) : Xy = T Xoo = 1§
= {)Z o Nkjg: X € lo(f)/FPoi(foe), xp(—1) = —1,x(p) = 1} :

We can write any character x of IK(f)//PK\J(foo) as XfXoo Where x; is the finite
part of xy and Y is its infinite part (see the end of subsection 7.1). We say that y
is even if xo = wp and odd if xo = w; = sign o Ng/p. A similar thing holds for
characters y € Ig( f)//P@\l( foo). One verifies easily that Yoo = 1 if X is is an even
character of (Z/fZ)* and X = sign if Xy is odd. It is easy to see that characters
X € Ix(f)/Pra(foo) st x|y, = 1 and Xeo = wi are induced by the norm of an
odd character of (Z/fZ)* ~ Iy(f)/Po1(foo).

Let 0 € Gal(M/K) then the partial zeta function ((M /K, o,s) = ((o,s) can be
written as
1
> X(o)L(s,x)

 Gwyr| 4
XEG M/ K

(17.18) (o, s)

Substituting this in (17.15) we obtain

2n
Tro(C6m) = oS n(dor) S Xoghen) L)
do,r

|Gy ~
XEIK (f)/Pr,1(foo)
X|J]\/I/K:1
4 2n _ i )
1G] > nldor) Y, XoNgsg(I(do,r)™")L(n, X © Niso)
dorr RE(ZT D)
x(p)=1
4f2n _ . ) ) D
e > o) Y, XoNya(l(do,r)™)L(n, )L(n, X (?))
dorr RE(Z] D)
x(p)=1

where the second equality uses the identification given by (17.16). We want to inter-
polate p-adically those special values. For every integer m > 1 and m = 1(mod 2) we

can rewrite the right hand side of the last equality as

4 f2(1=m) ~ - (D
(17.19) = m Z X © Nijo(I(do, 7)) L(1 —m, X)L(1 —m, X (?))
XE(Z] FT)
x(p)=1
)=
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since for y an even character L(1 —m,x) = 0. We have the following well known

proposition

Proposition 17.3 Let x be a Dirichlet character then there exists a p-adic L-
function L,(s,xw,) such that

L,(1—n,xw,) =— (1 -

for all integers n > 1 and n = 1(mod p — 1).

Proof see Theorem 5.11 in [Was87]. O

—

From the previous proposition we deduce in the case where x € (Z/fZ)* and

X(p) = 1 that for n = 1(mod p — 1)

B
1\ B, D L) Tnx(2
Lp(l —n, Xu)p) = — (1 — ) —’X, Lp(l -—n, X <;) wp) - <1 + pl—n) X< )

n n

pl—n

The second equality follows from the fact that (%) = —1. From this we deduce that
Ly(1=n,xw,) = (1—=1/p"™™)L(1—n,x) and L,(1—n,x (&) w,) = (1+1/p ™) L(1 -
n,x (£2)) for integers n > 1 and n = 1(mod p — 1). Substituting in (17.19) and
recalling the definition of (T'ry/1 () (0, s) we get

(Trr/m6p)(6,1 —m) =
4f2(17m) ~ R 5
Z n(d0>r> Z XONK/Q(I<d07T))LP(1 _m7XWP>Lp(1 —m, X

G
|Gyl do|No,re(Z/ fZ)* XE(Z] Z)

for m > 1 and m = 1(mod p — 1). By density of the set {n >1:n = 1(modp — 1)}

in Z, we obtain

(Trup)(6,s) =

4 2s ~ ~ ~ .
|G§f> | E n(d07r) Z XONK/Q(I(CZO,T))LP(S’pr)Lp<S7X (;) (A)p)
L doioretz o) (@1
X(p)=1
>2(X—110):—1

for all s € Z,. Let us define an auxiliary p-adic L-function that will play an important

role later on.

188



Definition 17.3 We define the Archimedean zeta function O(s) and its p-adic

counterpart ©,(s) as

O(s) ==
4% . . _ (D
VRl Z n(do, ) Z X © Ngq(L(do,r))L(s, X)L(0, x { — )).
|GM/K| — *
do|No,re(Z/ fZ)* RE(Z) L) >
p)=1
0
and
O,(s) ==
4 2s ~ ~ ~ D
‘Gm| >, nlder) xoNK/@<I<dw>>Lp<s,xwp>L<o,x(;>>.
MIEL do|Nore(z) 12) < @D
r

Note that L(0,y (£2)) = —Bl,x(g) and therefore 2L(0,% (2)) = L,(0,X () w,).

Moreover when k> 1 and k =1 (mod p — 1) then

(1 _ L) Ol — k) = ©,(1— k).

pl—k

Now let us take the derivative of (Trp/n(p)(0,5) at s = 0. Applying the chain rule
and using the observation that L, (0, yw,) = 0 we get

(17.20)
(TreynmGp)'(8,0) =

4 5 , . (D
Gorrl Z n(do,r) Z X o Ngjo(I(do, 7)) L,(0, Xwp) Lp(0, X - Wp).

MIKY 4o No,re(@) £2) LTI

X(p)=1
xX(=1)=-1

From this we deduce that
(17.21) (Trr/mGp)'(8,0) = 26,,(0).

A straight forward calculation also shows that

(17.22) (Trrm€)(6,0) = ©(0).
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Note the dicrepancy of a factor 2 of the two previous formulas.

Now we would like to write the zeta functions © and ©,(s) in terms of p-adic
partial zeta functions attached to Q. Using the definition of ©,(s) we see that in
order to do this it is enough to relate L,(s, xw,) to p-adic partial zeta functions of Q.

The function L(s, ) can be rewritten in terms of partial zeta functions of Q as

(17.23) L(s,X) = > X(a)(a, foo,s)

a€(Z/fZ)*
Note that every partial zeta function ((b,pfoo,s) (where (b,p) = 1) is p-adically
continuous when s is restricted to the set of integers n < 0 and n = 0(mod p — 1).

Therefore the values

(17.24) > Chpfooss) = (1-1/p) 3 ((a, foo,s)

b(mod pf),(b,p)=1
b(mod f)€a(p)

are p-adically continuous when s is restricted to the set of integers n < 0 and n =
0(mod p—1). Remember that r was defined to be the order of p modulo f. We define

(17.25) Gla, foo,s)

to be the p-adic zeta function which interpolates p-adically (17.24) on the set of
integers {n < 0 : n = 0(modp — 1)}. It was crucial here to take the sum of the
right hand side of (17.24) over all congruence classes of the powers of p modulo f

in order to be able to factor out the Euler factor at p. Note that by construction

Gla, foo,0) = 0.

Remark 17.5 The reader should be careful to not confuse the different zeta
functions introduced so far. When a € Z and (a, f) = 1, the notations ((a, foo, s)
and (,(a, foo, s) correspond to partial zeta functions attached to Q. The partial zeta
functions introduced earlier which were involving a divisor § € Z[A.,| were attached

to K. Namely:

(1) The Archimedean ones: ((6,s) defined by the equation (17.4) and (*(d, s) de-
fined by equation (17.5).
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(2) The p-adic ones: (;(6, s) which interpolates special values of (*(9, s) and (p,0(J, s)

which interpolates special values of ((d, s).

For a character \ which is trivial on (p) < (Z/fZ)* we can rewrite (17.23) as

Z Y. X(a)X(p'a, foo,s)

=1 ae(z/12)* /P)
(17.26) = ) X@) ((a, foo,s).
€@/ /F) =

From the latter equality and the density of the set of integers {n < 0:n = 0(mod p—
1)} in Z, we deduce that

(17.27) L,(s, xwp) = Z X(a)¢y(a, foo,s),
a€(Z/fZ)* /{p)

for all s € Z,. We will need the following lemma

Lemma 17.1 Assume that —1 ¢ (p) < (Z/fZ)*. The zeta functions O(s) and

©,(s) can be rewritten as

(17.28) O(s) = 4f* Z nazr:g(pia, foo,s)
a€(Z/f2)* /()  i=1

and

(17.29) O,(s) =4()* Y nuGla, foo,s)

a€(Z/ f2)* /{p)

where the n,’s are elements in %Z given by the following formula

D 1
17.30) ng, = a)N do, 7)) | L(0,x | — € 7.
B8 sonweten (s (2) o
re (s oy X
X(-1)=-1
Moreover we have ngy = n, and n_, = —n,.

Proof The fact that the n,’s are equal to the expression (17.30) follows directly from
the definition of ©(s), ©,(s) and of equations (17.26) and (17.27). Also the fact that
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Nap = Ng and n_, = —n, are straight forward. It is also easy to see that that the
n,’s are invariant under Gal(Q/Q) therefore they lie in Q. The character X (£) is a
character modulo D f. We have

LO.x (9) =P

therefore fD|Ghk|n, € Z. It remains to show that 2n, € Z. We can rewrite n, as

. D
> >, D nlder)xeNggll(d,r)x(a) (= ) a
Df\GM/K| a
do|No (Z/fZ)X 1<a<Df
re(z/f2)* " Ypy=1 (D)=

X(=1)=-1
Let Q,(z,y) = Ax® + Bzy + Cy? then we have N(Ay4,,) = ﬁ‘ Also since A, /q, =
2
r/do(mod f) we have N(A,/q,Adyr) = Af/dodxo = <£—O> doA~Y(mod f). We can thus

rewrite the previous expression as

2 -1 D
Df|GM/K’ Z Z Z n(do, r)x(ar*dy A~ )(a>a

do| N “ 1<a<Df
e )iay< XD (57
f(-D=-1

which again can be rewritten as

(17.31) Df|GM/K| Z Z n(do, ) (D)a Z Y(ar?dyt A7),

do|No 1<a<Df ~ .
re(z/fz)* (a,Df)=1 X€(Z/fZ)

Let G = (Z/fZ)* /{p(mod f)). By assumption we have —1 & (p (mod f)) < (Z/fZ)*.
Therefore there exists a character ¥ of G such that ¥(—1) = —1, i.e. ¥ is odd. Let
us denote by Gever and G% the set of even and odd characters of G respectively.
Note that G°% = WG®*  An easy computation shows that for every a € (Z/fZ)*

lG]‘é/Kl if a € (p(mod f))
Y xla) =3 -l it a e —(p(mod f))

xeGedd 0 otherwise
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We can thus rewrite (17.31) as

(17.32) ﬁ Z n(dg, 7”) (g) CLE((IT‘2d51A—1>

d()|N()
re(Z) f7)*
1<a<Df
(@Df)=1
ar?dy P A= et (p(mod f))

where €(a) = 1 if a(mod f) € (p(mod f)) and e(a) = —1 if a(mod f) € —(p(mod f)).
Every element 0 < a < Df — 1 can be written as (ay, az) where a; = a(mod D) and
as = a(mod f). Every term a = (aj,as) in the sum (17.32) can be paired with the
term a' = (—ay, az). Since (2) = (£) (the quadratic character (£) is associated to
a real quadratic field and e(a) = ¢(a’)) we see that the sum in (17.32) is congruent
to 0 modulo D. Now using the fact that ¢ is a good divisor we have for a fixed
r € (Z/fZ)* that 3, n, n(do,7)do = 0. Let us fix an element b € £=(p(mod [)) and

dobA :
25 }do|No, We obtain

Z n(do, ) (é) Me(b) = 0(mod f).

r2
do|No

an element r € (Z/fZ)*. Summing over all the elements {

For the latter congruence we have used the fact that all the primes dividing N, are
split in Q(v/D) and also that ¢ is a good divisor. From this we deduce that (17.32)

lies in %Z. This completes the proof of the lemma. [

We can now state the key ingredient that allowed us to relate the first the deriva-

tive at s = 0 of Trp/p(p0(9, s) with normalized Gauss sums.

Theorem 17.2 Leta € (Z/fZ)* and let (,(a, foo,s) be the p-adic zeta function
introduced in (17.27). Then

¢ (a, foo,0) = —log, g (%)

—1

aT o
where g(%) = r((qu% € Q¢ G)s wg + FY — pg1 © Q, is the Teichmiiller

2f
character and g = p” = 1(mod f) where r = ords(p). Note that g (%) € Q(¢p)frr.
We have

a\¥ - i _ - (;;a/) 1
vp<g<?) >=2f;C(pa,foo70)—2f;<T—§ :
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where T is chosen to be the unique integer between 1 and f—1 such that T = xz(mod f).

Proof Combine the results of [FG78] with [GK79] plus standard results about fac-

torization of Gauss sums. [

Using (17.29) we deduce that

@;(S) =4 Z naq)(a, fOO, O)

a€(Z/fZ)*/(p)
(17.33) =4 > 2n4(a, foo,0)
1<a<f/2\ -
{{Gslihim
where for the second equality we have used the fact that n_, = —n,, ¢ <_Ta) =

1 _
+g (%) and that —1 ¢ (p). Now using Theorem 17.2 we can rewrite the right hand
side of (17.33) as

(17.34) -4 Y (2na)logpg(%).

G
Now from Lemma 17.1 we get that 2n, € Z. Set
. 2Ng
o Te(5)
(it
We thus have by definition that
O (s) = —4log, S.
Now using (17.21) and the last equality we deduce that
(TTL/MCp)/((;a O) = —810gp S

This proves (17.12). It remains to show the valuation formula (17.13). Using Theorem
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17.2 with the definition of S we get

120,(S) =12 Y (2n4)2f Y ((p'a, fo0,0)

<a<f/2 _ =1
{1(;7 S }/<p>
=6f-4 na »_((p'a, foo,0)
a€(Z/f2)% /() =1
= 6£0(0)

= 6f(TrrmC)(6,0),

where the second last equality uses (17.28) and the last one uses (17.22). This shows
equation (17.13) and therefore concludes the proof of Proposition 17.2. O

In order to finish the proof of Theorem 17.1 we need to relate ((d,0) to (*(6,0)
and (;(d, s) to (p0(9,s). The next proposition takes care of this.

Proposition 17.4 Let § = > do.r Mdo, 7)[do, 7] € D(Ny, ) be a good divisor.
Let (1,7) € (Z/ fZ)* xHJ¥ (No, f) with T reduced and let 6 = 3, n(do, 7)[ArNgyr] €
Z[Ajo). Let 6 = 3 4 n(do,m)[ArAng | € Z[Ajo]. Assume furthermore that all

: i

primes dividing f are inert in K then

T
)

¢(6,0) = > C(Au%d",0),

e
I
o

and
f—1
G0,5) = Gro(Aux6", ).
u=0

where A\, is an algebraic integers of K chosen so the A\, = (Niou + 77)(mod f), Ay, is

coprime to p and totally positive.
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Proof Using Proposition 9.4 gives us

do,r
f-1 ATA%T
J— 0
uz%dorn(do,r)dolll(/\u VD , W1, S)
f-1
(17.35) = C( Ay %07, 9)
u=0

Using Corollary 10.1 we deduce

(17.35)

f-1
(1 _p72n)Z<(>‘u*5*> 7n) (1 _p72n><*(67 Tl)

=6, (1,7),m)
(17.36) = (, (6, ).
for every n < 0 and n = 0(mod p — 1) . By density of the set of integers {n <0:n =
0(modp — 1)} in Z, we get

F—1

G0.8) = Gro(Aux6",5).
u=0
Ul

We can now prove Theorem 17.1. Using the latter proposition with equations
(17.12) and (17.13) of Proposition 17.2 we get that

(17.37) 6Trrr(G) (6,0) = —log, (S")*
and that
(17.38) 12fTry G (6,0) = v,((8)*)

where S’ is a product of normalized Gauss sums inside Q(¢r)*™ - Q({,). Note that

(5")?) € QU so it makes sense to take the p-adic valuation. On the other hand in

section 10 we have proved the existence of an element u € K for which
6fTrr/n(Gy)'(6,0) = —2flog, Npjar o N, /g, (u)

(17.39) = —2flog, N, 7 (u),
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and
6/ T (C7)(6,0) = 2fvp (N (w)).

Now using the observation that v,(u”) = v,(u) where Gal(K,/Q,) = {1,0} we get
(17.40) 12/ Tra s (C)(5,0) = 2f0, (N, ().
Comparing (17.37) with (17.39) we obtain

log,(S')* = 2flog, N, 5 (w).
Comparing (17.38) with (17.40) we obtain

B((S1) = 20N, 7).
From this we conclude that

S" =N 5(u) (mod pr).

This concludes the proof of Theorem 17.1. [

We should expect a refinement of Theorem 17.1 of the following form

Conjecture 17.2 The element

Niym(u(c))

is a product of normalized Gauss sums in M - Q((,).

18 Numerical examples

Let {g1,...,9-} be a finite set of generators of T'o(N). Any element g € G can be
written as a reduced word g = wywsy...w, where w; € {g1,97%...,9,, 97"} and
w; # :cijrll forall 1 <i <n—1. For any integer k > 1 we let W, = Hle w;. A direct

computation reveals that
(18.1) o] = [g(o0)] = Z Wa—i ([00] = [wn—it1(00)]) .

Let M = Divy(I'o(N){o0}), endowed with its natural left I'o(NV)-action. Then the

next propostion is essential for the explicit computation of u(r, 7).
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Proposition 18.1 The module M is generated by the elements {[oo] — [g;00] }i_;
over the ring Z[[o(N)].

Proof This follows directly from (18.1). Note that if w; = g; ' then ([oo] — [g; ' (00)]) =
—g; " ([oo] = [gj(c0)]). O

Conjecture 5.1 asserts the existence of strong p-units in abelian extensions of real
quadratic number fields. In order to make sure that such units exist one needs to
impose a number of conditions on the real quadratic field K. To fix the ideas, let us

assume that f =3, Ny = 4 and that
§=2[1,1] — 3[2,1] + 1[4, 1] € D(4,3).
It thus follows that the modular unit attached to the data (f, Ny, d) is

Bs(T) = 9(1.0)(3 7)2'129(5,0)(3 . 27)73'129(;0)(3 A7)t

1
3

Let K = Q(v/D) be areal quadratic field where D = disc(K) and let f be an arbitrary
positive integer. Assume that Ox(f)”* = Og(foo)* then we have the following Hasse

diagram:
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where K;iozg (respectively H}) stand for the narrow ring class field of conductor f
(respectively the narrow Hilbert class field). Here s is some integer that can be

computed explicitly.

In order to facilitate the existence of non trivial strong p-units in K (300) attached

to the previous modular unit one requires that

(1) (D,3) =1 (3 should be unramified in K),
(2) D=1 (mod 8) (2 should split in K),

(3) (2) — —1 (p should be inert in Q(v/D)),

p

(4) The index n = [(’)K[%](ZS)X : OK[I%](?)OO)X] should be equal to 1 or 2. The group
OK[%](B)X (resp. (’)K[%](Soo)x) stands for the group of units (resp. totally

positive units) of OK[%] which are congruent to 1 modulo 3.

Remark 18.1 In the case where the index n = [OK[%](f)X : OK[é](foo)X] is
equal to 4, one can prove that K (foo)fm®w/e) — [ (f)Freb®/e) is a totally real
field (p = pOk and p is a prime ideal of K(foo) above p). When the class field
K (foo)frobte/9) is totally real, it is easy to see there are no strong p-units in K ( foo)meb®/¢)
other than {£1}.

A discriminant D > 0 satisfying these four conditions will be called admissible. A
congruence modulo 3 shows that there exists no units € € Ok (3)* such that N(e¢) =
—1. Therefore, the fourth condition is always satisfied and can thus be dropped.

Using class field theory, one deduces that
(18.2) K(300) 2 K(G3) = K(v=3),

where (3 = €2™/3. From (18.2), it follows that K (300) = K(y/—3) when the narrow

ray class group K of conductor 3 has order 2.

Conjecture 5.1 predicts that the strong p-units arising from our construction lie

in K (300)Frob(r/)) - Since we would like our strong p-units to be primitive elements
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of K(300) over K, we will impose the additional condition that Frob(p/p) = 1. This
is equivalent by class field theory to the congruence p =1 (mod 3).

Let us fix an embedding K C R. We define Ix(3) to be the group of fractional
ideals of K coprime to 3 and we let Pk 1(300) to be the group of principal fractional
ideals of K which can be generated by a totally positive element congruent to 1
modulo 3. We also define Pk 1(3) to be the group of principal fractional ideals of K
which can be generated by an element congruent to 1 modulo 3. Let n = [Ok(3)* :
Ok(300)*]. Because f = 3, we always have that n = 1 or 2. A calculation shows
that the quotient Pg.1(3)/Pr1(300) ~ (Z/2Z)*". When n = 1 the quotient group
Prc1(3)/Pr1(300) =~ (Z/27)* can be generated by the ideal classes (1 4 3v/D)Og
and (1 — 3v/D)Og. When n = 2 there exists a unit ¢ € O(3)* such that ¢ < 0
and € < 0 and therefore the ideal (1 — 3v/D)Of = €(1 — 3v/D)Of is equivalent to
(14 3vD)Og modulo Pr 1 (300).

For every admissible D the narrow class group of K = Q(v/D) of conductor 3
is given by Ix(3)/Pk1(300). Let J := (2,w) be a prime ideal of K above 2, where
w = %ﬁ. For every ideal class C' € Ik (3)/Pk1(300) we pick an ideal ac € C|
Since the quotient ac/(acJ?) is isomorphic to Z/4Z we can always find elements

w1, ws € Ok, such that

(18.3) ac = Zwy + Zws acJ? = Zwy + Z4w, and w; > 0.
Moreover, we claim that we can choose w; in such a way that

(18.4) wy = integer (mod 3).

Let us prove this. If wy = integer (mod 3) then we are done. Let us suppose that
w; # integer (mod 3). In this case one can assume without lost of generality that
wy = a + bw where a,b € Z and b # 0 (mod 3), otherwise replace wy by ws + wy.
Now since 4 is coprime to 3 one can find an integer k such that w; — 4kwy = integer
(mod 3). Then the new basis {wW;,w,} where &) = +(w; — 4kws) (where the sign is

chosen appropriately) and Wy = wq satisfies the required property.

Now assume that wr,w; satisfy (18.3) and (18.4). Then if we set 7 = 22 we readily

see that rA; is equivalent to ac modulo Py ;(3), where A, = Z + 7Z. Note that rA,
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is equivalent to ac modulo Pgk 1(300) precisely when N g(wi) > 0. We set
(18.5) s = sign(Ngjg(wr)) € {£1}.

We require two more conditions on the choice of 7, namely that |7 — i, = 1 for
0<i<p-—1(ie., 7 is reduced) and also that 7 — 77 > 0 (7 is oriented) where o is
the nontrivial automorphism of K. Let € > 1 be such that O (300)* = €Z. Let 7, be

the matrix corresponding to the action of € on A, with respect to the ordered basis

{r,1}:

(18.6) ’)/7—<1>:6(1>.

b
If we write v, = ¢ p ) then one can verify that ¢ = 0 (mod 12) and d = 1
c

(mod 3). For this ideal class C' we associate the following p-adic invariant

5
(18.7) u(C) = u(r,7)* = (pwr{wf“} f (z — 7y)dfir {00 — 00} (a, y)) € K.
If our conjecture is true then we expect the polynomial

Pp(x) := II (z —u(C)) € Kplz],

Celk(3)/Pr,1(300)

to have coefficients in OK[%]. Let ¢y be a complex conjugation of K(foo)/K (a

complex conjugation of K (foo) is not necessarily unique, see Definition 17.1) then

Conjecture 5.1 predicts that u(r,7)% = u(r,7)""

Because of this we expect the
polynomial Pp(x) to be a palindromic polynomial. Because of the presence of the
12-th power in the definition of Bs(7), it turns out that very often our units u(C) are
powers of smaller units. Because of this reason, for every admissible D, we define
a certain integer np|12. The integer np is chosen to be the largest positive integer

dividing 12 for which

(18.8)
2Pp(x) € {/(@) € ZL][VDla] : fla) =

%

ai7bi € Za (ai7bi7p) = land |a’i|7 |bl| < p2M/3} modulo pMOKpa

—w s
p™
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where

Po)= J[  (@-u(@)") € K,fa].
Celk(f)/Pk,1(foo)

The factor 2 which multiplies Pp () in (18.8) comes from the fact that O = Z[H;/B].

We will compute the p-adic invariant u(C') = u(r, 7) in three steps. The comple-
tion K, is the unique quadratic unramified extension of Q,. Let log, : K — Ok,
denote the branch of the p-adic logarithm which vanishes on p. Let ( be a primitive

(p* — 1)-th root of unity in K and let log, denote the discrete logarithm with base
&

log. : K} — Z/(p* — 1)Z,

T

where o) o € 1+ pOk, for all z € K. For odd p we have a decomposition

K} ~7ZxZL/(p* —1)Z % pOk,

given by z — (ord,(x),log.(x),log,(7)).

Using the assumption that 7 is reduced we see that the computation of u(r,7)

boils down to the computation of the following three quantities:
ord,(u(r, 7)) = ¥, (co = 7,00),
logg u(r,7) = [ log(w = y)dfi {50 > 120} (w.),
X

log, u(r,7) = / log,(x — Ty)dpr{00 = 7-00}(z, y).
X

18.1 Computation of ord,(u(r, 7))

From now on assume that the prime p = 1 (mod 3) is fixed. Recall that f = 3 and
Ny = 4. The group I'o(fNy) = I'9(12) can be generated by the following matrices

(11 (5 -1 (5 - (1 - (5 -3
= 01 )% V3 7 )P Loy —19) P Vo 217 )% 1o 7
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Let j € (Z)fZ)*/(p) ~ (Z/3Z)* and v € ['y(fNy). We define the period

() == P;{oo0 = yoo} = L /FYOO ﬁz(j, 2)dz € Z.

2 o
A computation shows that 7;(v) satisfies the following cocycle condition
(18.9) mi(n72) = mi(n) + 7o (02),

for all v1,7v2 € T'o(fNp). A direct computation shows that Dil(md f)(a, c) = Dl_{ (mod f)(a, c).
(This is true for any f). Therefore from the explicit formula given in Proposition 5.4
for m;(7), we deduce that m;(y) = m_;(y) for any v € I'o(fNo). Now using the

previous observation in (18.9), with f = 3, we deduce that

(18.10) mi(7172) = (1) + (7).

b
Let v = ( ¢ J ) € I'o(fNo). Then in general if the height of yoo = ¢ is large, the
c

direct computation of the period m;(y) via the explicit formula given in Proposition
5.4 tends to be long since the summation of the corresponding Dedekind sum depends

linearly on c. Instead we compute once and for all the four periods

{mi(9)}i.

Note that trivially one has m(g1) = 0. Now using the command “FindWord”in
Magma, one can obtain an expression of the form v = wyws, ... w, where the w;’s are

elements in the set {gj-El ®_1. From (18.10) it follows that

(18.11) m(y) = Zm(wi).

Note that m(g; ') = —m1(g:). We have thus succeded to compute the period 7 (7)
purely in terms of the periods {m(g;)}?_,. In particular this method gives us a quick

way of computing 7 (,) where 7, is the matrix appearing in (18.6).

18.2 Computation of log, u(r, 7)

For m = [c1] — [e2] € M = Divg(To(fNo){o0}), let fi.[m] := pi.{c1 — c2}. Since an

arbitrary m € M can be written as a sum of elements of the form [c;] — [¢o] we may
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define fi,.[m] by linearity. If 7 € H, and v € I'o(fNy) then a formal computation
shows that

(1812 [ toge(e = )i fymlay) = [ togc (o = y777) iyl )

The last equality uses the fact that the total measure of fi,-1,,[m] is zero and that for
all compact open set U € X one has that z,.[m|(U) = fiy-1,,[y " 'm](y"*U). Now let
v € To(fNp) and let v = wiws ... w, where w; € {g;"'}5_;. From (18.1) we deduce
that

[00] — [y00] = > Wiy ([00] = [wn—i41(00)]),
i=1
where W), = H?:l wj. If w,_;11 = g; for some j then we deduce from (18.12) that

/Xl‘)gd‘” = 7y)djin [Wai([o0] = [wn-isa])) (2, y)
= /Xlogg (x — yW{_liT) dﬁwn__li*r{oo — gjo0}(x,y).

If w, i1 = gj_1 for some j then we obtain in a similar way that

[ o8t = ) Was(foe) = - ss1 D))
= /X log, (v — yW,;7) diiyy—1 {00 — g; o0} (2, y)
=— /X loge (2 — y(Waig;)'7) dliqw, _ g, 1sr {00 = gjo0} (2, ).
We thus see that in order to compute
/X loge(w — 7y)dfi, {00 — o0} (z, y)
it is sufficient to compute
(18.13) /Xlogc(a: — 7'y)dp{oo = gjoo}(z,y),

for certain 7" € H, v € (Z/3Z)* and j € {2,3,4,5} which depend on the word

representing . To compute (18.13) it is enough to take a cover of X in which x and
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y are determined modulo p. Therefore, it is enough to compute

(18.14)
> log(u—7v)fin{oo = gjoo}((u+ pZy) x (v + pZy)) € Z/(p* — 1)Z.

0<u,v<p—1
(u,v)7#(0,0)

This can be efficiently computed using the explicit formulas for the g, {oo — gjo0}-

measure of the balls (u + pZ,) x (v + pZ,) given in Proposition 14.1.

18.3 Computation of log, u(r, 7)

By arguments analogous to those of section 18.2 and replacing log. by log, we see

that in order to compute

/Xlogp(ffj — 1y)dpir{o0 — yoo}(z,y),
it is sufficient to compute
(18.15) /Xlogp(:v — 7'y)dpi {oo — gjoo}(z,y)

for certain 7 € H,, v € (Z/3Z)* and j € {2,3,4,5} which depend on the word
representing 7. In order to compute (18.15) we will use the same method which was

developped in [Das07].

The integral (18.15) can be rewritten as follows:
/ log,, (z — y7') dji {00 — gjoo}(x,y)
X

= / log, (x — y7') djiy {00 — gjoo}(z,y) + / log,, (x — y7') dpi, {00 — g;o0}(x,y)
ZpXZy Zy XpZyp

_ / log, (y)dfi {00 — g;00}(z, y) + / log, ()i {00 — g;00}(z,9)
ZpxZy Z) xpZp

(18.16)

+ / log,, (E - T’) dpir{oo = gjoot(z,y) + / log,, (1 - T@) dpir {00 — gjoo}(x,y).
Tp XL} Y L) XpTy Z

Suppose we want to calculate (18.16) to an accuracy of M p-adic digits. First observe

that the first two terms of (18.16) are independent of 7. To evaluate the first term,
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one finds a polynomial f(y) € Q[y] such that |f(y) —log,(y)|, < zﬁ for all y € Z.
To construct f(y) consider the polynomial

p—1
gi(y) = [Jw— )™

j=1

J#i
Let h;(y) denote the power series expansion of log,(y)/gi(y) on the residue disc i+pZ,,
truncated at M +[log M| terms, where [log M| denotes the integer part of M. In order
to compute this truncated power series one can compute the Taylor series expansions
around yo = 0 of log,(y +1) = log, i +log,(1+ %) and m up to order M + [log M]|,
multiply them and finally apply the change of variables y +— y — i. Letting

(1817 ) = 3 ),

we obtain the required polynomial which has degree (p—1)M +[log M]. The first term
of (18.16) may be evaluated by replacing log,y by f(y). Then if y" is a monomial of
f(y) we can use Propositon 11.6 which gives an explicit formula for the integral of y”

on Z, x Z, against the measure fi,,{00 — g;00}.

To compute the second term of (18.16) up to an accuracy of M p-adic digits it is

enough to compute
(18.18) / f(x)dp,{oo — gjoo}(z,y).
Zy XpZyp

Taking a monomial ™ of f(x), we see that in order to compute (18.18) it is sufficient

to compute the integral

[ ardidoo  gook(eg) = | adfin{oo s gioo}e) ~ [ a"diloo - g0} (wn)
ZX xpZy X

PLyp XLy

Applying Propositions 11.5 and 11.6 to the right hand side of this equality we deduce
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that

(18.19)

/ 2" dfi {00 — g;00} () =
7y XpZyp

n n a\ !
. —1)!
> ()0
1=0
_ n r mod n T mod
Z n(do, ') dy" ( DiL z+(1 l+1f)(a,c/d0) lDiL z+(1 z+1f)(p@> C/d0)>-
d0|N0,T/€Z/fZ
This completes the evaluation for the second term of (18.16).

The third term of (18.16) can be evaluated in the following way. Since m,u, = p,,

we have

x —~
/ log, (5 - r’) djin{00 = g;o0}(x,y) = / log,, (t — ') dptr {00 — g;00} ()
ZpXZy

P

We have

/ log,, (t — 7') dpp{oo — gjo0}(t) Z/ log,(t — i+ (i — 7))dp, {00 — gjoo}

+pr

t—1
! __ ’L> dluT'(t)

(18.20) = Z [10gp i) (i + pZyp) + / - log, (

The integrand in (18.20) can be written as a power series in each residue disc i + pZ,.
Therefore, in order to calculate the integral modulo p™ it is enough to calculate the

moments

(18.21) / (t — i) "dp{oo — gjoo} = p”/ u"dp {00 — i}(u) (mod p™)
+pZp Zp ep™

p ot o b
forn=20,...,M — 1 where P, = 01 and P, gjoo:w—mvvlth(e,p)zl.(The

equality (18.21) uses the invariance of p,» under P; € I'.) If we pull back (18.21) to
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X we get

/ udp{oo — L} = 2"y "dp{oo = wl(z,y)
Zp ep™ ZpXZ}

= lim 2"y’ "y {00 — L}(Jff,y)

i Sz, xny ep™
g9;=(p=1)p’
(18.22)
X 12 - n a.,_ " (mod m
- _}EEOFZ <z)(2) (1) n(do, r)dy ZDJ l+1l+1f (b, ep™ /do).

do|]\f0,7‘€(Z/fZ)><

Let us fix a value ' € (Z/ f7)* and let us assume that m > 1. The expression (18.22)

can be written in terms of the single-variable measures appearing in Definition 13.1:

: r mo & ElJrl(eh_?n) .
im0 nldor)dy DI D (b, ep™ do) = Do fm F (bt ep™Z)
do|No€(Z/ fZ)* h=1
_ Z +1(ep )/ {E;ld./_"l(fﬂ)
h—1 l + 1 h_;’_eme
(h,p)=1

The second equality comes from the observation that, when p|h,
(18.23) hm Fo—iv1(h +ep™Z) = hm pgf T (h/p+ep™ 1 Z) =0,

where the middle equality of (18.23) follows from (13.3). Note that when (h,p) = 1,
the function = — x,; !'is continuous on the ball h + ep™Z and therefore the integral

~ldF)(z) makes sense. In the case where m > 1 and (h,p) = 1, one can
!

fh+eme p

compute [, repmz Tp ldF,(x) by expanding the function z," in a neighboorhood of

h + pZ,. We consider the Taylor series expansion

(18.24)

—1 M j M+1
BV T, —h L x, —h T, —h
z, =h <1+< N )) =h jzo( N ) +< N ) H(z,),

where z — H(z,) is some continuous function on h+ep™Z. From (18.24) we deduce
that

M N
(18.25) / x,'dF (z) = hl/ Z <xp h> dFi(z) (mod p™).
h+ep™Z h+ep™Z =0 h
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J
Now expanding the finite sum ij\io (m"h_ h) as a polynomial in z,, and using Propo-

sition 13.1 together with (13.2), we obtain an approximation to fh+epmz x;ld}"l (x) u
to a precision of M p-adic digits.

In the case where m = 0 one can assume without lost of generality that (h,p) = 1.
(Otherwise replace h by h+e and observe that (h+e,p) = 1 and h+eZ = (h+e)+eZ).
We define

/ x, AT (z) = / x,'dF ().
h+eZ h'4+epZ

1<h’<pe
(h".p)
h'=h (mode

Note that one cannot integrate directly z,; ! against F, on the compact open set
h + eZ since the function T, ! (for I > 1) is not continuous on h + eZ. Using the
definition above and (18.25) one obtains an approximation to [, x,'dFi(x) to M
p-adic digits. This concludes the explicit calculation of the third term of (18.16).

The fourth term of (18.16) can be evaluated in the following way. First note that

/

-
/ log,, (1 -7 ) dfi {oo = gjoo}(z,y) = / log, <1 - ?) dp{oo — gjoo}(t).
Ly xplLy H(Qp)\Zp

P

Now using the Taylor series expansion

7! S~ 7n
18.26 —log, (1—-—) ="
(18.26) os, (1-7) > 5

which is valid for any ¢ € P'(Q,)\Z,, we see that in order to compute (18.26) to an

accuracy of M p-adic digits it is suffient to compute the moments
(18.27) / t " dp {00 = gjoo}(t),
PHQp)\Zyp

for 0 < n < M, to a precision of M p-adic digits. Let g;oo = Z—j The invariance of
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1
fNo

/ t " d {oo — %} (1)
PL(Qp)\Zp Cj

—/ (—u )nd {— SN % }(U)
2z, \—fNou+1 o fNo  —fNoa; + ¢;

: 0
pirr{o0 = 22} under the matrix v = < X ) implies that
J

fNg
U - 1

18.28 = —/ (—) Aty 1,00 {oo — ——} U

( ) 2, —fNou +1 . fNo (@)

U - a;
+ _— Aty -1, - .
/f]{]—i-pr (_fNOU+ ].> ,u'y {Oo —fN()CLj —|—C]} (U)

0

1

Vo modulo p. The

Let j be the positive integer less than p which is congruent to

—n
function (W) can be expanded as a power series in u — j on the residue disc

J + pZ,. This reduces the computation of (18.28) to that of integrals of the form

(18.29) / (u — 7)"dpp {00 — w}(u),
J+pZLyp
for 0 <n < M,r e (Z/fZ)* and w = —ﬁ or #;ﬁ% Note that (18.29) is an

expression with the same shape as the left hand side of (18.21). This concludes the
explicit computation of the fourth term of (18.16).

19 The Algorithm

We have thus reduced the computation of

u(r, ) = p%{oo_’%oo} f(x — 1y)dp{oc0 = 00} (x,y),
X

up to an accuracy of M p-adic digits, to the computation of the following quantities:

Part one of the program (independent of D):

(1) We compute exactly the set of Bernoulli numbers B, for 0 <n < (p — 1)M +
[log M| and store these in a file. Using this data and the explicit formulas (4.11)
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for B, (z), allows us to construct Bernoulli polynomials more efficiently since

all the B,, are only computed once.

(2) For j € {2,3,4,5} and i € {0,1,...,p — 1} we compute {0 — g;00}(Z,)
1 —
and iy {oo — M,g;00}(Z,), where M; :=

. Here we use the explicit
0 p

formula of Proposition 5.4.

(3) Forr € (Z/3Z)*, j € {2,3,4,5} and 0 < u,v < p — 1 such that (u,v) # (0,0)
we compute f,.{co — g;00}((u + pZ,) X (v + pZ,)) using the explicit formulas
of Proposition 14.1.

(4) Forr € (Z/3Z2)*, j € {2,3,4,5} we compute fszzg f(y)dp,{oo — gjoo} where
f(y) is the polynomial in y appearing in (18.17). Here we use the explicit

formulas of Proposition 11.6.

(5) Forr € (Z/3Z)*, j € {2,3,4,5} we compute [

PLyp XL f(z)dp,{oc — gjoo} using
(18.19).

(6) Finally, for 0<i<p—1,0<n <M, r e (Z/3Z)* and

_ _ B B 1
ve {9200’9300’9400’950077 Lg900,77g300,7 7 ga00, 195007—5},

1 0
where y = ( - >, we compute prZp(t—i)”d,ur{oo — w}(t) using (18.21).

Note that the quantities appearing in (1), (2), (3), (4), (5) and (6) do not depend on
D and 7. Therefore one only needs to compute them once. The computation of the
quantities (4), (5) and (6) are the ones which contribute the most to the running time

of the algorithm. We store all these quantities in various files.

Part 2 of the program (depends on D):

Let D be an admissible discriminant and let K = Q(v/D). We now want to explain
how to compute the polynomials Pp(z). Let ¢ = (14 fv/D)Ok. Assume that one has
a complete set of pairs {(r;, ;) }7_, such that the ideals {r;A,, }!, form a complete set

of representatives {C;}1, of Ix(3)/(Pk.1(300),¢), where h = #I(3)/{Px.1(300), ¢)
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and 2h = #1x(3)/Pk1(300). Assume, moreover, that the 7; are chosen in such a way
that O,, = Oy, = Ok and that 7, — 77 > 0 where Gal(K/Q) = {1,0}. For every
i one computes u(r;, 7;) up to a precision of M p-adic digits as explained in sections
18.1, 18.2 and 18.3, using the outputs produced by part 1 of the program. Then one

defines

5 S5

(19.1) Pp(z) = ﬁ (m — u(ri,n)%> ﬁ (x — U(T’Z‘,Ti)iE> 7

i=1 i=1

where s; is equal to 1 if r;A,, is equivalent to C; modulo Pk ;(300) and —1 otherwise.
The integer np is chosen as explained in (18.8). The determination of np is done

empirically and we do not know how to predict it.

The average running time for the computation of the p-adic invariant w(r;,7;)
seems to be difficult to analyse. This is due to the lack of control on the length of the
reduced word (with respect to the alphabet {g;'}?_,) which represents the matrix
V... Very often, we observed that large entries for the matrix ~,, lead to a big length
of the reduced word representing ,,. Moreover, the larger the height of the generator
e > 1 of O(300)*, the larger the entries of v,,. For these two reasons, it seems to be
difficult to give a good running time approximation for the computation of u(r;, 7;). A
better understanding of M as a Z[I'y(f Ny)]-module could lead to a better algorithm

for the computation of u(r;, 7;).
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For p=7and ¢ = 2[1,1] — 3[2,1] + 1[4, 1]
D | Ix(3)/Pg(300) | np valuations Pp(x)
17 Z)2Z 12 +2 ?— Lot
41 Z/2Z 12 +2 22— o 41
73 (Z)22.)* 12 +2,42 (2 — Dz +1)?
89 7/2Z 12 +2 = Gt 1
97 (z)22)* 12 +2,42 (22— Bz +1)?
145 | Z)2ZXZ/SZ | 3 | £0,£0, £4,44,
+4, +4, £8 48 21% + % (—232650V/D — 21142198)x!
-,h( 63553176225v/D + 345833578130241) 2!
=55(2873907075070350v/D — 1633501333699078382) 23
+ 522 (—122040271091639213775v/D + 13994939454565494390367) z*
+ =4 (245879796465956207634750/D — 24438525925640084934308094) 2!
+24 (—1111134115782593132787676350v/D + 79341283297565905615496513974) "
+55 (1257312832261114545316699200v/D — 91571248476833194701244416496)°
+ 553 (—3047800972612593555659676375+/D + 197591625237545799679273846779)2°
%(1237312832261114545316699200\F 91571248476833194701244416496) 27
4 (—1111134115782593132787676350v/D + 79341283297565905615496513974) 5
4 (245879796465956207634750v/D — 24438525925640084934308094) >
o (—122040271091639213775/D + 13994939454565494390367 )
45(2873907075070350v/D — 1633501333699078382)"
5(—63553176225v/D + 345833578130241)2
4 (—232650V/D — 21142198)z + 1
185 (z)22)° 12 +2,42 (22— Bz +1)?
209 (z)22.)° 12 +2,42 (22— Dz +1)?
241 (z.)27.)? 12 +2, 42 (a2 = Do+ 1)
257 Z/6Z 6 | +4+4,412 2% + 5k (—3861384345V/D + 2642736525)x°
+ 5t (— 131838694065v/D + 38755163079075)2*
+ 55 (—42697160860228875+v/D + 52795271447651171) 2
+ 545 (—131838694065v/D + 38755163079075)°
+ 5 (—3861384345/D + 2642736525) + 1
265 | Z/2Z X ZJAT | 12 | +1,4£1,+1, 41 (22 + 13/7x + 1)
313 (z)22)* 12 +4,+4 (22 — 239/2401x + 1)?
353 727 12 +6 22 +153502/117649z + 1
377 | ZJ2Zx Z/SZ | 6 | 40,40, +0,+4,
+4,+4, +4,+8 2'% 4+ L(~1760385v/D —7054747)~15

+ 522 (9559963245v/D + 464126557983 )"
45 (—53041186688295/D — 537520756632797) "3
+ 5 (192563525818081905/D + 6876802449703149427) 212
41(—485482000049992075875v/D — 4797177871518763359825)a!!
4 (243544398204099135360v/D + 9678515302483741595848) 10
+7M( 503348326156969555320/D — 4848335400921800746456)
1 (510228736207262050635v/D + 19739177187465235837509)
7#( 503348326156969555320v/D — 4848335400921890746456)2.7
+ £ (243544398204099135360v/D + 9678515302483741595848) 2"
485482000049992075875v/D — 4797177871518763359825) "
;(192563525818981905v/D + 6876802449703149427) "
+ 745 (—53041186688295v/D — 537520756632797)*
+521(9559963245v/D + 464126557983) 22
+4(=1760385v/D — T054747) + 1

7r(—4
+57m
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D | Ix(3)/Pk1(300) | np valuations Pp(z)
409 (z/27) 12 +2, 42 (22— Lo +1)?
433 (z)22) 12 +2, 42 (22 — 239/2401z + 1)
481 (z./27) 6 | 44,44, +4,+4 (2 — 4034/2401z + 1)?

‘(2% +4034/24012 + 1)2
521 Z/27 12 +6 2% + 153502/1176492 + 1
545 | ZJ2Z x ZLJSZ | 6 | +d,+4,+4,+4

+8,40,40,20 210 + £ (—821748v/D — 883036)a
7,2( 662087>11\F+ 64572360210)"
5(—4804666374063v/D + 168656428624495)x'3
=15(—29687922599132553v/D + 148379250278264885) 2"

4 (—24730779023499008949v/D + 1669025701762044317685) !

5 ‘2( 101267373093542176521v/D + 2291647792063133649065)
+:(—67135410173257826013+/D + 656526802434111941885)°
5zt (—37079433752321502423V/D + 3398662046679747603795)2®
:(—67135410173257826013+/D + 656526802434111941885)7
51 (—101267373093542176521v/D + 2291647792063133649065)2°
7#( 24730779023499008949v/D + 1669025701762044317685)”

=15 (—29687922599132553v/D + 148379250278264885) !
5(—4804666374063v/D + 168656428624495)x>
= (—662987514v/D + 64572360210)2>
L (—821748V/D — 883036)x + 1
577 | Z)22 x ZJ14Z | 3 | £0,£0,40,+0
+0,+0,+4, +4
+4,+4,£8, 8
+16,+16 2 4+ 1:(3072931836030v/D — 224019365010010):>
1 (—8074452770822936 75830760385v/D + 25250643264175060209505146459) 72
5 (16314295497466134477098480406623145v/ D — 365561307455028402276987851148978069)2°
22 2B 422 4 20 20042010
22184 2 T4 216 1 2915 21
3422124 21 422104229
‘71‘8+7T7+‘71‘5+7T5+‘71‘4
5(16314295497466134477098480406623145v/D — 365561307455028402276987851148978069)z*
> (—807445277082293675830760385v/ D + 25250643264175060209505146459) 2>
15(3072931836030v/D — 224019365010010) + 1
593 Z/2% 12 +10 2% + 445987849 /702 + 1
601 | Z/2Z x Z/2Z | 12 +4,44 (2% — 239/2401x + 1)?
649 | Z/2Z x 727 | 12 +4,+4 (2 — 239/2401z + 1)?
689 | Z/2Z xZ/SZ | 6 |£0,£0,+4,+4
+4,44, 48,48 21% 4 £ (—618426v/D — 8713894)2"

++45(4604823397503v/D + 147886093075761 )z
++35(—19183045951916226 /D — 407733319394678270) !
+522r(109659951891903026817v/D + 3910704142483041468031)2
+235 (—232255596895017081309810v/D — 4964477528251534939685550) 2!
+=45 (525040474109379546835038690v/D + 15576771537970282875572123638) !
+ 52 (—706099228761774606524643168v/D — 15544824675030134872021527376)°
+ 5 (1267062950436096308320774809v/D + 43008002951423525795071287675)a®
+%( 706099228761774606524643168v/D — 15544824675030134872021527376) 2"
2 (525040474109379546835038690+/D + 15576771537970282875572123638)2
5 (—23225559689501 7081309810/ D — 4964477528251534939685550)2°
+ 7 (109659951891903026817v/D + 3910704142483041468031) "
(- 19183040951916226\F 407733319394678270)2°
5 (4604823397503v/D + 147886093075761) >
4 (—618426v/D — 8713894)x + 1

+
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D Ix(3)/Pr.1(300) np | valuations Pp(x)

713 Z)27 x Z/8Z 12 can’t find good representatives

745 Z/2Z x Z/AZ 12 can’t find good representatives

761 Z/6Z 6 | +4,+12,+20 29 + 515 (—326067672535605v/D — 159275255786742675) 2
4 (8032023240607066367832165v/ D — 742791729857944519743344331)

ﬁ(—121541(J998[J5514-’17ﬁﬁ5799417375\/5 + 4510987549804784189418087515459) 2
547 (8032023240607066367832165v/ D — 742791729857944519743344331) 22
52 (—326067672535605v/D — 159275255786742675)x + 1

769 L)27 x 1.]27 12 +4,+4 (2% — 239/2401z + 1)?

817 | Z/27 x .27 x ZJ10Z | 12 can’t find good representatives

857 Z)27. 6 +28 @ 4 591717446468983676495806/ 7%z + 1

881 7./ 12

913 Z|2Z x L2 12 +8,48 (2% — 4743554/ 782 + 1)?

929 Z/27 12
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For p =13 and 0 = 2[1,1] — 3[2, 1] + 1[4, 1]

D | Ix(3)/Pk1(3) | np valuations Pp(z)

41 7.)27. 12 +2 2% — 337/169z + 1

73 (Z)27.)? 12 42,42 (% +337/169z + 1)?

89 7.)27. 12 +2 22 4 337/169x + 1

97 (Z.)27)* 12 +2, 42 ot 4 674/1692° + 170691/2856122 + 674/1697 + 1 =
(% +337/1692 + 1)?

137 7)27 12 +6 2% + 9397582 /4826809 + 1

145 | Z/2ZxZ/8Z | 3 | £0,40,4+1,+1 216 + (250645501 D + 1456407962)2'°

+1,41, 42,42 35 (—9909170774179425+/D + 367233567480055041) 2,

l31720(35640369711526913550\/5 — 45167895449503053818222) '3
20124201 1 22101 200 1 2284 2T - 228 1 P04 7t
13%(35640369711526913550\/5 — 45167895449503053818222)2°
L (~9909170774179425v/D + 367233567480055041) 2
L (25064550v/D + 1456407962)z + 1

138

161 (Z.)27.)? 12 +2, 42 (22 + 337/169z + 1)2

193 (Z)27.)? 12 44, +4 (22 — 56447/28561x + 1)

241 (Z.)27.)?

265 | Z/27 x ZJAT.

281 7.)2

305 | Z/27 x ZJAZ.

353 7)2Z

385 (Z/2Z.)

401 Z./10Z 6 | 4,44 +4 210 4 5 (7954953835725 D — 13563872824361)°

+4.4+6 le(—4235895970542018\/5 + 4333681004006130303)z®
ﬁ(16411128241572257983407\/5 + 27954073324685459115657)1‘7
284205420 - 703
]3%5(—4235895970542018\/5 + 4333681004006130303) 2>

L2 (7954953835725v/D — 13563872824361)x + 1

2-1312

409 (Z./227,)*
449 7.)27.

457 (Z./27,)*
505 | Z/2Z x Z/SZ
553 (Z./27)?
577 | 2/2Z x 2147
593 7/2Z.

20 Discussion and future directions

In this thesis we have proposed a conjectural construction of elements lying in totally
complex ray class fields of a real quadratic number fields K. Our construction is very

much in the spirit of the theory of complex multiplication available for imaginary

216



quadratic number fields. We have been able to provide some theoretical evidence for
the algebraicity of the local elements u(r,7) € K* (see Theorem 17.1). Despite the
latter result, it seems that for the moment the proof of the algebraicity of u(r,7) is
out of reach. Since our units can be related with the first derivative at s = 0 of a
p-adic zeta function interpolating classical values of partial zeta functions attached
to K we see that the strong p-units that we have constructed are nothing else than
Gross-Stark p-units that were predicted by the p-adic Gross-Stark conjectures (see
[Gro81]). Therefore we are not constructing new units. But instead of proposing only
a formula for the logarithm of its norm, we propose a formula for the unit itself, which
can be seen as a refinement. The main feature of the approach used in [DD06] and
in this thesis resides probably in the fact that we can compute those units p-adically
in polynomial time using modular symbols coming from Eisenstein series. With a
certain amount of work, the method could be implemented using the mathematical

software Magma and allowed ourself to test the truth of conjecture 5.1.

The relative situation K/Q with K real quadratic admits an obvious generalization
namely the case L'/ L, where L and L' are totally real number fields and L’ is quadratic
over L. In this case if the degree of L' over QQ is 2n then the group of units of L has
rank n — 1 and the one of L' has rank 2n — 1. Therefore the units in L’ which are
not coming from L form a lattice of rank n in OF,. In this special situation one can
replace the one variable Eisenstein series attached to Q by the n-variable Eisenstein
series of parallel weight k£ attached to L namely

2miTr(B)
(20.1) Ek(%, 0.2) = N()! 3 m

O (joo) *\{(0,0)#(cv,0)€ 5§ x 5}

where N(az + 8) = [[, (P2 + %), a,b,f are integral ideals of L such that
(f,6) = 1, 0 is the different ideal of the number field L and O (foo)* are the totally
positive units of L congruent to 1 modulo f. The constant term of the g-expansion
of (20.1) is a partial zeta function associated to L(foo)/L where L(foo) corresponds
to the narrow ray class field of conductor f of L. The special values of these partial
zeta functions were studied in section 7 of the present thesis. A unit e € OF, acts
naturally on the Op-lattice O + 7O C L' where 7 € L'\ L and therefore gives rise
to a matrix in SLy(Op) having 7 as a fixed point. Let p be a prime ideal of L which
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is inert in L/. As in the one variable case one can probably construct a family of Z-
valued measures on P*(L,,) where L,, denotes the completion of L at p. This family of
Z-valued measures can probably be indexed by pairs (c1,¢2) € (I'(ioc0))” x (I'(ic0))"
where I would be a suitable congruence subgroup of SLy(O,,). For a pair (ci, cz) one
could define first a measure p{c; — co} on the distinguished compact open ball O L,
by the rule

Cc21 c22 C2on b
e = e2}(01,) = / / / Bup(go0. e+,

b b
fo’ fo’

the almost transitive action of T' on balls of P*(Op, ) and extending p{c; — ¢} to all

where ¢; = (¢15), c2 = (c2;) and Ej, (5, @, 2) is the p-stabilization of Fy (%, a, z). Using
balls of P'(Op, ), by forcing a I'-invariance, one obtains a family of measures indexed
by pairs (c1,c2) € (I'(i00))" x (I'(i00))” which are T'-invariant by construction. As
in the one variable case one can probably use this family of measures to construct
a (n+1)-cocycle k in Z"™(T', L,,*). We should expect this n + l-cocycle to split.
One strategy to show the splitting of k would be to try to lift the family of measures
introduced previously to the larger space X := (Or, x O )\(9Or, x Or,). Most
computations that we have done in this thesis can probably be carried over to this
setting. The only thing which is missing is an analogue of the Gross-Koblitz formula.

Therefore proving an analogue of Theorem 17.1 might be out of reach.

For the next discussion we have in mind the recent construction obtained by
Dasgupta in [Das08]. Let K be a totally real number field and L a CM abelian
extension of K. Let S be a set of places of K containing all the Archimedean places
and all the finite primes which ramify in L /K. Consider the group ring Q[G'1/k|. Let
0 € Gal(L/K) then we define

(s(L/K,0,5) = (s(0,8) = >

(a,5)=1 N(Cl)s

Ta=0

Re(s) > 1.

For every negative integer £ < 0 define the Stickelberger element

Oicsth) = Y C(L/K,0,k)o™" € Q[Grx]
O'EGL/K
Let A(L/K) be the annihilator of the Z[Gk|-module p, of roots of unity of L. In
[CoaT7], Coates shows how the main theorem of [DR80] implies the following result

218



Theorem 20.1 Assume the main theorem proved in [DR80]. Let k < 0 be a
negative integer then if a € A(L/K) then a©Opk s(k) € Z|G k|-

We are now ready to state Brumer’s conjecture, which is an attempt to generalize the

classical theorem of Stickelberger.

Conjecture 20.1 Let Cp g be the S-ideal class group of L. Then one has an

inclusion of Z[Grk|-ideals
A(L/K)O Lk s(0) C Annga, ) (CLs)-

Moreover when oo = w0,k 5(0), where w = #py, we have for all ideal a of L

for some a € (L)~.

Note that the generator a is uniquely determined up to a root of unity in L. When S
is large enough the first part of the conjecture was proved by Wiles as a consequence

of the main conjecture for totally real number fields, see [Wil90].
Let us assume that the data (L/K,S) satisfies the following assumptions
(1) S = {p} UT where T consists exactly of the infinite places of K and finite
primes which ramify in L/K
(2) The prime p is inert in K and and pOg = p splits completely in L.
(3) L is a CM field corresponding to the narrow ray class field of conductor f of K

where § is some ideal of K coprime to p.

Let L, = Kj,» be the ray class field of conductor fp™ over K. For every n > 0 we have
a group ring element Oy, /k s(0) € Q[GL,/k]|. For every integer 0 < m < n we let
resnm be the natural restriction maps resn, : Q[Gr, k] = Q[GyL,,/k]. The elements

Or,/k,s(0) satisfy the distribution relations

resmm (0L, /k,5(0)) = O, /k,s(0).
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Let w, = #pur,. Note that for n large enough one has w,.; = pw,. Let p, be a
prime ideal of L, above p chosen in such a way that p,.1|p,. Note that this tower
of primes depends only on the initial choice py in Ly = Kj since after the first step
all the extensions are totally ramified at pg. Using the Brumer-Stark conjecture for
every n there exists a unique strong p-unit u,, € (L)~ (up to a root of unity) defined

by the relation

wn@Ln/K,S(O) o (U )
= n).

Pn

For every 0 < m < n, those strong p-units are related by the norm in the following

way
Ny 2 (t0n) = ()

When n > 1 and o € Gal(L,/K) the p-adic zeta function ¢, s(L,/K,o,s) has no
zero at s = 0 since all the primes q of L,, above a prime of S are ramified in L, /K.
Therefore we fall outside our initial setting where the order of vanishing of the p-adic
L-function at s = 0 was equal to 1. However when n = 0, the order of vanishing
of ¢,.5(Lo/K,0,s) at s = 0 is equal to 1, and therefore one has a conjectural p-adic
formula for the element u, viewed as an element of (Lg)p,. From this point of view,
it seems to be a very natural question to look for a similar formula for the element
u, viewed as an element of (L,),,. Even though we fall outside our original setting,
where the order of vanishing of the partial zeta function at s = 0 was assumed to be
1, a formula similar to what Dasgupta is proposing in [Das08] might exist. It would
be quite interesting to provide such a conjectural p-adic formula for the strong p-units

Up,.

A Partial modular symbols are finitely generated

over the group ring

A modular symbol taking value in an abelian group A is a function
m: PY(Q) x P1(Q) — A
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denoted by the suggestive notation m(z,y) := m{x — y} such that

(1) m{x = y} = —m{y — x} for all z,y € P1(Q),

(2) m{z =y} + m{y — z} = m{x — 2z}, for all z,y, 2 € PQ).

We have a natural action of GLy(Q) on modular symbols given by

(ym{z =y} ={y 'z ="y}

for all v € GLy(Q). One can define a universal Z-module X s.t. for any modular
symbol m : P1(Q) x P}(Q) — A we have the following commutative diagram where
m is a group homomorphism. When A = C one can show that X ~ Divy(P'(Q)) as
a Z-module. For any v € GLy(Q) and a modular symbol m we define

(v*m){c1 = e} = m{*y’lcl — ’y’lcg}.

In practice one is interested to I'-invariant modular symbols for some subgroup I' <
GL5(Q). Very often I' is discrete but not always.

Definition A.1 A partial modular m with respect to a subgroup I' C GL3(Q)

which takes value in an abelian group A is a map
m:SxS—A

for a certain subset S C PY(Q) which is T-invariant and for all x,y,z € S we require

(1) m{z — y} = —m{y — z}

(2) m{z =y} + m{y = z} = m{z — z}

Let us prove now prove a very useful theorem.

Theorem A.1 Let z € PY(Q) and T be a finitely generated subgroup of G Lo(Q)
then the T'-module Divy(T'x) is finitely generated. The number of generators of Divg(I'x)

can be taken to be less than or equal to the number of generators of I.
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Proof Let G = (¢1,...,9n). I claim that {[z] — [g;z]}_, is a generating set as a
I'-module of Divy(I'z). Let F,, = (z1,...,x,) be the free group of n elements. We
have a natural onto group homomorphism f : F,, — G where f(x;) = ¢g;. For an
element w € F,, that is reduced we have a well defined notion of length. We define
Sk == {w € F, : length(w) = k}. Since Uy Sy = F,, we have U, f(Sx) = G. We do a

proof by induction.

Let M = Z[T'|({[z] — [gix]}1~;). We need to show that M = Divy(I'z). Assume
that for all g € f(Sk) and k < m — 1 we have [z] — [gz] € M then we claim that

If g € f(Sy) then [z] — [¢'z] € M.

Let us prove it. Since g € f(S,,) there exists a word w € F,, of length m such
that f(w) = ¢g. So there exists a x; s.t z;uw’ = w where w’ is a word of length
m — 1. By induction we have [z] — [f(w')x] € M. Finally note that [z] — [gz] =
gi([x] = [f (w")x]) + ([x] — [g;x]) € M. Since the induction hypothesis is true for k = 1
it is true for any k£ by the inductive step. [

Corollary A.1 Assume that P(Q)/T is finite and and T finitely generated then
Divg(PY(Q)) is a finitely generated T'-module.

Proof Let G = (g1, ..., ¢g,) and P}(Q) = U™ ,T'z;. Then we claim that

M = Z[)({[z;] = [gszs]}iy U {l21] = [25]}j=2.)
is equal to Divg(P*(Q)). Let y; € I'r; and y; € T'z;. By the previous theorem
we have [2;] — [y;] € M and [z;] — [y;] € M. Also [x;] — [x;] € M. Therefore
il = lyil = (5] = lwi]) + (lwa] = [w]) + ([w] = [z5]) e M. O
So more generally for any finitely generated subgroup I' < GL,(Q) and a subset of

cusps S = UY_ T'z; (having finitely many [-orbits) we find that Divy(S) is a finitely

generated I'-module.

Corollary A.2 Since I'y(N) is finitely generated we have that Divg(Lo(N)(ic0))
is a finitely generated Z[I'o(N)]|-module.
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So this gives us a theoretical way of computing a partial modular symbol knowing
only the values on a set of generators for Divy(S) over I'. Let us work out an explicit
example. Consider the modular group I'((N) =< ¢1,...,9, >. For any element
g € G there exists a reduced word z,25 ..., = g where z; € {g1,97 ..., 9, 9.}
and z; # z; for all 1 <i < n — 1. For any integer k > 1 we let X}, = Hle ;. A

direct computation reveals that
[ioc] — [g(ioe)] = Y Xy ([i00] = [n-i41(ic0)])

Note that if 2; = g; ' then ([iocc] — [g; ! (ic0)]) = —g; ' ([icc] — [g;(ic0)]).
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