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Abstract

Let K be a real quadratic number field. Let p be a prime which is inert in K.

We denote the completion of K at the place p by Kp. Let f > 1 be a positive

integer coprime to p. In this thesis we give a p-adic construction of special elements

u(r, τ) ∈ K×
p for special pairs (r, τ) ∈ (Z/fZ)× × Hp where Hp = P1(Cp)\P1(Qp)

is the so called p-adic upper half plane. These pairs (r, τ) can be thought of as an

analogue of classical Heegner points on modular curves. The special elements u(r, τ)

are conjectured to be global p-units in the narrow ray class field of K of conductor f .

The construction of these elements that we propose is a generalization of a previous

construction obtained in [DD06]. The method consists in doing p-adic integration of

certain Z-valued measures on X = (Zp ×Zp)\(pZp × pZp). The construction of those

measures relies on the existence of a family of Eisenstein series (twisted by additive

characters) of varying weight. Their moments are used to define those measures. We

also construct p-adic zeta functions for which we prove an analogue of the so called

Kronecker’s limit formula. More precisely we relate the first derivative at s = 0 of a

certain p-adic zeta function with − logpNKp/Qpu(r, τ). Finally we also provide some

evidence both theoretical and numerical for the algebraicity of u(r, τ). Namely we

relate a certain norm of our p-adic invariant with Gauss sums of the cyclotomic field

Q(ζf , ζp). The norm here is taken via a conjectural Shimura reciprocity law. We also

have included some numerical examples at the end of section 18.
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Résumé

SoitK un corps de nombre quadratique réel. Soit p un nombre premier inerte dansK.

Nous noterons par Kp la complétion de K en p. Soit f > 1 un entier positif copremier

à p. Dans cette thèse nous donnons une construction p-adique de certains éléments

u(r, τ) ∈ K×
p pour certaines paires (r, τ) ∈ (Z/fZ)× × Hp où Hp = P1(Cp)\P1(Qp).

Ces paires (r, τ) sont en quelque sorte des analogues des points de Heegner classiques

sur les courbes modulaires. Nous avons conjecturé que les éléments u(r, τ) sont des p-

unités dans le corps de classe de K au sens restreint de conducteur f . La construction

de ces éléments que nous proposons est une généralisation d’une construction obtenue

dans [DD06]. La méthode consiste essentiellement a faire de l’integration p-adique de

certaines mesures sur X = (Zp×Zp)\(pZp×pZp) à valeurs dans Z. La construction de

ces mesures repose essentiellement sur l’existence d’une famille de séries d’Eisenstein

(tordues par des caractères additifs) avec le poids k ≥ 2 qui varie. Les moments de ces

séries d’Eisenstien sont utilisés pour définir ces mesures. Nous construisons aussi une

fonction zeta p-adique pour laquelle nous prouvons un analogue de la formule limite

de Kronecker. Plus précisément, nous relions la première dérivée en s = 0 d’une

certaine fonction zeta p-adique avec − logpNKp/Qpu(r, τ). Finalement nous donnons

une bonne raison théorique de croire en l’algébricité de u(r, τ). À savoir, nous relions

une certaine norme de notre invariant p-adique avec des sommes de Gauss contenues

dans le corps cyclotomique Q(ζf , ζp). La norme ici est définie à l’aide d’une loi

de réciprocité de Shimura conjecturale. Nous avons aussi inclu quelques résultats

numériques à la fin de la section 18.
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Introduction

Let L be a number field. Define

(L×)− = {x ∈ L× : |x|ν = 1 for all infinite places ν of L}.

One can think of (L×)− as the intersection of the minus spaces of all complex con-

jugations on L×. A complex conjugation of L acts as −1 on (L×)−. One can show

that if L contains no CM field then (L×)− = {±1}. Moreover when L contains a CM

field, if we denote by LCM the largest CM field contained in L, then (L×)− ⊆ L×
CM .

From now on we assume that L is a CM field.

Let p be an odd rational prime number. The group of p-units of L is defined as

OL[1p ]
×. Dirichlet’s units theorem tells us that

OL[1p ]
× ≃

(
L×)

tor
× Zn−1+g(0.1)

where g is the number of prime ideals in L above p and 2n = [L : Q]. We define the
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group of strong p-units of L to be

Up(L) := (L×)− ∩ OL[1p ]
×

= {x ∈ L× : for all places ν of L (finite and infinite) such that ν ∤ p, |x|ν = 1}.

Clearly Up(L) is a subgroup of the group of p-units of L. If we let L+ be the maximal

real subfield of L and g+ the number of prime ideals of L+ above p then an easy

calculation shows that rankZ(Up(L)) = g − g+(see Proposition 1.1). For example

when the prime p splits completely in L we have rankZ(Up(L)) = [L : Q]/2.

Let K = Q(
√
D) be a real quadratic number field where disc(K) = D and p be

an odd prime number which is inert in K. We denote the completion of K at p by

Kp. In [DD06] a p-adic construction of elements in K×
p is proposed. Those elements

are conjectured to be strong p-units in certain abelian extensions of K, namely the so

called narrow ring class fields of K. We recall the main ideas of their construction.

Let N > 1 be an integer coprime to D such that σ0(N) =
∑

d|N 1 > 2. Let α(z)

be a non constant modular unit on the modular curve X0(N) having no zero or pole

at the cusp i∞ (such modular units always exist). Let Hp = P1(Cp)\P1(Qp) be the

p-adic upper half plane. For certain points τ ∈ Hp ∩K they define a p-adic invariant

u(α, τ) ∈ K×
p . When this p-adic invariant is non trivial, i.e. when u(α, τ) ̸= ±1, the

two authors have conjectured that u(α, τ) lies in a certain narrow ring class field Lτ

of K which depends on τ and α. More precisely they conjecture that u(α, τ) is a

strong p-unit in Lτ . If we assume that u(α, τ) is a non trivial strong p-unit contained

in Lτ then Lτ contains a CM field and therefore has at least one complex embedding.

Note that any ring class field Lring of K is Galois over Q. Therefore by normality

Lτ is totally complex. Because of the dihedral nature of Gal(Lring/Q) we see that

having at least one complex embedding is equivalent for Lring to be a CM field. We

thus conclude that if u(α, τ) is a non trivial p-unit inside Lτ then Lτ has to be a CM

field.

The key idea in their construction is to use the periods of the modular unit α(z)

in order to construct a family of Z-valued measures on P1(Qp). In their construction

8



they use modular units of the form

α(z) =
∏
d|N

∆(dz)nd

where ∆(z) = q
∏

n≥1(1−qn)24 (where q = e2πiz) and the nd ∈ Z’s are integers subject
to the conditions

∑
d|N nd = 0 and

∑
d|N ndd = 0. The ”periods” considered come

from the modular unit α(z)
α(pz)

and they are given by the formula

1

2πi

∫ c2

c1

dlog

(
α(z)

α(pz)

)
∈ Z(0.2)

where c1, c2 ∈ Γ0(N)(i∞). These periods can be expressed in terms of Dedekind

sums. A key feature of their method is the possibility of testing their conjecture since

the p-adic integral defining the invariant u(α, τ) can be computed in polynomial time.

For a description of this algorithm see [Das07].

In this thesis we propose a generalization of their construction. Let N0 and f be

coprime positive integers such that (pD, fN0) = 1. We call f the conductor and N0

the level. We replace the function ∆(z)
∆(d0z)

for d0|N0 by a certain power of the Siegel

function g( r
f
,0)(fd0τ), see (3.1) for the definition.

The first novelty is that instead of working with one modular unit α(z) we work

with a family of modular units {gt(z)}t∈T indexed by the finite set T = (Z/fZ)×/⟨p⟩
where ⟨p⟩ corresponds to the group generated by the image of p inside (Z/fZ)×.
By construction those modular units are Γ0(fN0)-invariant in the sense that for all

γ ∈ Γ0(fN0) one has

gγ⋆t(γz) = gt(z)

where

(
a b

c d

)
⋆ t = dt(mod f). So the matrix γ acts not only on the variable z but

also on the indexing set T . Moreover every modular unit in this family has no zero

or pole on the set Γ0(fN0)(i∞). The periods considered are of the form

1

2πi

∫ c2

c1

dlog

(
gt(z)

gt(pz)

)
∈ Z(0.3)
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where c1, c2 ∈ Γ0(fN0)(i∞) and t ∈ T which is the analogue (0.2).

Using equation (0.3) we define, for every triple

(c1, c2, t) ∈ Γ0(fN0)(i∞)× Γ0(fN0)(i∞)× T,

Z-valued measures on P1(Qp) denoted by

µgt{c1 → c2}.

Using those measures, we propose a construction of elements in K×
p . For certain pairs

(r, τ) ∈ (Z/fZ)× × Hp we associate an invariant u(r, τ) ∈ K×
p which depends also

on the family of modular units {gt(z)}t∈T . Those elements are constructed as certain

p-adic integrals of our measures. The element u(r, τ) is conjectured to be a strong

p-unit in K(f∞), the narrow ray class field of K of conductor f . In particular, if

we want to construct non trivial strong p-units inside K(f∞), it will be essential to

assume beforehand that the latter field is totally complex. This shows the importance

of working in the narrow sense and not just in the wide sense. We propose a conjec-

tural Shimura reciprocity law (see conjecture 5.1) which says how the Galois group

Gal(K(f∞)/K) should permute the elements u(r, τ). We also prove an analogue of

the Kronecker limit formula relating our invariant u(r, τ) to the first derivative at

s = 0 of a certain p-adic zeta function. More precisely we prove that

(1) 3ζ ′p(0) = − logpNKp/Qpu(r, τ)

(2) 3ζ(0) = vp(u(r, τ))

where ζp(s) is a p-adic zeta function interpolating special values at negative integers

of a classical zeta function ζ(s), attached to K, deprived from its Euler factor at p,

namely (1− p−2s)ζ(s).

Let us explain more precisely the main ideas involved in the construction of the

invariant u(r, τ). In a very similar way to [DD06], our family of Z-valued measures

µgt{c1 → c2} on P1(Qp) can be used to construct a 2-cocycle κ ∈ Z2(Γ1, K
×
p ) (see

Definition 5.10 ) where

Γ1 :=

{(
a b

c d

)
∈ SL2(Z[1p ]) : a ≡ 1 (mod f), c ≡ 0 (mod fN0)

}

10



and K×
p has trivial Γ1-action. It turns out that the 2-cocycle κ is a 2-coboundary i.e.

there exists a 1-cochain ρ ∈ C1(Γ1, K
×
p ) such that d(ρ) = κ. Note that ρ is uniquely

determined modulo Z1(Γ1, K
×
p ) = Hom(Γ1, K

×
p ) which turns out to be a finite group.

In order to show the splitting of the 2-cocycle κ one is lead to lift the system of

measures µgt{c1 → c2} to a system of measures on X := (Zp × Zp)\(pZp × pZp).
There is a natural Z×

p -bundle map π : X → P1(Qp) given by π(x, y) = x
y
. In order

to lift our measures from P1(Qp) to X we use the periods of a family of Eisenstein

series twisted by additive characters with varying weight k ≥ 2. When the weight

k equals 2 then the corresponding Eisenstein series is the logarithmic derivative of

our modular unit. We denote the unique lift of µgt{c1 → c2} to X (under certain

conditions see theorem 6.1) by µ̃gt{c1 → c2}. Note that by construction we have

π∗µ̃gt{c1 → c2} = µgt{c1 → c2}. Using this lift one can give a ”simple expression” for

u(r, τ) namely

u(r, τ) := ρ(γτ ) = pmv,r{i∞→γτ i∞} ×
∫
X
(x− τy)dµ̃gr{i∞→ γτ i∞}(x, y)(0.4)

where mv,r{i∞ → γτ i∞} is an integer given in terms of certain Dedekind sums and

γτ is an oriented generator of the stabilizer of τ under the action of Γ1. Therefore

the invariant u(r, τ) is obtained from the evaluation of the 1-cochain ρ at γτ . The

presence of the stabilizer γτ is accounted for the presence of endomorphisms of infinite

order of the lattice Z+τZ which is equivalent to the presence of units of infinite order

in OK . When the element τ ∈ Hp ∩K and τ is reduced, there is a natural bijection

ϕ : X→ O×
Kp

given by (x, y) 7→ x− τy. If we let νr = ϕ∗µ̃gr{i∞→ γτ i∞} then (0.4)

can be rewritten in a more functorial way as

u(r, τ) = pmv,r{i∞→γτ i∞}
∫
x∈O×

Kp

xdνr(x) ∈ K×
p .

This new point of view, which applies to any totally real number field, is the subject

of a recent paper by Dasgupta, see [Das08].

We compute the various moments of µ̃gt{c1 → c2} i.e. integrals of the form

×
∫
X
xnymdµ̃gr{i∞→ γτ (i∞)}(x, y),

11



where m and n are positive integers, see Proposition 11.5 for explicit formulas. Fol-

lowing [Das07], we also give explicit formulas for the measures µ̃gt{c1 → c2} evaluated
on balls of X, i.e. compact open sets of the form

(u+ pnZp)× (v + pnZp).

See Proposition 14.1 for the formulas. Both of these formulas involve periods of

Eisenstein series which can be expressed in terms of Dedekind sums. Having such

formulas turns out to be essential for numerical verifications. We have included at the

end of section 18 a few numerical examples which support the conjectural algebraicity

of u(r, τ).

Finally we give some theoretical evidence for the algebraicity of u(r, τ) by com-

puting ”their norm” and relating them to normalized Gauss sums, see theorem 17.1.

Let f be an integer such that for all q|f , q is inert in K. Assume furthermore that

−1 /∈ ⟨p⟩ ≤ (Z/fZ)×, then we prove that

NK(f∞)Fr℘/Q(ζf )
Frp (u(r, τ)) = S (mod µF )(0.5)

where ℘ = pOK , S is a product of normalized Gauss sums in F = Q(ζf )
⟨Frp⟩ ·Q(ζp) ⊆

Qp. The norm in (0.5) is taken via a Shimura reciprocity law which is still meaningful

even if we don’t assume the algebraicity of the element u(r, τ). Note that the left

hand side of (0.5) lies necessarily in Kp ∩ F = Q(ζf )
⟨Frp⟩ ⊆ Qp. Because of the

assumption −1 /∈ ⟨p⟩ ≤ (Z/fZ)× we see that Q(ζf )
Frp is a CM field.

Notation

Let K be a number field and O an order of K. For a finite subset of places S of K

we define OS to be the ring of S-integers of O

OS :=
{a
b
∈ K : a, b ∈ O, and

∣∣∣a
b

∣∣∣
ν
≤ 1 for ν finite and ν /∈ S

}
.

LetM∞ = {σ1, . . . , σr} be the set of real embeddings ofK. Given an integralOS-ideal
f and a subset M ⊆M∞ we define the following sets

12



(1) IOS
(f) := {b ⊆ K : b is an integral OS-ideal coprime to f},

(2) QOS ,1(f∞M) := {α
β
∈ K : α, β ∈ OS, (αβ, f) = 1, α ≡ β(mod f), and

σi(
α
β
) > 0 ∀σi ∈M},

where we think of ∞M =
∏

σi∈M∞i where ∞i is the infinite place corresponding to

σi. Two ideals a, b ∈ IOS
(f) are said to be equivalent modulo QOS ,1(f∞M) if there

exists an element λ ∈ QOS ,1(f∞M) such that λa = b. This gives us a relation of

equivalence on IOS
(f). The quotient IOS

(f)/QOS ,1(f∞M) is a generalized OS-ideal
class group corresponding by class field theory to a certain abelian extension of K.

Let K be a quadratic number field. For τ ∈ K\Q then we define

Λτ := Z+ τZ,

and

Oτ := EndK(Λτ ) = {λ ∈ K : λΛτ ⊆ Λτ}.

Let N be a positive integer then we define

(1) Γ0(N) := {

(
a b

c d

)
∈ SL2(Z) : c ≡ 0(mod N)},

(2) Γ1(N) := {

(
a b

c d

)
∈ SL2(Z) : c ≡ 0(mod N), d ≡ 1(mod N)}.

1 The Z-rank of strong p-units

Let L be a number field. Remember that

(L×)− = {x ∈ L× : |x|ν = 1 for all infinite places ν of L}.

One can think of (L×)− as the intersection of the minus spaces of all complex conju-

gations of (L×)−. A complex conjugation acts like −1 on L×. If L contains no CM

field then a simple computation reveals that (L×)− = {±1}. In the case where L

contains a CM field let us denote by LCM the largest CM field contained in L. In
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this case one has that (L×)− ⊆ L×
CM . For this reason we now assume that L is a CM

field of degree 2n over Q. Let K be a totally real subfield of L and let p be a prime

ideal of K. We define a relative group of strong p-units

Up(L/K) :=

{x ∈ L× : for all places ν of L (finite and infinite) such that ν ∤ p, |x|ν = 1}.

We would like to compute the Z-rank of Up(L/K). Let S be the set of places of L

containing exactly all the infinite places and all the finite ones above p. Let YS be the

free abelian group generated by the elements of S. Let also XS be the subgroup of

YS of elements having degree 0. Let π ∈ K be such that πOK = pm for some integer

m. We have a natural map

λ : R⊗Z OL[
1

π
]× → R⊗Z YS

1⊗ ϵ 7→
∑
ν∈S

log |ϵ|ν · [ν]

where ||ν denotes the normalized local absolute value for which we have the formula

|α|ν =

{
NFν/R(α) if ν is complex

N(ν)−vν(α) if ν is finite

for any α ∈ L×. Using Dirichlet’s unit theorem and the product formula we see

that λ induces an R-linear isomorphism between R ⊗Z OL[ 1π ]
× and R ⊗Z XS. Let

τ∞ be the complex conjugation on L then τ∞ acts naturally on the left and right

hand side of λ. Note that τ∞ acts always trivially on infinite places of S. One can

verify that λ is τ∞-equivariant. Let us denote by S+ = {ν ∈ S : τ∞ν = ν} and

by S− = {ν ∈ S : τ∞ν ̸= ν}. It is easy to see that the −1 eigenspace of R ⊗Z XS

has dimension #S−

2
where a R-linear basis is provided for examples by the elements

[ν] − [τ∞ν] for ν ∈ S−. Therefore it follows that the +1 eigenspace of R ⊗Z XS has

dimension equal to #S+ + #S−

2
− 1. Since the map λ is τ∞-equivariant the same is

true for R⊗Z OL[ 1π ]
×. Note also that #S+ +#S− = n+ g where g is the number of

prime ideals of L above p.
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Proposition 1.1 Let L+ be the maximal real subfield of L and g+ be the number

of prime ideals of OL+ above p then one has

rankZ(Up(L/K)) = s = g − g+.(1.1)

Proof A small computation shows that #S+ = n + 2g+ − g and #S− = 2(g − g+).
From this we get

dimR

(
R⊗Z

(
OL[

1

π
]×
)−
)

= dimR
(
R⊗Z X

−
S

)
= dimR

(
(R⊗Z XS)

−) = #S−

2

= g − g+.

The second equality follows from the fact that the eigenvalues of τ∞, which are ±1,
lie in Z. Finally note that

(
OL[ 1π ]

×)− = Up(L/K) and in general for any finitely

generated abelian group A we have dimR(R⊗Z A) = rankZ(A). □

Question Let K be a real quadratic field and L = K(f∞) be the narrow ray class

field of conductor f of K. Let p be a prime number inert in K which is congruent to

1 modulo f and assume that K(f∞) is a CM field. Let p = pOK . If conjecture 5.1

is true, can we prove that the Z-rank of the subgroup generated by our strong p-units

is equal to g − g+ = [K(f∞)/K]/2?

2 Distributions on P1(Qp) and holomorphic func-

tions on the upper half plane

Let p be a prime number and (A,+) be an abelian group. Let P1(Qp) be the projective

line over the field of p-adic numbers endowed with its natural topology induced from

the one on Qp. The field Qp has a natural normalized non Archimedean metric | |p
where |p|p = 1

p
. The group of matrices

GL+
2 (Z[

1

p
]) = {γ ∈ GL2(Z[

1

p
]) : det(γ) > 0}
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acts naturally on P1(Qp) by the rule x 7→ γx = ax+b
cx+d

where γ =

(
a b

c d

)
∈

GL+
2 (Z[1p ]) and x ∈ P1(Qp). We define a ball in P1(Qp) to be a translate of Zp

under some element of GL+
2 (Z[1p ]). Therefore by definition all balls of P1(Qp) can be

written as

γZp := {γx ∈ P1(Qp) : x ∈ Zp}.

for some γ ∈ GL+
2 (Z[1p ]). Given a ball B ⊆ P1(Qp) one can show that there exists an

element a ∈ Z[1
p
] and n ∈ Z such that

B = {x ∈ Qp : |x− a|p ≤
1

pn
} or B = {x ∈ Qp : |x− a|p ≥

1

pn
} ∪ {∞}.

This explains somehow the terminology for the word ”ball”. We denote the set of all

balls of P1(Qp) by B.

An A-valued distribution on P1(Qp) is a map

µ : {Compact open sets of P1(Qp)} → A

which is finitely additive i.e. for all finite disjoint union
⋃n
i=1 Ui of compact open sets

of P1(Qp) we have

µ

(
n⋃
i=1

Ui

)
=

n∑
i=1

µ(Ui),

where the summation on the right hand side takes place in the abelian group A. It

thus follows that a distribution on P1(Qp) is completely determined by its values on

a topological basis of P1(Qp). A topological basis of P1(Qp) is given for example by

its set of balls.

We say that a distribution on P1(Qp) has total value 0 if µ(P1(Qp) = 0. We would

like to give a simple criterion to construct A-valued distributions on P1(Qp) of total

value 0. Before stating this criterion we need to introduce some notation.

Every ball B = γZp can be expressed uniquely as a disjoint union of p balls

B =

p−1⋃
i=0

Bi,
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where Bi := γ (αiZp) and αi =

(
p i

0 1

)
. We can now state the criterion:

Lemma 2.1 If µ is an A-valued function on B satisfying

µ(P1(Qp)−B) = −µ(B), µ(B) =

p−1∑
i=1

µ(Bi)

for all B ∈ B then µ extends uniquely to an A-valued distribution on P1(Qp) with

total value 0.

The proof of this lemma can be made transparent by using the dictionary between

measures on P1(Qp) and harmonic cocycles on the Bruhat-Tits tree of PGL2(Qp).

For a small introduction to the subject see chapter 5 of [Dar04]. From now on we will

use the previous lemma freely.

For the sequel we would like to give a general procedure to construct A-valued

distributions on P1(Qp) from certain analytic functions on the complex upper half

plane. In practice we are mainly interested in the case where A = Z.

Let H = {z = x + iy ∈ C : y > 0} be the upper half-plane endowed with its

usual metric ds2 = dx2+dy2

y2
. For any analytic function f : H → C we define the

multiplicative Up,m operator as

(Up,mf)(τ) :=

p−1∏
j=0

f(
τ + j

p
).

We say that f satisfies the multiplicative distribution relation at p or simply that f

is a Up,m-eigenvector (even if Up,m is not a linear operator) if there exists λ ∈ C× such

that

(Up,mf)(τ) = λf(τ),∀τ ∈ H.(2.1)

We also call λ the eigenvalue of f with respect to the operator Up,m. Similarly for

any meromorphic function g : H → C we define an C-linear operator Up,a (where the
”a” stands for additive) as

(Up,ag)(τ) :=
1

p

p−1∑
j=0

g(
τ + j

p
).
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If we take the logarithmic derivative of (2.1) we get

Up,a(dlog f)(τ) =
1

p

p−1∑
j=0

(dlog f)(
τ + j

p
) = dlog f(τ).

Note that the constant λ has dropped out. In general if g(τ) is a meromorphic

function on H we say that g satisfies the distribution relation at p if

1

p

p−1∑
i=0

g(
τ + j

p
)
(∗)
= g(τ)(2.2)

for all τ ∈ H where (∗) is defined, in other words g(τ) is an Up,a-eigenvector with

eigenvalue 1. We call (2.2) the additive distribution relation at p. When in addition

the function f(τ) is invariant under translation by Z, i.e. f(τ + 1) = f(τ),∀τ ∈ H,
we find that for (N, p) = 1

(Up,mfN)(τ) = λfN(τ),

where fN(τ) := f(Nτ). In this way get even more functions on the upper half plane

satisfying the multiplicative distribution relation at p. Note that the multiplicative

distribution relation is stable under standard multiplication of functions. Using the

previous observation we get ∏
d|N

f(dτ)nd(2.3)

is also a Up,m-eigenvector for arbitrary integers nd’s. Equation (2.3) is the basic tool

for constructing Up,m-eigenvectors from a given one. We recall also the reader that

since f(τ + 1) = f(τ) for all τ ∈ H then f admits a q-expansion at i∞ of the form∑
n∈Z

anq
n
τ , τ ∈ H

where qτ = e2πiτ and an ∈ C.

Assume that f(τ) satisfies additional symmetries and some boundary conditions

namely that there exists an integer N > 1 coprime to p such that

(1) f(τ) is Γ0(pN)-invariant and that it descends to a meromorphic function on

X0(pN).
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(2) f(τ) has no zeros or poles on the set of cusps Γ0(N)(i∞), i.e. for all γ ∈ Γ0(N)

we have a
(γ)
0 ̸= 0 and a

(γ)
n = 0 if n < 0 where a

(γ)
n is defined by (2.4).

Using (1), one can define the q-expansion of f(τ) at any point c ∈ P1(Q) by the

following rule: First choose a matrix γ ∈ SL2(Z) such that γc = i∞. It is an exercise

to verify that there always exists a matrix

(
1 h

0 1

)
∈ SL2(Z) with h > 0 such that

γ

(
1 h

0 1

)
γ−1 ∈ Γ0(pN). Without lost of generality we can assume that h > 0 is

minimal, we call it the width at the point c. It is easy to see that the width is constant

on the orbit Γ0(pN)c. It follows that f(γτ) is holomorphic on H and invariant under

the translation z 7→ z + h. Therefore the function f(γτ) admits a q-expansion at i∞
of the form

f(γτ) =
∑
n∈Z

a(γ)n qnτ/h, τ ∈ H.(2.4)

Note that a
(γ)
n = 0 if n is small enough since f is meromorphic. The latter q-expansion

is defined to be the q-expansion of f(τ) at the point c. If one chooses a γ′ such that

γ′i∞ = γi∞ = c then one can verify that for n > 0 a
(γ′)
n = ζa

(γ)
n for some h-th root of

unity ζ depending on n. So up to a root of unity, an depends only on c. However, a0 is

uniquely determined by c. So formally speaking the q-expansion at c depends not just

on c but also on the choice of the matrix γ ∈ SL2(Z) such that γi∞ = c. However,

this slight ambiguity will not create any problems for the applications we have in

mind. Often we are only interested by the qualitative behavior of the q-expansion at

c ∈ P1(Q) which is the same for all points in c′ ∈ Γ0(pN)c, as one can verify.

We can summarize so far the assumptions made on the holomorphic function

f : H → C:

(1) f descends to a meromorphic function on X0(pN),

(2) f is a Up,m eigenvector,

(3) f has no zeros and poles on the set of cusps Γ0(N)(i∞).
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where (p,N) = 1.

Having such a f one can associate C/Ω-valued distributions on P1(Qp) of total

value 0 where Ω is a finitely generated Z-module of C defined by

Ω :=

〈{
1

2πi

∫
C

dlog f(τ) : C is a small loop around a zero of f

}〉
,

where dlog f(τ) = f ′(τ)
f(τ)

dτ . By small loop we mean a circle C such that C does not

cross any zero of f and inside that circle f has only one zero. It is finitely generated

because f descends to a meromorphic function on X0(pN). In particular if f has no

zeros in H then Ω = {0}.

In order to construct such distributions we need to introduce some notation first.

Let us denote

Γ0 :=

{
γ ∈ ⟨Γ0(N),

(
p 0

0 1

)
⟩ : det(γ) = 1

}
.

Note that the matrix

(
p 0

0 1

)
/∈ Γ0. A calculation shows that the natural image

of Γ0 in PGL+
2 (Z[1p ]) has index two. It thus follows that the group Γ0 splits the set

of balls of P1(Qp) into two orbits, the one equivalent to Zp and the one equivalent

to P1(Qp)\Zp. Let (c1, c2) ∈ Γ0(N)(i∞) × Γ0(N)(i∞). One is lead naturally to the

following definition

µf{c1 → c2}(γZp) :=
∫ γ−1c2

γ−1c1

dlog f(τ),(2.5)

µf{c1 → c2}(γ
(
P1(Qp)\Zp

)
) := −

∫ γ−1c2

γ−1c1

dlog f(τ)(2.6)

where γ ∈ Γ0. The integral between the two cusps appearing in the bounds of the

integral is taken to be along a curve C (containing its end points) which is assumed

to be smooth, of finite length and does not cross any zeros of f(τ). Moreover, we

also require that C agrees with the unique geodesic of H joining γ−1c1 to γ−1c2 on

small enough neighborhoods of γ−1c1 and γ−1c2. In particular if we let U1 and U2

be small enough open discs centered around γ−1c1 and γ−1c2 respectively we find

that U1 ∩ H ∩ C and U2 ∩ H ∩ C are small arcs containing no zeros of f . Such
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neighborhoods always exist since f descends to a meromorphic function on X0(pN).

Under these assumptions those integrals make sense since the functions f ′(τ)
f(τ)

has no

zero, pole on the path C and this latter path is well behaved in small neighborhoods

of its two endpoints. Note that the image of the integrals (2.5) and (2.6) in C/Ω
does not depend on the choice of such special paths since we mod out by the only

obstruction coming from the poles of dlog f(τ) which correspond to the zeros of f .

Those poles are the only obstruction since dlog f(τ) is a meromorphic 1-form on H,
therefore closed.

By definition the total value of µf{c1 → c2} is zero. Moreover, since StabΓ0(Zp) =
Γ0(pN) (uses (N, p) = 1) and f(τ) is Γ0(pN)-invariant, one sees that (2.5) and (2.6)

are well defined. Finally, the fact that µf{c1 → c2} is a distribution follows from

Lemma 2.1. The condition of Lemma 2.1 is verified since f is by assumption a Up,m-

eigenvector, see equation (2.2).

Remark 2.1 The reason why one needs to be careful about the endpoints of the

path of integration comes from the observation that f(τ) could have infinitely many

zeros or poles in a small real interval around the point c ∈ Γ0(N)(i∞).

Remark 2.2 Note that the set {f(c) ∈ C : c ∈ Γ0(N)(i∞)} is finite since f(τ)

is a Γ0(pN)-invariant.

Remark 2.3 An important observation is that the the group generated by the

matrix

(
p 0

0 1

)
gives rise to a nontrivial action on the set Γ0(N)(i∞) = Γ0(i∞) by

the rule (
pn 0

0 1

)
: Γ0(N)(i∞)→ Γ0(N)(i∞)

c 7→

(
pn 0

0 1

)
c = pnc.

where n ∈ Z. In other words, the multiplication by pmap reshuffles the set Γ0(N)(i∞).

Here it is crucial for N and p to be coprime. Philosophically the non triviality of this

action combined with the special properties of f(τ) give rise to non trivial C/Ω-valued
distributions on P1(Qp).
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An important property satisfied by the family of distributions µf{c1 → c2} is a Γ0-

invariance. For all compact open set U and γ ∈ Γ0 one has

µf{γc1 → γc2}(γU) = µf{c1 → c2}(U).

This is a direct consequence of the definition of µf{c1 → c2}.

In general one imposes even stronger conditions on f(τ) in order to control the

range of µf{c1 → c2}. We introduce the following useful definition:

Definition 2.1 We say that f(τ) satisfies the real algebraicity condition on the

set Γ0(N)(i∞) if there exists a real number field L ⊆ C such that f(x) ∈ L,∀x ∈
Γ0(N)(i∞).

In general, modular functions tend to have algebraic coefficients therefore the previous

definition is not too hard to fulfill. For example suppose that all the ”q-expansions”

of f(τ) at the cusps Γ0(N)(i∞) lie in M [[q]] where M is a CM-field. Let M+ be the

maximal real subfield of M . Then taking the norm of f(τ) down to M+[[q]] gives rise

to a modular unit satisfying the definition 2.1.

Assumptions: Form now on we assume that f(τ) satisfies the conditions (1),

(2), (3), has no zeros in H and also that it satisfies the real algebraicity condition on

the set Γ0(N)(i∞).

We thus get that Ω = {0}. Doing a small change of variables reveals that

1

2πi

∫ γ−1c2

γ−1c1

dlog f =
1

2πi

∫ f(γ−1c2)

f(γ−1c1)

dt

t
∈ Λ

2πi
+

1

2
Z(2.7)

where t = f(τ) and Λ is the finitely generated additive subgroup of R (by Remark

2.2) generated by log |f(c)| for c ∈ Γ0(N)(i∞) (here we assume that there exists a

c ∈ Γ0(N)(i∞) such that f(c) = 1). The real part of the left hand side of (2.7) is

half integral since the bounds of the integral appearing on the right hand side are real

valued. Therefore if we define

µf{c1 → c2}(Z) := Re

(
1

2πi

∫ γ−1c2

γ−1c1

dlog f

)
∈ 1

2
Z

we obtain a 1
2
Z-valued distribution on P1(Qp).
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Remark 2.4 Note that there are only finitely many possibilities for the bounds

appearing in the right hand side of (2.7). On the other hand the image by f of the

geodesic joining c1 to c2 and the one joining c′1 to c′2 will be in general different even

if f(c1) = f(c′1) and f(c2) = f(c′2).

Definition 2.2 We say that a Cp-valued distribution µ on P1(Qp) is a measure

if there exists a constant c ∈ R>0 such that

|µ(U)|p ≤ c

for all compact open sets U of P1(Qp).

Clearly a 1
2
Z-valued distribution is a measure since we can take c = 1 if p ̸= 2 and

c = 2 if p = 2.

Remark 2.5 A Cp-valued measure on P1(Qp) allows oneself to integrate Cp-

valued continuous functions. In general Cp-valued distributions only allow the in-

tegration of locally constant functions.

Suppose that f satisfies the real algebraicity condition on the set Γ0(N)(i∞) for the

number field L, i.e. for all c ∈ Γ0(N)(i∞) we have f(c) ∈ L ⊆ C. Note that L

comes naturally equipped with an embedding in R by definition. One can also use

the imaginary part of of (2.7) to construct L×-valued distributions on P1(Qp). For

every pair of cusps (c1, c2) ∈ Γ0(N)(i∞), define a L×-valued distribution ν̃f{c1 → c2}
on P1(Qp) by the rule

i) ν̃f{c1 → c2}(γZp) := |f(γ−1c2)|
|f(γ−1c1)| ,

ii) ν̃f{c1 → c2}(γ(P1(Qp)\Zp)) :=
(

|f(γ−1c2)|
|f(γ−1c1)|

)−1

.

for all γ ∈ Γ0.

Using Lemma 2.1 one can verify that ν̃f gives rise to an L×-valued distribution

on P1(Qp) of total value 1 (the abelian group A considered is multiplicative ). Note
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that the set

{µf{c1 → c2}(B) : B ∈ B}

is finite.

Let us fix an embedding ι : L ↪→ Qp and let L̂ be the topological closure of ι(L)

in Qp. If we fix a p-adic branch of logp by declaring logp π = 0 for some uniformizer

in L̂ then we can define a L̂-valued measure on P1(Qp) by

νf{c1 → c2} := logp ◦ν̃f{c1 → c2}.

We thus get that νf{c1 → c2} is a L̂-valued measure. Unfortunately the measure

νf{c1 → c2} depends on ι and the choice of the p-adic branch of logp.

In the present paper we only explore the case where f(c) = 1 for all c ∈ Γ0(N)(i∞).

When f satisfies the latter hypothesis we see directly from (2.7) that µf{c1 → c2}
is Z-valued and also that all possible L̂-valued measures νf{c1 → c2} are trivial, i.e.

equal to 0 on all compact open sets of P1(Qp).

3 A review of the classical setting

Let H be the Poincaré upper half-plane and X(N) = H∗/Γ(N) be the modular

curve of level N where H∗ = H ∪ P1(Q). A modular unit of level N is a function

u(τ) ∈ Q(ζN)(X(N)) with τ ∈ H, for which div(u(τ)) is supported on P1(Q). In

particular modular units are non vanishing analytic functions on H. Because of this

latter property they can be written as an infinite product in the variable qτ = e2πiτ .

The simplest example of a modular unit is provided by quotients of the form ∆(τ)
∆(Nτ)

,

where ∆(τ) = η(τ)24 and η(τ) is the famous Dedekind eta function defined by the

infinite product

η(τ) = q τ
24

∏
n≥1

(1− qnτ ).

The modular unit ∆(τ)
∆(Nτ)

is invariant under the larger group Γ0(N) ⊇ Γ(N). Let K be

an imaginary quadratic number field. By evaluating those modular units on quadratic
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irrationalities τ ∈ H∩K one gets points in certain ring class fields of K. In order to

get points generating ray class fields of K, one needs to consider a more general type

of modular units. These modular units can be obtained by taking suitable powers of

Siegel functions.

For a pair of rational numbers (a1, a2) ∈ ( 1
N
Z)2 such that (a1, a2) ̸= (0, 0)(mod Z),

we define a Siegel function of level N as

g(a1,a2)(τ) := k(a1,a2)(τ)η(τ)
2,(3.1)

where k(a1,a2)(τ) is the Klein form, see chapter 1 of [DK81] for the definition. The

infinite product corresponding to the Siegel function is given by

g(a1,a2)(τ) = −e2πia2(a1−1)/2q
1
2
B̃2(a1)

τ (1− qz)
∏
n≥1

(1− qnτ qz)(1− qnτ q−z),(3.2)

where z = a1τ+a2, B2(x) = x2−x+1/6 is the second Bernoulli polynomial, B̃2(x) :=

B2({x}) where {x} stands for the fractional part of x, qτ = e2πiτ , τ ∈ H and qz =

e2πiz, z ∈ C. Note that the infinite product in (3.2) converges since Im(τ) > 0. Using

the identity K 2. in chapter 2 of [DK81] we deduce for (a1, a2) ≡ (b1, b2)(mod Z2)

that

g(b1,b2)(τ) = (−1)n1n2+n1+n2e−2πi
(n1a2−n2a1)

2 g(a1,a2)(τ),(3.3)

where (b1, b2) − (a1, a2) = (n1, n2). We thus see that g(a1,a2)(τ) and g(b1,b2)(τ) differ

only by a 2N root of unity. The function g(a1,a2)(τ) is not too far from being a modular

unit. Let γ ∈ SL2(Z) then

g(a1,a2)(γτ) = ϵ(γ)g(a1,a2)γ(τ),(3.4)

where ϵ(γ) is defined by

η(γτ)2 = ϵ(γ)(cτ + d)η(τ)2

for some ϵ(γ) ∈ µ12. The subscript of the Siegel function (a1, a2)γ on the right hand

side of (3.4) is the usual multiplication of a row vector by a matrix.

From the identity (3.4) we deduce that for any γ ∈ SL2(Z) and any r, s ∈ Z

g( r
N
, s
N
)(γτ)

12 = g( r
N
, s
N
)γ(τ)

12,(3.5)
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In particular when γ ∈ Γ(N), using the identity (3.5) combined with (3.3), we see

that the function

τ 7→ g( r
N
, s
N
)(τ)

12N(3.6)

is invariant under the substitution τ 7→ γτ . We thus see that a suitable power of

a Siegel function gives rise to a modular unit. A natural question that arises is:

How large is the set of modular units of X(N)? This is answered by the following

proposition:

Proposition 3.1 The Z-rank of the group of modular units of X(N) modulo

Q(ζN)
× is equal to

number of cusps of X(N)− 1.(3.7)

Moreover, the subgroup generated by modular units as in (3.6) for all integers r, s has

maximal rank.

Proof The proof consists essentially in showing that the divisors of Siegel functions

of level N give rise to the universal even distribution on Q2/Z2[N ]. See theorem 3.1.

of chapter 2 in [DK81]. □

The −1 in (3.7) is explained by the trivial relation (deg(div(u(τ)))=0) imposed

on the divisor of any function on X(N). In thus follows that the Z-rank of modular

units is as large as it could be. Beside their modular properties, the main interest of

modular units reside in the fact that can be used to construct units in ray class fields

of imaginary quadratic number fields.

Using equation (3.1) defining the Siegel functions, on can think of g12 as a function

on C × L where L is the set of lattices of rank 2 in C. It thus makes sense to write

g12(t,Λ) for any t ∈ C and Λ ∈ L. For w ∈ Λ, g12(t + w,Λ) = ϵ(w)g12(t,Λ) for

some ϵ(w) ∈ S1. Therefore g12 modulo S1 is well defined on pairs (t+Λ,C/Λ). This
notation agrees with the previous definition of g12(a1,a2)(τ) given by (3.1) in the sense

that g12(a1τ + a2,Λτ ) = g(a1,a2)(τ)
12 for any pair of real numbers (a1, a2) and τ ∈ H.

Finally one should also point out that the function g12 is homogeneous of degree 0

meaning that g12(λt, λΛ) = g12(t,Λ) for any λ ∈ C×.
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Now we would like to formulate one version of the theorem of complex multiplica-

tion for imaginary quadratic number fields. Let K be an imaginary quadratic number

field and f an integral ideal of K. Let C(f) := IOK
(f)/QOK ,1(f) (resp. K(f)) denote

the ray class group of conductor f (resp. the ray class field of conductor f)

Theorem 3.1 Let f = (f) for some f ∈ Z>0 and assume that f is divisible by

at least two distinct primes of Z. Let a ∈ C(f) and choose a, b ∈ a. Then

u(a) := g12f (1, fa−1) = g12f (1, fb−1) ∈ O×
K(f)(3.8)

If we let rec−1 : C(f)→ Gal(K(f)/K) then

(g12f (1, fa−1))rec
−1(c) = g12f (1, fa−1c−1)

for any c ∈ IOK
(f).

Proof See theorem 3 of chapter 19 section 3 of [Lan94b] . □

Remark 3.1 Note that since a is an integral ideal then 1 ∈ a−1. It is easy to see

that a−1 can always be written as a−1 = 1
s
Λτ for some s ∈ Z>0 and τ ∈ (H ∩K). It

thus follows by homogeneity of g12 that

g12f (1, fa−1) = g12f
(
s

f
,Λτ

)
= g(0, s

f
)(τ)

12f .(3.9)

Here we emphasize the fact that for any integral ideal a coprime to f we can associate

a pair (s, τ) ∈ Z × (H ∩K) such that a−1 = 1
s
Λτ . One can then evaluate the Siegel

function on the pair (s, τ) using (3.9). Note that this procedure depends implicitly

on the conductor f = (f). If we take a, b ∈ a ∈ C(f) and let a−1 = 1
s
Λτ , b

−1 = 1
s′
Λτ ′ ,

then equation (3.8) implies that

g(0, s
f
)(τ)

12f = g
(0, s

′
f
)
(τ ′)12f .

This is an easy consequence of the homogeneity of degree 0 of g12 plus the the fact

that the function τ 7→ g(0, s
f
)(τ)

12f is Γ1(f)-modular.

One can relate the logarithm of the absolute value of (3.9) with the first derivative

of a certain zeta function (depending only on the ideal class of a modulo QOK ,1(f))
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evaluated at s = 0. This is the so called second Kronecker’s limit formula. For the

remaining of the section we introduce some notation in order to define a certain class

of zeta functions associated to a positive definite quadratic form Q(x) and a spherical

function P (x) with respect to Q(x). We only need the case where n = 2, i.e. when

x = (x1, x2). For the general case, see chapter 1 section 5 of [Sie80].

Let z = a + ib ∈ H. We attach to z a 2 by 2 positive definite matrix Mz =

1
b

(
1 a

a |z|2

)
. Note that Mz is normalized in the sense that det(Mz) = 1. We define

Q̃z(x1, x2) := xtMzx = b−1|x1 + zx2|2

where x =

(
x1

x2

)
. Note that Q̃z(x1, x2) is normalized in the sense that disc(Q̃z) =

−4. The vector w :=

(
−z
1

)
is an isotropic vector with respect to Q̃z i.e. Q̃z(−z̄, 1) =

0. The following homogeneous polynomial of degree g, P (x1, x2) := (−ixtMzw)
g =

(x1 + x2z)
g is a spherical function with respect to Q̃z(x1, x2). Following [Sie80] we

can associate to such data a zeta function

ζ(s, u∗, v∗, z, g) := bs
∑

m+v∗ ̸=0

e2πi(m1u2−m2u1)(m1 + v1 + (m2 + v2)z)
g

|m1 + v1 + (m2 + v2)z|2s+g
(3.10)

where u∗, v∗ ∈ Q2. For any integer g ≥ 0 and s ∈ C with Re(s) > 1 this function

(with respect to the variable s) converges absolutely. It is a fact that this function

admits a meromorphic continuation on all of C with at most a pole of order 1 at

s = 1 (this occurs precisely when g = 0 and u∗ ∈ Z2). Moreover it satisfies a nice

functional equation.

Define

Z(s, u∗, v∗, z, g) := π−sΓ(s+ g/2)ζ(s, u∗, v∗, z, g).

Siegel shows the following functional equation (special case of equation (61) in [Sie80])

Z(s, u∗, v∗, z, g) = (−1)ge2πi(u1v2−u2v1)Z(1− s, v∗, u∗, z, g).(3.11)
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Let g = 0, u∗ =

(
r/f

t/f

)
and v∗ =

(
0

0

)
then after some rearrangements the

equation (3.11) looks like

∑
m ̸=(0,0)

e2πi(m1
t
f
−m2

r
f
)

|Q̃z(m1,m2)|2s
=
π−(1−s)Γ(1− s)

π−sΓ(s)
f 2(1−s)

∑
m≡(r,t) (mod f)

1

|Q̃z(m1,m2)|2(1−s)
.

(3.12)

where m goes over Z2. For any ( r
f
, t
f
) ∈ ( 1

f
Z)2 and z ∈ H, equation (3.12) motivates

the following definitions

(1) ζ(s, ( r
f
, t
f
), z) :=

∑
(0,0)̸=m

e
2πi(m1

r
f
−m2

t
f
)

|Q̃z(m1,m2)|2s
,

(2) ζ̂(s, ( r
f
, t
f
), z) := f 2s

∑
m≡(r,t) (mod f)

1

|Q̃z(m1,m2)|2s
.

Using this notation equation (3.12) can be rewritten more compactly as

ζ(s, (
r

f
,
t

f
), z) =

π−(1−s)Γ(1− s)
π−sΓ(s)

ζ̂(1− s, ( r
f
,
t

f
), z).

We can now formulate the second Kronecker limit formula:

Theorem 3.2 Let (a1, a2) ∈ Q2 be such that (a1, a2) /∈ Z2 and τ ∈ H then we

have

ζ̂ ′(0, (a1, a2), τ) = − logNC/R(g−a2,a1(τ))

= − logNC/R(ga1,a2)

(
−1
τ

)
).

Proof For the first equality see chapter 20 section 5 of [Lan94b]. For the second

equality we use the homogeneity property of g12. □
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4 Modular units and Eisenstein series

4.1 The Siegel function

In this section we define certain modular units that will be used in section 5 to

construct Z-valued measures on P1(Qp). For a pair ( r
f
, s
f
) ∈ ( 1

f
Z)2 we associate the

Siegel function

g( r
f
, s
f
)(τ) = −e2πi

s
f
( r
f
−1)/2q

1
2
B̃2(

r
f
)

τ (1− qz)
∏
n≥1

(1− qnτ qz)(1− qnτ q−z)

where z = r
f
τ + s

f
. As explained in the first section the function g( r

f
, s
f
)(τ)

12f is a

modular unit on X(f). Let N0 > 0 be a positive integer coprime to pf . From now

on we will be mainly concerned by Siegel functions of the form

g( r
f
,0)(d0fτ) = q

1
2
B̃2(

r
f
)

fd0τ
(1− qrd0τ )

∏
n≥1

(1− qnd0fτqrd0τ )(1− q
n
d0fτ

q−rd0τ )

for some d0|N0, d0 > 0. An easy computation shows that g( r
f
,0)(d0fτ)

12f is a modular

unit with respect to the group Γ1(f) ∩ Γ0(d0) ⊇ Γ1(f) ∩ Γ0(N0). The following

lemma gives an explicit formula for the divisor of g( r
f
,0)(d0fτ)

12f when regarded as a

function on X(fN0). It is more natural to work with X(fN0) since this curve is a

Galois covering of P1(C), therefore all its cusps have the same width namely fN0.

Proposition 4.1 Let f be a positive integer and r ∈ Z/fZ. Choose an integer

N0 coprime to pf . Then for every d0|N0 the function g( r
f
,0)(d0fτ)

12f is Γ1(f)∩Γ0(d0)-

invariant. In particular we can think of it as a function on the modular curve X(fN0)

with its divisor supported on the set of cusps of X(fN0), denoted by cusp(X(fN0)).

A uniformizer at i∞ for the group Γ(fN0) is given by τ 7→ e
2πiτ
fN0 . One has

div(g( r
f
,0)(d0fτ)

12f ) =
∑

[a
c
]∈cusp(X(fN0))

6f
N0

d0
(fd0, c)

2B̃2

(
rad0

(fd0, c)

)[a
c

]
where (fd0, c) stands for the greatest common divisor between fd0 and c. We say that

the modular unit g( r
f
,0)(d0fτ)

12f has primitive index if (r, f) = 1.

Proof This is a standard computation. □

30



Remark 4.1 Observe that the divisor of g( r
f
,0)(d0fτ)

12f is always an integral

multiple of 6f . So it is natural to ask if such a unit is a 6f power of some modular

unit in C(X(fN0)). In general the answer is no. However later on we will show that

by taking suitable products of the g( r
f
,0)(d0fτ)

12f ’s, one can extract an f -th root, see

Proposition 4.2.

4.2 Modular units associated to a good divisor

Definition 4.1 For positive integers f,N0 coprime we define D(N0, f) to be the

free abelian group generated by the symbols

{[d0, r] : 0 < d0|N0, r ∈ Z/fZ}.

If δ ∈ D(N0, f) we call f the conductor of δ and N0 the level of δ.

A typical element δ ∈ D(N0, f) will be denoted by δ =
∑

d0,r
n(d0, r)[d0, r] where the

sum goes over d0|N0 (d0 > 0) and r ∈ Z/fZ with n(d0, r) ∈ Z. We have a natural

action of (Z/fZ)× on D(N0, f) given by j ⋆ [d0, r] := [d0, jr] and we extend this action

Z-linearly to all of D(N0, f).

Since (p, f) = 1, by reducing p modulo f , we get an action of p on D(N0, f). We

denote by D(N0, f)
⟨p⟩ the subgroup of D(N0, f) which is fixed by multiplication by

p(mod f). Sometimes we will use the short hand notation

j ⋆ δ =: δj.

We want to define the notion of a good divisor with respect to the data N0, f, p.

Definition 4.2 We say that a divisor

δ =
∑

d0|N0,r∈Z/fZ

n(d0, r)[d0, r] ∈ D(N0, f)

is a good divisor if it is non zero, p ⋆ δ = δ and that for all r ∈ Z/fZ,∑
d0|N0

n(d0, r)d0 = 0(1)
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More concisely one sees that a good divisor is an non zero element of D(N0, f)
⟨p⟩

which satisfies (1).

Remark 4.2 Note that when p ≡ 1(mod f) the condition p ⋆ δ = δ is automati-

cally satisfied.

Proposition 4.2 To a good divisor δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩

we associate the function

βδ(τ) :=
∏

d0|N0,r∈Z/fZ

g( r
f
,0)(d0fτ)

12n(d0,r).(4.1)

This function is a modular unit which is Γ1(f) ∩ Γ0(N0)-invariant. Moreover for all

c ∈ Γ0(fN0){i∞} we have βδ(c) = 1.

Proof Using equation equation (3.3) with the fact that for all r ∈ Z/fZ∑
d0|N0

d0n(d0, r) ≡ 0 (mod f),

we see that the ambiguity created by the f -th root of unity is canceled. The latter

observation combined with equation (3.5) shows that the right hand side of (4.1) is

Γ1(f) ∩ Γ0(fN0)-invariant. Using the explicit formula in Proposition 4.1 combined

with the fact that for all r ∈ Z/fZ,
∑

d0|N0
d0n(d0, r) = 0, we get that ordc(βδ(τ)) = 0

for any c ∈ Γ0(fN0){i∞}. Finally using the infinite product of the Siegel function

plus its transformation formula, a calculation shows that for all c ∈ Γ0(fN0){i∞},
βδ(c) = 1. For this latter computation it is enough to work at i∞ after a suitable

shift. □

Remark 4.3 The first remark is that div(g( r
f
,0)(d0fτ)

12) = div(g(−r
f
,0)(d0fτ)

12),

so they only differ by a root of unity. So we could well assume

δ ∈ D(N0, f)+ := {δ ∈ D(N0, f) : −1 ⋆ δ = δ}.

However we have chosen not to do this since later on we will associate Eisenstein series

of odd weight to δ and forcing δ to be inside D(N0, f)+ would impose unnecessary

restrictions.
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Note also that a good divisor δ ∈ D(N0, f)
⟨p⟩ gives rise to a family of modular

units indexed by (Z/fZ)×/⟨p⟩ since for any r ∈ (Z/fZ)× we still have that δr is a

good. If we denote the family by {βδr(τ)}r∈(Z/fZ)×/⟨p⟩, we see that the group Γ0(fN0)

acts transitively on it via τ 7→ γτ .

4.3 The dual modular unit

Definition 4.3 Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩ be a good divi-

sor then we define

β∗
δ (τ) :=

∏
d0|N0,r∈Z/fZ

g(0,−r
f

)(d0τ)
12fn

(
N0
d0
,r
)
.(4.2)

We call β∗
δ (τ) the dual unit of βδ(τ).

Remark 4.4 Note that the modular unit now have an f in its exponent. Also

for very divisor d0|N0 and r ∈ Z/fZ the exponent is a multiple of n
(
N0

d0
, r
)
. One can

verify the formula

g( r
f
,0)(fd0WfN0τ)

12f = g(0,−r
f

)

(
N0

d0
τ

)12f

.

where WfN0 =

(
0 −1

fN0 0

)
.

We have the analogue of Proposition 4.1 with the same assumptions.

Proposition 4.3 We have

div(g(0,−r
f

)(d0τ)
12f ) =

∑
[a
c
]∈cusp(X(fN0))

6f 2N0

d0
(d0, c)

2B̃2

(
rc

f(c, d0)

)[a
c

]
.(4.3)

Remark 4.5 Note that contrary to g( r
f
,0)(fd0τ)

12f , the divisor in (4.3) is not

necessarily a multiple of f so the f in the exponent of g(0,−r
f

)(d0τ)
12f is essential.

We also have an analogue of Proposition 4.2.
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Proposition 4.4 The function β∗
δ (τ) is Γ1(f) ∩ Γ0(N0)-invariant. Moreover for

all c ∈ Γ0(fN0){0} we have β∗
δ (c) = 1.

Proof The proof is identical to Proposition 4.2 except that we use Proposition 4.3

instead of Proposition 4.1 and replace Γ0(fN0)(i∞) by Γ0(fN0)(0). □

4.4 From g( k
N ,0)(Nτ)

12 to ∆(τ)
∆(Nτ)

One can relate the modular unit βδ(τ) with the modular units used in [DD06]. From

Theorem 4.1 of [DK81] one may deduce for any positive integer N the identity

N−1∏
j=1

g( j
N
,0)(Nτ)

12 = ζN
∆(τ)

∆(Nτ)
,(4.4)

for some ζN ∈ µN . As in [DD06] choose a divisor δ =
∑

d0|N0
nd0 [d0] such that∑

d0|N0

nd0d0 = 0 and
∑
d0|N0

nd0 = 0.

To such a divisor Darmon and Dasgupta associated the modular unit

αδ(τ) =
∏
d0|N0

(
∆(d0τ)

∆(τ)

)nd0

.

which is Γ0(N0)-invariant.

Set δ′ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f) with n(d0, r) = nd0 for all r ∈
Z/fZ\{0} and n(d0, r) = 0 if r ≡ 0 (mod f). Then δ′ is a good divisor with respect

to any prime p. Using equation (4.4) with N = f we find

βδ′(τ) = ζ
∏
d0

(
∆(d0τ)

∆(d0fτ)

)nd0

= ζ

∏
d0

(
∆(d0τ)
∆(τ)

)nd0

∏
d0

(
∆(fd0τ)
∆(fτ)

)nd0

= ζ
αδ(τ)

αδ(fτ)
,

for some ζ ∈ µf .
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Remark 4.6 Having in mind the construction of points in ring class fields of a

real quadratic number field K as in [DD06], we see that once the modular unit is

fixed one can vary the prime number p freely (as long as p is inert in K) since it does

not depend on the choice of the modular unit. However in the ray class field case,

for a general good divisor δ, the prime number p is related to the conductor of δ,

i.e. f . Therefore one does not have the same freedom as in the ring class field case.

The additional constraint is a congruence modulo f . For example we can always let

p vary among the set of primes p congruent to 1 modulo f .

4.5 The p-stabilization of modular units

In order to construct measures one needs modular units that satisfy the distribution

relation at p, i.e. modular units which are Up,m-eigenvectors where

(Up,mf)(τ) :=

p−1∏
j=0

f

(
τ + j

p

)
.(4.5)

Note that by taking the logarithmic derivative of (4.5) one obtains the usual additive

distribution relation for a measure on Zp.

For any d0|N0 the function

τ 7→
g12f( r

f
,0)(d0fτ)

g12f
( p

−1r
f

,0)
(pd0fτ)

is Γ1(f) ∩ Γ0(pd0)-invariant (the notation p−1r should be interpreted as the class of

p−1r modulo f). Moreover it is an eigenvector with eigenvalue 1 with respect to the

multiplicative Up,m-operator.

Proposition 4.5

Up,m

 g12f( r
f
,0)(d0fτ)

g12f
( p

−1r
f

,0)
(pd0τ)

 :=

p−1∏
i=0

g12f( r
f
,0)(d0f(

τ+i
p
))

g12f
( p

−1r
f

,0)
(pd0f(

τ+i
p
))

=
g12f( r

f
,0)(d0fτ)

g12f
( p

−1r
f

,0)
(pd0fτ)

.(4.6)

35



Proof(sketch of the Up,m-invariance) One has the identity

g12f( r
f
,0)(d0fτ)

g12f
( p

−1r
f

,0)
(pfd0τ)

=

p−1∏
i=0

g( ri
pf
,0)(pfd0τ)

12f(4.7)

where ri ≡ i(mod p) and ri ≡ r(mod f). A direct calculation shows that every term

on the right hand side of (4.7) is Up,m-invariant i.e.

Up,m

(
g( ri

pf
,0)(pfd0τ)

12f
)
= g( ri

pf
,0)(pfd0τ)

12f(4.8)

for all i. The identity (4.8) relies heavily on the infinite product of the Siegel function.

□

Remark 4.7 In section 4.8 we will give a more conceptual proof of the latter

proposition using Eisenstein series, see equations (4.21) and (4.24).

Definition 4.4 For a good divisor δ ∈ D(N0, f)
⟨p⟩ we define

βδ,p(τ) :=
βδ(τ)

βp−1⋆δ(pτ)

=
βδ(τ)

βδ(pτ)
.

Proposition 4.6 Let δ ∈ D(N0, f)
⟨p⟩ be a good divisor then βδ,p(τ) is Γ1(f) ∩

Γ0(pN0)-invariant, Up,m-invariant and ∀c ∈ Γ0(fN0)(i∞) we have βδ,p(c) = 1.

Proof We already know that βδ,p(τ) is Γ1(f) ∩ Γ0(pN0)-invariant. Since βδ(x) = 1

for all x ∈ Γ0(fN0)(i∞) and multiplication by p induces a permutation on the set

Γ0(fN0)(i∞) we get that βδ,p(x) = βδ(x)
βδ(px)

= 1
1
. Finally the Up,m-invariance comes

from the identity (4.6). □

Remark 4.8 A more careful study of the modular units on the curve X(N0pf)

reveals that any modular unit

u(τ) ∈ ⟨{g( r
pf
,0)(d0fτ)

12 : d0|N0, r ∈ Z/pfZ}⟩(4.9)
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which is Γ1(f) ∩ Γ0(N0p)-invariant, Up,m-invariant and has no zeros and poles at the

set of cusps Γ0(fN0)(i∞) comes necessarily from a good divisor in the sense that

there exists an integer m and a good divisor δ such that

div(u(τ)m) = div(βδ,p(τ)).

So we don’t lose much by assuming that the modular unit comes from a good divisor.

The proof relies on the fact that B̃2(x) is the the universal even distribution of degree

1 on Q/Z.

Definition 4.5 Let δ ∈ D(N0, f)
⟨p⟩ be a good divisor. We define

β∗
δ,p(τ) :=

β∗
δ (τ)

β∗
δ (pτ)

.

We have an analogue Proposition 4.6 for the dual modular unit β∗
δ,p(τ).

Proposition 4.7 Let δ ∈ D(N0, f)
⟨p⟩ be a good divisor then β∗

δ,p(τ) is Γ1(f) ∩
Γ0(pN0)-invariant, Up,m-invariant and ∀c ∈ Γ0(fN0)(0) we have β∗

δ,p(c) = 1.

Proof It is similar to Proposition 4.6 except for the Up,m-invariance which will be a

consequence of proposition 4.9. □

Remark 4.9 Note that there is no direct analogue of equation (4.6) for the dual

modular unit g(0,−r
f

)(d0τ)
12f since

g(0,−r
f

)(d0τ)
12f

g(0,−r
f

)(d0pτ)
12f

and
g(0,−r

f
)(d0τ)

12f

g
(0,−p−1r

f
)
(d0pτ)12f

are not Up,m-invariant. Nevertheless it is still true that β∗
δ,p(τ) is Up,m-invariant.

4.6 The involution ιN on X1(N)(C)

As it is well known Y1(N)(C) := H/Γ1(N) classifies pairs (P,E), up to equivalence,

where P is a point of exact order N on an elliptic curve E defined over C. We denote
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the equivalence class of a pair (P,C/Λ) by [(P,Λ)]. Any class can be represented by

a pair of the form (ω2

N
(mod Zω1 + Zω2),Zω1 + Zω2) for ω1, ω2 ∈ C. We define a map

ιN on such pairs by

ιN

(ω2

N
(mod Zω1 + Zω2),Zω1 + Zω2

)
:=

(
−ω1

N
(mod Zω1 + Z

ω2

N
),Zω1 + Z

ω2

N

)
.

It is easy to check that ιN is well defined on such pairs and also on equivalence classes

of Y1(N)(C). A small calculation reveals that ι2 restricts to the identity on equivalence

classes. Therefore when N > 1, ι gives a non trivial involution on Y1(N)(C). If we

think of g( r
N
,0)(Nτ)

12N as a function on such pairs then a direct calculation shows

that

ι(g( r
N
,0)(Nτ)

12N) = g(0,−r
N

)(τ)
12N .

One can investigate what properties of modular functions are preserved under this

involution. For example let us look at the curve X1(pf) where N = pf . The property

of being a Up,m-eigenvector is in general not preserved by ιpf . For example consider

the modular unit

g( 1
fp
,0)(fpτ)

12pf

which is a Up,m-eigenvector (with eigenvalue 1). A calculation shows that

ιpf (g( 1
fp
,0)(fpτ)

12pf ) = g(0,−1
pf

)(τ)
12pf

is not a Up,m-eigenvector. However, let us take a good divisor δ ∈ D(N0, f)
⟨p⟩ and

consider the Up,m-eigenvector βδ(τ). Using Proposition 4.9 we see that it is still true

that

ιfN0(βδ,p(τ))
1
f = β∗

δ,p(τ)

is a Up,m-eigenvector. In general, the properties of modular functions which are

preserved under the involution ιN can probably be made more transparent if one

uses the adelic point of view by viewing them as functions on double cosets.
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4.7 Bernoulli polynomials and Eisenstein series

We recall first some definitions for Bernoulli numbers and polynomials. The Bernoulli

numbers are defined by the generating function

t

et − 1
=
∑
n≥0

Bn
tn

n!
.

Note that B2n+1 = 0 if n ≥ 1.

We also define Bernoulli polynomials as

text

et − 1
=
∑
n≥0

Bn(x)
tn

n!
.(4.10)

One can verify that

Bn(x) =
n∑
i=0

(
n

i

)
Bix

n−i.(4.11)

From (4.10) one can deduce the useful formula Bn(1− x) = (−1)nBn(x).

Definition 4.6 For n ≥ 2. We define the n-th periodic Bernoulli polynomial as

B̃n(x) := Bn({x})

where {x} = x− [x]. For n = 1 we define

B̃1(x) := {x} −
1

2
+

11Z(x)

2
.

Note that B̃1(x) corresponds to the famous sawtooth function.

Computing the Fourier series of B̃k(x) we find for k ≥ 1 that

B̃k(x) =
−k!

(2πi)k

∑′

n∈Z

e2πinx

nk
(4.12)

where the prime of the summation means that we omit n = 0. One easily verifies

that

B̃n(−x) = (−1)nB̃n(x).
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Either by using the generating function of Bernoulli polynomials or the Fourier series

one finds for any positive integer N

Nk−1

N−1∑
i=0

B̃k

(
x+ i

N

)
= B̃k(x).(4.13)

Remark 4.10 Let p be a fixed prime number. When −k ≤ −1 one can also

define Bernoulli numbers with negative index as elements of Qp by the rule

B−k := lim
n→∞

Bϕ(pn)−k ∈ Qp,

see p. 19 of [Gra97]. Proposition 4 of [Gra97] provides an efficient recursive algorithm

for computing B−k. More precisely, knowing the Bernoulli numbers B−1. . . . B−(k−1)

to a precision of M p-adic digits allows one to compute B−k in polynomial time to

an accuracy of M p-adic digits. Having now a Bernoulli number for every integer k,

it is natural to define a Bernoulli polynomial indexed by k (in particular for negative

integers k) by the rule

Bn(x) :=
∞∑
m=0

(
n

m

)
Bn−mx

m.

When n ≤ −1 one can show that this previous power series converges for any x ∈ Cp

with |x|p ≤ 1
p
. It should also be pointed out that the value B−k(x) can be interpreted

as a special value of a 2-variables p-adic L-function, see p. 275 of [Fox00].

We are now ready to define a certain class of Eisenstein series for which the constant

term of the q-expansion at i∞ is a certain periodic Bernoulli polynomial evaluated

at some rational number.

Definition 4.7 For r ∈ Z/fZ and an integer k ≥ 2 we define

Ek(r, τ) :=

(
(−1)k(2πi)k

(k − 1)!

)−1 ∑′

m,n

e−2πim r
f

(m+ nfτ)k

(4.14)

=
−B̃k(r/f)

k
+

f−1∑
b=0

e−2πibr/f 1

fk

∑
m∈Z

∑
n̸=0

1

(m+ b/f + nτ)k

=
−B̃k(r/f)

k
+

1

fk

f−1∑
b=0

e−2πibr/f
∑
m≥1

∑
n≥1

mk−1(qmnτ+b/f + (−1)kqmnτ−b/f )
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where qz = e2πiz. The prime on the summation means that we omit the pair (0, 0).

For the second equality we have used (4.12).

Remark 4.11 When k ≥ 3 the convergence of the right hand side of (4.14) is

absolute. When k = 2 the convergence is not absolute, nevertheless the q-expansion

is still meaningful. We note also that

Ek(r, τ) = Ek(−r, τ).(4.15)

Generally when the level f is fixed we simply write Ek(r, τ).

For any γ ∈ Γ0(f) we have the useful transformation formula

Ek(γ ⋆ r, γτ)(d(γτ))
k = Ek(r, τ)(dτ)

k,

where

(
a b

c d

)
⋆ r := a−1r ≡ dr (mod f). Observe also that the q-expansion at i∞

of Ek,r(τ) is defined over Q(ζf ). In fact the q-expansion at any other cusps of X0(f)

is also defined over Q(ζf ). One can think of the expression

Ek(r, τ)(dτ)
k

as a system of twisted k-fold differential on X0(f). We have used the word twisted

since γ also acts on the index r ∈ Z/fZ. However Ek(r, τ) is a true k-fold differential

on the curve X1(f).

For future reference we define E∗
k(r, τ) and we call it the dual of Ek(r, τ).

Definition 4.8 For r ∈ Z/fZ and an integer k ≥ 2 we define

E∗
k(r, τ) :=

(
(−1)k(2πi)k

(k − 1)!

)−1∑
m,n

′ e2πin
r
f

(m+ nτ)k
.

The analogue of equation (4.15) is

(−1)kE∗
k(r, τ) = E∗

k(−r, τ).(4.16)
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There is a functional equation which relates E∗
k(r, τ) to Ek (r, τ). We have

E∗
k(r, τ) = Ek

(
r,
−1
fτ

)(
−1
τ

)k
,(4.17)

If we denote Wf =

(
0 −1
f 0

)
then we can rewrite the previous identity as

E∗
k(r, τ) = det(Wf )

kEk (r,Wfτ) (Wfτ)
k .(4.18)

Remark 4.12 Note that in the case where f = 1 we have that Ek(τ) is invariant

under W1 therefore Ek(τ) is self dual. When f > 1 it is not the case since Wf =(
0 −1
f 0

)
/∈ Γ1(f).

The q-expansion of E∗
k(r, τ) is given by

E∗
k(r, τ) :=

(
(−1)k(2πi)k

(k − 1)!

)−1 ∑′

m,n

e2πin
r
f

(m+ nτ)k

= −Bk

k
+

f−1∑
b=0

e2πibr/f
∑
m∈Z

∑
n̸=0

1

(m+ (b+ fn)τ)k

= −Bk

k
+

f−1∑
b=0

e2πibr/f
∑
m≥1

∑
n≥1

mk−1(qm(fn+b)τ + (−1)kqm(fn−b)τ ).

For the second equality we have used the fact that(
(−1)k(2πi)k

(k − 1)!

)−1 (
ζ(k) + (−1)kζ(k)

)
= −Bk

k
.

Remark 4.13 Note that the constant term does not depend on r. Moreover, if

k odd, Bk = 0 and therefore E∗
k(r, τ) is cuspidal at the cusp i∞.

As in the previous case, for any γ ∈ Γ0(f) we have the useful transformation formula

E∗
k(γ ∗ r, γτ)(d(γτ))k = E∗

k(r, τ)(dτ)
k,

where

(
a b

c d

)
∗ r := ar ≡ d−1r (mod f). This is exactly as in the previous case

except that the action on the index r ∈ (Z/fZ)× is inverted. It is for this reason that

we have denoted it by ∗ instead of ⋆.
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4.8 Hecke operators on modular forms twisted by an additive

character

In this section we discuss the theory of Hecke operators on the Eisenstein series

introduced in the previous section.

Let f ∈ Z>0 and consider the complex curve Y1(f)(C) which classifies pairs (E,P ),

where E = C/Λ is a complex torus and P is a point of E of order f , modulo the

usual relation of equivalence, namely (E,P ) ∼ (E ′, P ′) if and only if there exists an

isomorphism of elliptic curves f : E → E ′ such that f(P ) = P ′. In order to simplify

the notation we will use the simpler notation (Λ, P ) to denote the pair (C/Λ, P ).
For every pair (Λ, P ) we can always find an ordered Z-basis (ω1, ω2) of Λ such that

P = 1
f
ω1 + Λ. We call the pair (ω1, ω2) a good basis for (Λ, P ). If (ω′

1, ω
′
2) is another

good basis then one can show that there exists a matrix γ ∈ Γ1(f) (uses the fact

that f > 2) such that γ

(
ω1

ω2

)
=

(
ω′
1

ω′
2

)
. The converse is also obviously true. In

particular, in every equivalence class of [(Λ, P )] ∈ Y1(f)(C) one can always find a pair

of the form (Λτ ,
1
f
+Λτ ) for some τ ∈ H where τ is uniquely determined modulo the

usual action of Γ1(f) on H.

Recall that a modular form of weight k on Y1(f)(C) can be viewed as a complex

valued function f on the set of the set of all pairs (Λ, P ) such that

(1) τ → f(Λτ ,
1
f
+ Λτ ) is meromorphic on H

(2) f(αΛ, α ∗ P ) = α−kf(Λ, P ) for all α ∈ C×.

where α∗P = αx+αΛ for P = x+Λ. Let (Λ, P ) be an arbitrary element of Y1(f)(C)
and let (ω1, ω2) be a good basis for (Λ, P ). For every fixed integer r ∈ Z/fZ, consider
the group homomorphism

ψ(Λ, P ) : Λ→ µf(4.19)

mω1 + nω2 7→ e−2πi rm
f
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An easy computation shows that the group homomorphism ψ(Λ, P ) does not depend

on the choice of the good basis (ω1, ω2). Let us denote the family of group homomor-

phisms {ψ(Λ, P )}(Λ,P ) by ψ∗.

In such a setting it makes sense to define a function Ek,ψ∗ on the set of all pairs

(Λ, P ) by the rule

Ek,ψ∗(Λ, P ) :=
∑

w∈Λ−{0}

ψ(Λ, P )(w)

wk
.

For any scalar β ∈ C× we define

(β ⋆ Ek,ψ∗)(Λ, P ) := Ek,ψ∗(βΛ, β ∗ P ).

If (ω1, ω2) is a good basis for (Λ, P ) then for any β ∈ C×, (βω1, βω2) is a good basis

for (βΛ, β ∗ P ). From this it follows that

Ek,ψ∗(βΛ, β ∗ P ) = β−k (Ek,ψ∗(Λ, P )) .

It thus follows that Ek,ψ∗ is a modular form of weight k.

We still have a notion of Hecke operators Tk(n) (k stands for the weight of the

Eisenstein series) where we define

(Tk(n)Ek,ψ∗)(Λ, P ) := nk−1
∑

[Λ:Λ′]=n
(Λ,P )↠(Λ′,P ′)

Ek,ψ∗(Λ
′, P ′),

where the notation (Λ, P ) ↠ (Λ′, P ′) means the following: we have nΛ ⊆ Λ′ and

therefore we have a natural projection π : C/nΛ→ C/Λ′. Let P = λ+Λ and denote

by n ∗ P = nλ+ nΛ ∈ C/nΛ. Then the notation (Λ, P ) ↠ (Λ′, P ′) is taken to mean

that π(n∗P ) = P ′. Note that when (n, f) = 1 the map π : C/nΛ→ C/Λ′ is injective

on the f -torsion and therefore n ∗ P , which is point of order f , maps necessarily to

a point of order f . Assume that (Λ, P ) ↠ (Λ′, P ′) and that (ω1, ω2) (resp. (ω′
1, ω

′
2))

is a good basis for (Λ, P ) (resp.(Λ′, P ′)). Then n
f
ω1 + Λ′ = 1

f
ω′
1 + Λ′. From this we

deduce that if (ω1, ω2) is a good basis for (Λ, P ) then there exists λ′ ∈ Λ′ such that

(nω1 + λ′, ω2) is a good basis for (Λ′, P ′). In particular Λ/Λ′ ≃ Z/nZ.
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Now we would like to compute the action of the Hecke operators Tk(p) on Ek,ψ∗

for p coprime to f . We have

(Tk(p)Ek,ψ∗)(Λ, P ) = pk−1
∑

[Λ:Λ′]=p
(Λ,P )↠(Λ′,P ′)

Ek,ψ∗(Λ
′, P ′)

= pk−1Ek,ψ∗(Λ, P ) + pk−1pEk,ψ∗(pΛ, p ∗ P )(4.20)

= pk−1Ek,ψ∗(Λ, P ) + Ek,ψp
∗(Λ, P ).

The equality (4.20) comes from the facts that the ∪[Λ:Λ′]=pΛ
′ = Λ and that for two

distinct lattices Λ′, Λ′′ of index p in Λ we have Λ′ ∩ Λ′′ = pΛ. When p ≡ 1 (mod f)

one has Tk(p)Ek,ψ∗ = (1 + pk−1)Ek,ψ∗ , i.e., Ek,ψ,φ∗ is an eigenvector with eigenvalue

1 + pk−1.

A direct calculation shows that

Ek,ψ∗

(
Λτ ,

1

f
+ Λτ

)
= Ek(r, τ)

where ψ∗ is chosen as in (4.19) and Ek(r, τ) is the Eiseinstein series appearing in

Definition 4.7.

Therefore the identity for the Hecke operator (4.20) holds for Ek(r, τ).

Definition 4.9 We define

Ek,p(r, τ) := Ek(r, τ)− pk−1Ek(p
−1r, pτ).

Note that Ek(r, τ) is Γ1(f)-modular and Ek,p(r, τ) is Γ1(f) ∩ Γ0(p)-modular both

of weight k.

We define the additive Hecke operator Up,a on the set of meromorphic functions

g : H → C to be

Up,ag(τ) :=
1

p

p−1∑
j=0

g

(
τ + j

p

)
.

Proposition 4.8 The Eisenstein series Ek,p(r, z) is a Up,a-eigenvector with eigen-

value 1, i.e.,

Up,aEk,p(r, τ) =
1

p

p−1∑
j=0

Ek,p

(
r,
τ + j

p

)
= Ek,p(r, τ).(4.21)
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Proof We have

Tk(p)Ek(r,Λτ ) = pk−1

p−1∑
j=0

Ek(r, pZ+ (τ + j)Z) + pk−1Ek,r(Z+ pτZ)

=
1

p

p−1∑
j=0

Ek(pr,Λ τ+j
p
) + pk−1Ek(r,Λpτ )

= Up,aEk(pr, τ) + pk−1Ek(r, pτ).

Replacing r by p−1r in the last equality we find

Tk(p)Ek(p
−1r, τ) = Up,aEk(r, τ) + pk−1Ek(p

−1r, pτ).(4.22)

We are now ready to compute the action of Up,a on

Ek,p(r, τ) = Ek(r, τ)− pk−1Ek(p
−1r, pτ).

We have

Up,aEk,p(r, τ) = Up,aEk,p(r, τ)− pk−1Up,aEk(p
−1r, pτ).(4.23)

Using (4.22) for the first term of the right hand side of (4.23) and the definition of

Up,a for the second term, we deduce

Up,aEk,p(r, τ) = Tk(p)Ek(p
−1r, τ)− pk−1Ek(p

−1r, pτ)− pk−11

p

p−1∑
j=0

Ek(p
−1r, τ + j)

= Tk(p)Ek(p
−1r, τ)− pk−1Ek(p

−1r, pτ)− pk−1Ek(p
−1r, τ)

= pk−1Ek(p
−1r, τ) + Ek(r, τ)− pk−1Ek(p

−1r, pτ)− pk−1Ek(p
−1r, τ)

= Ek,p(r, τ).

where in the third equality we have used (4.20). □

Definition 4.10 We define

E∗
k,p(r, τ) := E∗

k(r, τ)− pk−1E∗
k(r, τ).

Note that there is no twist by p on the second index.
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Proposition 4.9 We have

Up,aE
∗
k,p(r, τ) = E∗

k(pr, τ)− pk−1E∗
k(r, pτ).(4.24)

Proof This involves a computation similar to the one in the proof of Proposition 4.8.

□

Remark 4.14 Even if E∗
k,p(r, τ) is not an Up,a-eigenvector (unless p ≡ 1(mod f))

it is still very close.

4.9 The q-expansion of Ek,p(r, τ)

For any rational number a
b
∈ Q with (b, f) = 1 define (a

b
)f to be the unique represen-

tative modulo f between 0 and f − 1 congruent to a
b
.

The q-expansion of Ek,p(τ) is given by

Ek,p(r, τ)

=
−B̃k(r/f)

k
+

1

fk

f−1∑
b=0

e−2πibr/f
∑
m≥1

∑
n≥1

mk−1(qmnτ+b/f + (−1)kqmnτ−b/f )−

pk−1

(
−B̃k((p

−1r)f/f)

k

1

fk

f−1∑
b=0

e−2πibr/f
∑
m≥1

∑
n≥1

mk−1(qmnpτ+pb/f + (−1)kqmnpτ−pb/f )

)

=

(
−B̃k(r/f)

k
+ pk−1 B̃k(−(p−1r)f/f)

k

)
+

1

fk

f−1∑
b=0

e−2πibr/f
∑
m≥1

(m,p)=1

∑
n≥1

mk−1(qmnτ+b/f + (−1)kqmnτ−b/f ).

We thus readily see that for k ≡ k′ (mod pn(p− 1)) all coefficients of Ek,p(τ) vary p-

adically continuously when n goes to infinity. In particular for a fix congruence class

a modulo p− 1, if we look at all the integers k ≡ a (mod p− 1) and k ≡ 0 (mod pn)

with n going to infinity, we see that all the coefficients are analytic functions in the

weight k. We thus have a one dimensional p-adic family of Eisenstein series.
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4.10 Relation between Eisenstein series and modular units

A calculation shows that

(1) dlog(g( r
f
,0)(fτ)

12) = 12 · dlog(g( r
f
,0)(fτ)) = −24πifE2(r, τ)dτ ,

(2) dlog(g(0, r
f
)(τ)

12) = 12 · dlog(g(0, r
f
)(τ)) = −24πiE∗

2(r, τ)dτ

where dlog stands for the logarithmic derivative with respect to the variable τ .

This motivates the following definition

Definition 4.11 Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩ be a good di-

visor then we associate to this divisor four families of Eisenstein series. We set

(1) Fk,δ(τ) :=
∑

d0,r
d0n(d0, r)Ek(r, d0τ),

(2) F ∗
k,δ(τ) :=

∑
d0,r

dk−1
0 n(N0

d0
, r)E∗

k(r, d0τ),

(3) Gk,δ(τ) :=
∑

d0,r
d0n(d0, r)E

∗
k(r, d0τ),

(4) G∗
k,δ(τ) :=

∑
d0,r

dk−1
0 n

(
N0

d0
, r
)
Ek(r, d0τ),

and also

Fk,δ,p(τ) :=
∑
d0,r

n(d0, r)d0Ek,p(r, d0τ)

=
∑
d0,r

d0n(d0, r)Ek(r, d0τ)− pk−1
∑
d0,r

d0n(d0, r)Ek(p
−1r, d0pτ)

= Fk,δ(τ)− pk−1Fk,δ(pτ),

where the last equality uses the fact that p ⋆ δ = δ. Similarly we define

(i) F ∗
k,δ,p(τ) = F ∗

k,δ(τ)− pk−1F ∗
k,δ(pτ),

(ii) Gk,δ,p(τ) = Gk,δ(τ)− pk−1Gk,δ(pτ),

(iii) G∗
k,δ,p(τ) = G∗

k,δ(τ)− pk−1G∗
k,δ(pτ).

48



The motivation for these definitions is justified by the next proposition:

Proposition 4.10 Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩ be a good

divisor then when the weight is equal to k = 2 we have

(1) dlog βδ(τ) = −24πifF2,δ(τ)dτ

(2) dlog βδ,p(τ) = −24πifF2,δ,p(τ)dτ

and similarly

(3) dlog β∗
δ (τ) = −24πiF ∗

2,δ(τ)dτ

(4) dlog β∗
δ,p(τ) = −24πiF ∗

2,δ,p(τ)dτ .

Moreover the Eisenstein series Fk,δ(τ) and F
∗
k,δ(τ) are related by the formula

Fk,δ(WfN0τ) = (−τ)kN0F
∗
k,δ(τ),(4.25)

where WfN0 =

(
0 −1

fN0 0

)
. And similarly the Eisentein series Gk,δ(τ) and G

∗
k,δ(τ)

are related by the formula

Gk,δ(WfN0τ) = N0(fτ)
kG∗

k,δ(τ).

Proof All these identities are straight forward computations. □

Remark 4.15 For l a prime number coprime to fN0 we have

Tk(l)Fk,δ(z) = (1 + lk−1)Fk,δ(z).

Similarly for l a prime number coprime to pfN0 we have

Tk(l)Fk,δ,p(z) = (1 + lk−1)Fk,δ,p(z).

Moreover equation (4.21) shows that for any k ≥ 2 we have

Up,aFk,δ,p(z) = Fk,δ,p(z).
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The group Γ0(fN0) (resp. Γ0(pfN0)) acts transitively on the family

{Fk,δr(τ)}r∈(Z/fZ)×/⟨p⟩

(resp. the family {Fk,δr,p(τ)}r∈(Z/fZ)×/⟨p⟩). The same thing also holds when we take

the dual Eisenstein series F ∗
k,δr

(τ). Everything is straight forward except the Up,a-

invariance. For the latter , we use the fact that p ⋆ δ = δ combined with equation

(4.24).

Remark 4.16 Because δ =
∑

d0,r
n(d0, r)[d0, r] is good we have for every r ∈

Z/fZ that
∑

d0|N0
n(d0, r)d0 = 0. This last condition implies that Fk,δ(z) and Gk,δ(z)

are holomorphic at∞ = 1
0
. Similarly we have that F ∗

k,δ(z) andG
∗
k,δ(z) are holomorphic

at 0.

5 The Z-valued measures µr{c1 → c2} and the in-

variant u(δr, τ )

5.1 Z-valued measures on P1(Qp)

Let 0 ̸= δ ∈ D(N0, f)
⟨p⟩ be a good divisor. Consider the family of modular units

{βδr,p(τ)}r∈(Z/fZ)×/⟨p⟩.

To such a family we want to associate a family of measures. Before defining the

measures we need to define some suitable subgroups of matrices of GL2(Z[1p ]).

Definition 5.1 For quantities p, f,N0 fixed we define

(1) Γ̃0 := {

(
a b

c d

)
∈ GL+

2 (Z[1/p]) : c ≡ 0(mod fN0)},

(2) Γ0 = {γ ∈ Γ̃0 : det(γ) = 1} = {

(
a b

c d

)
∈ SL2(Z[1p ]) : c ≡ 0(mod fN0)},
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(3) Γ1 = {

(
a b

c d

)
∈ SL2(Z[1p ]) : a ≡ 1(mod f), c ≡ 0(mod fN0)}.

(4) Γ = {

(
a b

c d

)
∈ SL2(Z[1p ]) : a, d ≡ 1(mod f), b, c ≡ 0(mod fN0)}.

Obviously one has the inclusions Γ̃0 ⊇ Γ0 ⊇ Γ1 ⊇ Γ. Note that the group Γ̃0 =

⟨Γ0(fN0), P ⟩ where P =

(
p 0

0 1

)
.

Remark 5.1 We have an almost transitive action of Γ0 on B where B is defined

as the set of balls of P1(Qp). One has B = Γ0(Zp)
∐

Γ0(P1(Qp)\Zp).

We can now define a family of measures. For the rest of the subsection we assume

that δ ∈ D(N0, f)
⟨p⟩ is fixed good divisor.

Definition 5.2 Let (c1, c2, k) ∈ Γ0(fN0)(i∞)×Γ0(fN0)(i∞)×(Z/fZ)×/⟨p⟩. Let
B ∈ B be any ball of P1(Qp). If B is inside the coset SL2(Z[1p ])(Zp) set ϵ = 1 otherwise

set ϵ = −1. If ϵ = 1 choose γ ∈ Γ s.t. γZp = B. If ϵ = −1 choose γ ∈ Γ such that

γZp = P1(Qp)\B. We define

µk{c1 → c2}(B) = ϵ
1

2πi

∫ γ−1c2

γ−1c1

dlogβδγ−1⋆k,p
(τ).(5.1)

where γ ⋆ k ≡ dk(mod f) for γ =

(
a b

c d

)
∈ Γ0 ⊆ SL2(Z[1p ]). It makes sense to

reduce d modulo f because its denominator is at worst a power a p which is coprime

to f .

Note that StabΓ0(Zp) = Γ0(pN0) ∩ Γ0(f) = Γ0(pfN0). Therefore since the modular

units in {βδk,p(τ)}k∈(Z/fZ)×/⟨p⟩ are Γ0(pfN0)-invariant in the sense that

βδγ⋆k,p(γτ) = βδk,p(τ),

we get that (5.1) is well defined.

We can now state the main theorem of the section
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Theorem 5.1 There exists a unique system of measures indexed by

Γ0(i∞)× Γ0(i∞)× (Z/fZ)×/⟨p⟩

satisfying the following properties: For all (c1, c2, k) ∈ Γ0(i∞)×Γ0(i∞)×(Z/fZ)×/⟨p⟩

(1) µk{c1 → c2}(P1(Qp)) = 0,

(2) µk{c1 → c2}(Zp) = 1
2πi

∫ c2
c1

dlogβδk,p(τ),

(3) (Γ0-invariance property) For all γ ∈ Γ0 and all compact open U ⊆ P1(Qp) we

have

µγ⋆k{γc1 → γc2}(γU) = µk{c1 → c2}(U).

Proof The Up,m-invariance of the βδk,p(τ)’s implies that µk{c1 → c2} are distributions
on P1(Qp). Also since ∀c ∈ Γ0(fN0)(i∞) we have βδk,p(c) = 1, the line integrals

can be interpreted as the winding number with respect to the origin of a closed path

βδk,p(C) where C is an arbitrary path joining γ−1c1 to γ
−1c2. So we really get Z-valued

measures. The Γ0-invariance comes from the definition of the measures. Finally the

uniqueness follows from the properties (1)-(3) combined with the fact that Γ0 splits

B into two orbits. □

Remark 5.2 Theorem 5.1 gives us a partial modular symbol of Z-valued mea-

sures on P1(Qp) i.e.

µ { → } : Γ0(i∞)× Γ0(i∞)× (Z/fZ)×/⟨p⟩ → {Z-valued measures on P1(Qp)}

(c1, c2, k) 7→ µk{c1 → c2}.

Note that the image of µ { → } lies in the set of Γ0-invariant measures.

In the next subsection using explicit formulas for the moments of those periods

we will see that this modular symbol is odd in the sense that

1

2πi

∫ −c2

−c1
dlogβδ−k,p(τ) = −

1

2πi

∫ c2

c1

dlogβδk,p(τ),

in other words µ−k{−c1 → −c2}(Zp) = −µk{c1 → c2}(Zp).
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Remark 5.3 Finally it should be pointed out that the Up,m-invariance of βδk,p(z)

combined with the fact that p⋆δ = δ implies that the measures constructed in theorem

5.1 are in fact Γ̃0 := ⟨Γ0,

(
p 0

0 1

)
⟩-invariant, see Proposition 5.13 of [Dar01].

We have a notion of a dual family of measures.

Definition 5.3 Let c1, c2 ∈ Γ0(0). We define µ∗
k{c1 → c2} as:

µ∗
k{c1 → c2}(B) = ϵ

1

2πi

∫ γ−1c2

γ−1c1

dlogβ∗
δγ−1⋆k,p

(τ).(5.2)

where ϵ = 1 if B ∈ Γ0Zp with γZp = B and ϵ = −1 if B ∈ Γ0(P1(Qp)\Zp) and

γZp = P1(Qp)\B.

We have an analogue of theorem 5.1 except that γ ⋆ r is replaced by γ ∗ r and the set

of cusps of Γ0(fN0)(i∞) by the set of cusps Γ0(fN0)(0). Note that γ ∗ r = γ−1 ⋆ r.

The reader also will have no problem to formulate the analogue of theorem 5.1.

5.2 Periods of modular units and Dedekind sums

This section might be skipped at the first reading. We included it only for the sake

of completeness. We use Dedekind sums to give explicit formulas for the periods of

the modular units considered in theorem 5.1.

Let us start with a very general principal which comes from calculus

Proposition 5.1 (general principle) Let G ⊆ SL2(Z) be a discrete subgroup. Let

X be the two dimensional compact surface (real dimensions) defined by X := H∗/G

where H∗ = H ∪ P1(Q). Let f(τ)dτ be a C∞-closed 1-form on H ∪ {∞} which is

G-invariant. Then for any fixed g ∈ G the quantity∫ gx

x

f(τ)dτ

does not depend on the base point x when x varies inside H ∪G(i∞).
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Remark 5.4 In the previous proposition we assume that the path of integration

between x and gx to be “nice”, i.e. that it is contained in a contractible path inside

H ∪G(i∞).

Proof First of all the integrals do not depend on the path of integration since f(τ)dτ

is a closed C∞ 1-form. Let x, x′ ∈ H ∪ G(i∞) be arbitrary points. Let C,C ′ be

arbitrary curves joining x, gx and x′, gx′ respectively. Let C ′′ be a curve joining the

points x and x′. Note that the curve gC ′′ joins the points gx and gx′. Now integrating

counterclockwise on the closed curve C ∪ C ′′ ∪ C ′ ∪ gC ′′ (the bar takes into account

the orientation) and applying Stoke’s theorem we obtain 0. Since
∫
C′′ f(τ)dτ =

−
∫
gC′′ f(τ)dτ we deduce that

∫
C
f(τ)dτ =

∫
C′ f(τ)dτ . □

Let δ =
∑

d0,r
n(d0, r)[d0, r] ∈ D(N0, f)

⟨p⟩ be a good divisor that we fix until the

end of the subsection. We want to give explicit formulas for

1

2πi

∫ c2

c1

dlog(u(z))dz

in the case where u(z) is the modular unit βδ(z) or βδ,p(z).

Let a = (a1, a2) be rational numbers contained in the interval [0, 1[. Since ga(τ)

has no zeros in H we can define the logarithm of such modular units on H. We fix a

branch of log ga(τ) by setting

log(ga(τ)) = πiB2(a1)τ + log(1− qz) +
∑
n≥1

(log(1− qnτ qz) + log(1− qnτ q−z)).

For |x| < 1 we define log(1−x) := −
∑

n≥1 x
n/n. Because of the assumption on a1, a2

we have that 0 ≤ |qnτ qz| < 1 and 0 ≤ |qnτ q−z| < 1 for 1 ≤ n where z = a1τ + a2 ∈
C, τ ∈ H. We define ∼: Q2 −→ [0, 1[2 be the function for which (u1, u2) ∈ Q2 goes to

˜(u1, u2) = (a1, a2) with u1 ≡ a1(mod Z) and u2 ≡ a2(mod Z).

Definition 5.4 Let (a1, a2) ∈ ( 1
N
Z)2 and γ ∈ SL2(Z). We define the γ-period of

the Siegel function ga(τ) to be

πa(γ) := (log gã(γτ)− log gãγ(τ)) |τ=i∞ ∈
πi

12N
Z.(5.3)
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Remark 5.5 Up to a multiple of iπ those periods are rational since

ga(γτ)
12N = gaγ(τ)

12N ∀γ ∈ SL2(Z).

In fact, using the Γ(N)-invariance we see that any element τ ∈ H ∪ Γ(N)(i∞) can

be used to compute the period πa(γ). This is an application of Proposition 5.1 to

the 1-form d
dτ

(log gã(γτ)− log gãγ(τ)) on the curve X(N). In practice we will take

τ = i∞. Note also that (5.3) depends only on the image of a in (Q/Z)2[N ].

A property satisfied by those periods πa(γ) is the so called cocycle condition.

Proposition 5.2 Let γ1, γ2 ∈ SL2(Z) then πa(γ1γ2) = πa(γ1) + πaγ1(γ2).

Proof We have πa(γ1γ2) = log gã(γ1γ2τ) − log gãγ1γ2(τ) where τ is any point in the

upper half plane. We also have log gã(γ1γ2τ)− log gãγ1(γ2τ) = πa(γ1). It thus follows

that πa(γ1γ2) = πa(γ1) + log gãγ1(γ2τ)− log gãγ1γ2(τ) = πa(γ1) + πaγ1(γ2). □

Proposition 5.3 (Schöneberg) Let γ =

(
a b

c d

)
∈ SL2(Z) and r, s ∈ Z, not

both congruent to 0 modulo N then

π( r
N
, s
N
)(γ) =

 πi
(
a
c
B̃2(

r
N
) + d

c
B̃2(

r′

N
)− 2sgn(c)sN( r

N
, s
N
)(a, c)

)
if c ̸= 0;

πi b
d
B̃2(

r
N
) if c = 0

where
(

r
N

s
N

)( a b

c d

)
=
(

r′

N
s′

N

)
and sN( r

N
, s
N
)(a, c) is a twisted Dedekind sum:

sN( r
N
, s
N
)(a, c) =

∑
i(mod c)

B̃1

(
r + iN

cN

)
B̃1

(
r′ + aiN

cN

)
.

Proof See p. 199 of [B. 74].

For N > 1 we have the double coset

SL2(Z)

(
N 0

0 1

)
SL2(Z) =

∐
i

SL2(Z)xi
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where the xi’s can be chosen as upper triangular matrices of the form

(
a b

0 d

)
with

a, d > 0, ad = N and 0 ≤ b ≤ d− 1.

Definition 5.5 For a matrix γ ∈ SL2(Z) we define TN(γ) and RN(γ) to be ma-

trices such that

(
N 0

0 1

)
γ = TN(γ)RN(γ) where TN(γ) ∈ SL2(Z) and RN(γ) is

equal to a unique representative xi.

For any matrix γ =

(
a b

c d

)
∈ SL2(Z) it is also convenient to define

γ(N) :=

(
N 0

0 1

)
γ

(
1
N

0

0 1

)
=

(
a bN

c/N d

)
.

Remark 5.6 Note that the map γ 7→ γ(N) induces a group isomorphism from

Γ0(N) to Γ0(N).

Proposition 5.4 Let δ ∈ D(N0, f)
⟨p⟩ and r ∈ Z/fZ. For any

(
a b

c d

)
= γ ∈

Γ0(fN0) we have

1

12
(log βδr(γτ)− log βδr(τ)) =

∑
k∈Z/fZ

∑
d0|N0

n(d0, k)π( rk
f
,0)(Tfd0(γ)).(5.4)

and

1

12
(log βδr(pγτ)− log βδr(pτ)) =

∑
k∈Z/fZ

∑
d0|N0

n(d0, k)π( rk
f
,0)(Tpfd0(γ))(5.5)

Proof We only prove the equality (5.5) since (5.4) can be proved in a similar but

simpler way.

Let γ ∈ Γ0(fN0). We compute:

log βδr(pγτ)− log βδr(pτ)

=
∑

k∈Z/fZ

∑
d0|N0

n(d0, k)

(
log g

(̃ rk
f
,0)
(fd0pγτ)

12 − log g
(̃ rk

f
,0)
(fd0pτ)

12

)
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We can write

(
pfd0 0

0 1

)
γ = Tpfd0(γ)Rpfd0(γ) for Tpfd0(γ) ∈ SL2(Z) and Rpfd0(γ)

is some primitive upper triangular matrix of determinant pfd0 that will be chosen

later. We thus get

1

12

∑
k∈Z/fZ

∑
d0|N0

n(d0, k)

(
log g

(̃ rk
f
,0)
(fd0pγτ)

12 − log g
(̃ rk

f
,0)
(fd0pτ)

12

)
=

∑
k∈Z/fZ

∑
d0|N0

n(d0, k)

(
log g

(̃ rk
f
,0)
(Tpfd0(γ)Rpfd0(γ)τ)− log g

(̃ rk
f
,0)
(pfd0τ)

)
.(5.6)

But

log g
(̃ rk

f
,0)
(Tpfd0(γ)Rpfd0(γ)τ) = log g ˜( rk

f
,0)Tpfd0 (γ)

(Rpfd0(γ)τ) + π( rk
f
,0)(Tpfd0(γ)).

(5.7)

Substituting (5.7) in (5.6) we get that the right side of (5.6)

(5.8) =
∑

k∈(Z/fZ)×

∑
d0|N0

n(d0, k)π( rk
f
,0)(Tpfd0(γ))+

∑
k∈Z/fZ

∑
d0|N0

n(d0, k)

(
log g ˜( rk

f
,0)Tpfd0 (γ)

(Rpfd0(γ)τ)− log g( rk
f
,0)(pfd0τ)

)
.

It remains to evaluate the second term of (5.8).

If p|c we can take Rpfd0(γ) =

(
pfd0 0

0 1

)
. However when p ∤ c we take

Rpfd0(γ) =

(
fd0 fd0j

0 p

)
where 1 ≤ j ≤ p − 1 is chosen in such a way that

i ≡ d
c
(mod p). Note that j does not depend on d0. In order to evaluate the second

term of (5.8) we let τ → i∞ and we use the explicit formula for the matrices Tpfd0(γ)

and Rpfd0(γ).

Let Tpfd0(γ) =

(
Ad0 Bd0

Cd0 Dd0

)
and Rpfd0(γ) =

(
A′
d0

B′
d0

0 C ′
d0

)
. Note that by
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assumption B′
d0

= 0 if p|c and B′
d0

= jd0f if p ∤ c . One finds

lim
τ→i∞

∑
k∈Z/fZ

∑
d0|N0

n(d0, k)

(
log g ˜( rk

f
,0)Tpfd0 (γ)

(Rpfd0(γ)τ)− log g
(̃ rk

f
,0)
(pfd0τ)

)
=

lim
τ→i∞

∑
k∈(Z/fZ)×

∑
d0|N0

n(d0, k)

(
log g ˜

(
rkAd0

f
,0)
(
A′
d0
τ +B′

d0

C ′
d0

)− log g
(̃ rk

f
,0)
(pfd0τ)

)
= 0.

For the last equality we have used the the fact that
∑

d0
n(d0, k)d0 = 0 for all k ∈

Z/fZ. □

We end this subsection by rewriting the formulas obtained in proposition 5.4 in a

more compact way.

Proposition 5.5 Let γ =

(
a b

c d

)
∈ Γ0(fN0) where c ̸= 0. Then we have the

following formulas:

µj{i∞→ γ(i∞)}(Zp)(5.9)

=
1

2πi

(
log βδj ,p(γτ)− log βδj ,p(τ)

)
= −12 · sign(c)

∑
d0,r

n(d0, r)
(
D
rj(mod f)
1,1 (a, c/d0)−Drj(mod f)

1,1 (pa, c/d0)
)

For the definition of D
r(mod f)
1,1 (a, c) see Definition 11.1.

5.3 The modular symbols are odd

Let

(
a b

c d

)
= γ ∈ Γ0(fN0) then we define the involution γι =

(
a −b
−c d

)
. Note

that for γ1, γ2 ∈ Γ0(fN0) we have (γ1γ2)
ι = γι1γ

ι
2. Let also zι = −z̄ be the natural

involution on H then we have γιzι = (γz)ι.

One can also verify that TN(γ)
ι = TN(γ

ι). Remember also that the function B̃1

is odd. Using the previous observations we deduce the important equality

sN( r
N
,0)(a,−c) = −sN( r

N
,0)(a, c).
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It thus follows that

π( r
N
,0)(γ

ι) = −π( r
N
,0)(γ).(5.10)

This last equality is important because it tells us that the family of measures con-

structed in theorem 5.1 give rise to odd modular symbols. So using the explicit

formulas in Proposition 5.4 we get the following proposition:

Proposition 5.6 Let u(z) = βδ(τ) or βδ,p(τ). Then we have∫ −c2

−c1
dlog u(z) = −

∫ c2

c1

dlog u(z)

for any c1, c2 ∈ Γ0(fN0)(i∞).

Proof Let γ1, γ2 ∈ Γ0(fN0) be such that γ1(i∞) = c1 and γ2(i∞) = c2. Since

γιj(i∞) = −γj(i∞) = −cj (j = 1, 2) we find that∫ c2

c1

dlog u(z) = −
∫ c1

i∞
dlog u(z) +

∫ c2

i∞
dlog u(z)

=

∫ −c1

i∞
dlog u(z)−

∫ −c2

i∞
dlog u(z)

= −
∫ −c2

−c1
dlog u(z).

where the second equality follows from Proposition 5.4 combined with (5.10).

5.4 From H to Z/fZ×HOp (N0)

We would like to generalize theorem 3.1 to real quadratic number fields. Unfortu-

nately one cannot evaluate modular units on a real quadratic argument τ ∈ K since

K ∩ H = ∅. What one does is to replace H by the p-adic upper half-plane Hp :=

P1(Cp)−P1(Qp), equipped with its structure of a rigid analytic space. We take the op-

portunity here to introduce some useful notation that will be used for the sequel. For

any Z-module M ⊆ C and a prime number p, we define M (p) :=M [1
p
] ≃M ⊗Z Z[1p ].
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Let p be a prime number inert in K. Choose a Z-order O ⊆ K and fix a positive

integer N coprime to p. In [DD06] they associate to such data the set

HO
p (N) = HO

p := {τ ∈ Hp : O(p)
τ = O(p)

Nτ = O
(p), τ − τσ > 0},(5.11)

where Oτ = EndK(Λτ ), Λτ = Z+ τZ and GK/Q = {1, σ}.

Remark 5.7 Note that (5.11) differs slightly from [DD06] since in their setting

O is assumed to be Z[1
p
]-orders instead of Z-orders. Therefore there is no need to

tensor over Z[1
p
]. This has the obvious advantage of simplifying the notation in (5.11).

However having in mind of using the notion of discriminants (covolume) of lattices,

we have decided to work with Z-modules.

Implicitly in the definition of HO
p , there is a level N structure which is assumed to

be fixed. One can verify that the set HO
p is nonempty if and only if there exists an

O-ideal a such that O/a ≃ Z/N , this is the so called Heegner hypothesis. In the spirit

of the remark 3.1 we propose the following distinguished subset of HO
p (N) = HO

p .

Definition 5.6 Let K be a real quadratic number field. Let p be a prime number

inert in K. Fix a Z-order O of K. Let f(called the conductor) be a positive integer

coprime to p · disc(O). Let N0 (called the level) be a positive integer coprime to pf .

To such data we associate the distinguished subset HO
p (N0, f) ⊆ HO

p (N0) where

HO
p (N0, f) := {τ ∈ Hp : O(p)

τ = O(p)
N0τ

= O(p), (Λ(p)
τ , f) = 1, τ > τσ},

where GK/Q = {1, σ}.

The notation (Λ
(p)
τ , f) = 1 means that Λ

(p)
τ , as an O(p)-ideal, is coprime to fO(p). We

have a natural action of

Γ̃0 :=

{(
a b

c d

)
∈ GL+

2 (Z[
1

p
]) : c ≡ 0(mod fN0)

}

on the set Z/fZ×HO
p (N0) given by(

a b

c d

)
⋆ (k, τ) =

(
dk,

aτ + b

cτ + d

)
,
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where γ =

(
a b

c d

)
∈ Γ̃0. Note that the quotient (Z/fZ ×HO

p (N0, f))/Γ̃0 is finite

(This will be proved, see (5.13)). We now define a map that allows us to go from

Z/fZ×HO
p (N0, f) to O(p)-ideals.

Definition 5.7 We define a map Ω (which depends on O, p,N0, f)

Ω : Z/fZ×HO
p (N0, f)→ IO(p)

where IO(p) stands for the monoid of integral O(p)-ideals of K by the following rule:

(r, τ) 7→ ArΛ
(p)
τ

where Ar ∈ Z>0 is the smallest integer such that the following two conditions

(1) Ar ≡ r (mod f),

(2) ArΛ
(p)
τ is O(p)-integral,

hold true.

Remark 5.8 This remark gives an explicit description of the integer Ar. Let

(r, τ) ∈ Z/fZ × HO
p (N0, f) and let Qτ (x, y) = Ax2 + Bxy + Cy2. Write A = pnA0

where (A0, p) = 1. Let Ω(r, τ) = ArΛ
(p)
τ . We have

ArΛ
(p)
τ =

(
ArZ[1p ] +

Ar
A

(
−B +

√
D

2

)
Z[1

p
]

)
,

where disc(O) = D = B2 − 4AC. By definition we have ArΛ
(p)
τ is O(p)-integral, i.e.,

ArΛ
(p)
τ ⊆ O(p) =

(
Z[1

p
] +
√
DZ[1

p
]
)
. It thus follows that A0|Ar. Because (Λτ , fO) = 1

we have (A, f) = 1, so there exists a unique integer s such that 1 ≤ s ≤ (f − 1) and

sA0 ≡ r (mod f). Note that sA0Λ
(p)
τ is O(p)-integral. We readily see, by definiton of

Ar, that Ar = sA0. It thus follows that sA = pnAr.

Definition 5.8 Let (r, τ), (r′, τ ′) ∈ Z/fZ×HO
p (N0, f). Let Ω(r, τ) = ArΛ

(p)
τ and

Ω(r′, τ ′) = A′
r′Λ

(p)
τ ′ . We say that (r, τ) ∼ (r′, τ ′) if and only if there exists a totally

positive element

λ ∈ 1 + fΩ(r′, τ ′)−1,
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such that
(
ArΛ

(p)
τ , ArΛ

(p)
N0τ

)
)
=
(
λA′

r′Λ
(p)
τ ′ , λA

′
r′Λ

(p)
N0τ ′

)
.

Remark 5.9 One should be careful since in genral if Ω(r, τ) = A(r, τ)Λ
(p)
τ and

Ω(r,N0τ) = A(r,N0τ)Λ
(p)
N0τ

then the integerA(r, τ) is not necessarily equal toA(r,N0τ).

Remark 5.10 Note that if (r, τ), (r′, τ ′) ∈ (Z/fZ)× × HO
p (N0, f) we have that

(r, τ) ∼ (r′, τ ′) if and only if there exists a λ ∈ QO(p),1(f∞) such that(
ArΛ

(p)
τ , ArΛ

(p)
N0τ

)
)
=
(
λAr′Λ

(p)
τ ′ , λAr′Λ

(p)
N0τ ′

)
.

We have a natural identification of ((Z/fZ)× ×HO
p (N0, f))/ ∼ with

{(L,M) : pairs of Z[1
p
]-modules of rank 2 in K,EndK(L) = EndK(M) = O(p)

(L, fO(p)) = (M, fO(p)) = 1, and L/M ≃ Z/N0Z}/QO(p),1(f∞)}

which again can be identified to

{(L,M) : pairs of Z-modules of rank 2 in K,EndK(L) = EndK(M) = O

(L, fO) = (M, fO) = 1, and L/M ≃ Z/N0}/⟨QO,1(f∞), (p)⟩.

This identification will allow us to view ((Z/fZ)× × HO
p (N0, f))/ ∼ as a disjoint

union of finitely many copies of a certain generalized ideal class group attached to

O(p) = O[1
p
].

Let us assume the existence of an O(p)-ideal a such that O(p)/a ≃ Z/N0Z. Then

there exists an inclusion

IO(p)(f)/QO(p),1(f∞) ↪→ ((Z/fZ)× ×HO
p (N0, f))/ ∼(5.12)

given by the following rule:

Choose an invertible O(p)-ideal a ⊴ O(p) coprime to f such that O(p)/a ≃ Z/N0Z.
Then for an ideal I ∈ IO(p)(f) we associate the pair (I, aI). A calculation shows that

there always exists a λ ∈ QO(p),1(f∞) such that (I, aI) = λ(AΛ
(p)
τ , AΛ

(p)
N0τ

) for some

integer A and τ ∈ K. Obviously this map is an inclusion. However it is not canonical
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since it depends on the choice of the ideal a. The number of distinct inclusions as in

(5.12) is in bijection with

{a ⊴ O : a is an invertible O-ideal and O/a ≃ Z/N0Z}.(5.13)

Class field theory gives us an isomorphism

IO(p)(f)/QO(p),1(f∞) ≃ IO(f)/⟨QO,1(f∞), p⟩ rec
−1

→ GHO(f∞)⟨Fr℘⟩/K

where HO(f∞) is the abelian extension of K corresponding to IO(f)/QO,1(f∞) by

class field theory. We let L := HO(f∞)⟨Fr℘⟩ be the subfield of HO(f∞) fixed by the

Frobenius at pO = ℘. Therefore in this case we get an natural action of GL/K on

(Z/fZ)× ×HO
p (N0, f) given by the following rule

rec−1(b) ⋆ (L,M) = (bL, bM).

Obviously this action is simple but in general not transitive since (5.13) could be of

size larger than 1.

The next two lemmas show that ∼ is equivalent to the action of Γ̃0 when restricted

to the set (Z/fZ)× × HO
p (N0, f). Before proving the two lemmas we recall some

useful identities about quadaratic forms. If γ =

(
a b

c d

)
∈ GL2(Q) we define

γ∗ =

(
d −b
−c a

)
. For τ ∈ K\Q we define

Q̃τ (x, y) := (x− τy)(x− τσy).

A formal computation shows that for all τ ∈ K\Q and γ ∈ GL2(Q) one has

Q̃τ

[(γ∗( x

y

)]t = NK/Q(cτ + d)Q̃γτ (x, y).(5.14)

From (5.14) we may deduce that for any τ ∈ K\Q and γ ∈ GL+
2 (Z[1p ]) that

pnAQ̃τ

[(γ∗( x

y

)]t = pnANK/Q(cτ + d)Q̃γτ (x, y) = Qγτ (x, y)(5.15)
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where A is the leading coefficient of Qτ (x, y) = Ax2 + Bxy + Cy2 and n is suitably

chosen integer such that that all the coefficients on the binary quadritic form of the

left hand side are integers which have a greatest common diviosr equal to 1. Let

Qγτ (x, y) = A′x2 +B′xy + C ′y2. From (5.15) we deduce that

(1) A′ = Ad2 −Bdc+ Cc2,

(2) B′ = −2bdA+ daB + bcB − 2acC,

(3) C ′ = Ab2 + Ca2 − bBay,

where γ =

(
a b

c d

)
.

Lemma 5.1 Let (r, τ) ∈ Z/fZ × HO
p (N0, f) and γ ∈ Γ̃0. Let Ω(r, τ) = ArΛ

(p)
τ

and Ω(r′, τ ′) = A′
r′Λ

(p)
τ ′ where γ ⋆ r = r′ and γτ = τ ′. Then there exists a totally

positive element λ ∈ 1 + fΩ(r′, τ ′)−1 such that

(λA′
r′Λ

(p)
τ ′ , λA

′
r′Λ

(p)
N0τ ′

) = (ArΛ
(p)
τ , ArΛ

(p)
N0τ

).

In other words the relation of equivalence ∼ on Z/fZ×HO
p (N0, f) is Γ̃0-invariant.

Proof Let γ =

(
a b

c d

)
∈ Γ̃0 and set γτ = τ ′ and γ ⋆ r = r′. We have the identity

(
a b

c d

)(
τ τσ

1 1

)
=

(
τ ′ τ ′σ

1 1

)(
cτ + d 0

0 cτσ + d

)
.(5.16)

where τ − τσ > 0 and τ ′ − τ ′σ > 0 and ad − bc > 0. Taking the determinant we

deduce that sign(cτ + d) = sign(cτσ + d). Let Qτ (x, y) = Ax2 + Bxy + Cy2 and

Qτ ′(x, y) = A′x2 +B′xy + C ′y2. 1. Because (Λ
(p)
τ , fO(p)) = (Λ

(p)
τ ′ , fO(p)) = 1 we have

(A, f) = (A′, f) = 1. Without lost of generality we may assume that B2 − 4AC =

(B′)2 − 4A′C ′ = D otherwise replace τ 7→ pmτ for some suitable integer m. We have

τ = −B+
√
D

2A
, τσ = −B−

√
D

2A
, τ ′ = −B′+

√
D

2A′ and τ ′ = −B′−
√
D

2A′ . We have

Λ
(p)
τ ′ Λ

(p)
(τ ′)σ =

1

A′O
(p).

1Notice that it is the only place in the argument where we used the fact that (A′, f) = 1
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From the previous equality we deduce that

A′

A′
r′
Λ

(p)
(τ ′)σ = (A′

r′Λ
(p)
τ ′ )

−1 = Ω(r′, τ ′)−1.(5.17)

From the two equalities Ω(r, τ) = ArΛ
(p)
τ and Ω(r′, τ ′) = A′

r′Λ
(p)
τ ′ , we deduce that

A′
r′ ≡ Ard (mod f). We have

Ar
A′
r′
(cτ + d)(A′

r′Λ
(p)
τ ′ ) = ArΛ

(p)
τ .

Because A′
r′Λ

(p)
τ ′ and ArΛ

(p)
τ are O(p)-integral we deduce that

Ar
A′
r′
(cτ + d) ∈ ArΛ(p)

τ (A′
r′Λ

(p)
τ ′ )

−1,(5.18)

Since 1 ∈ (A′
r′Λ

(p)
τ ′ )

−1 we deduce that

Ar
A′
r′
(cτ + d) ∈ 1 + (A′

r′Λτ ′)
−1,

which can be rewritten as

Arcτ ∈ A′
r′ − dAr + A′Λ(τ ′)σ(5.19)

where the last relation used (5.17). Finally we can rewrite (5.19) as

rAc

(
−B +

√
D

A

)
= rc

(
−B +

√
D

2

)
∈ (A′

r′ − dAr) +

(
A′Z+

(
−B′ +

√
D

2

)
Z

)
.

Because f |c and f |(A′
r′ − dAr) and 2 (A′, f) = 1 we may deduce that

Arcτ ∈ (A′
r′ − dAr) + fA′Λ(τ ′)σ =⇒ Ar

A′
r′
(cτ + d) ∈ 1 + fΩ(r′, τ ′)−1.

Now set λ = Ar

A′
r′
(cτ + d). Replacing λ by (1− f)λ if neccessary may assume without

lost of generality that λ ≫ 0. We have thus succeded to construct a totally positive

element λ ∈ 1 + fΩ(r′, τ ′)−1 such that λΩ(r′, τ ′) = Ω(r, τ).

Similarly, since O(p)
τ = O(p)

N0τ
= O(p), one has

Ar
A′
r′

(
c

N0

N0τ + d

)(
A′
r′

N0

Λ
(p)
N0τ ′

)
=
Ar
N0

Λ
(p)
N0τ

,

2Notice that this is the only place in the proof where we use the assumption (A′, f) = 1
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and therefore

λ
A′
r′

N0

Λ
(p)
N0τ ′

=
Ar
N0

Λ
(p)
N0τ

.

This concludes the proof. □

Now we want to prove a partial converse (under the assumption that (r, f) = 1 of

the previous lemma. r ∈ (Z/fZ)×.

Lemma 5.2 Let (r, τ), (r′, τ ′) ∈ (Z/fZ)× ×HO
p (N0, f) be equivalent under ∼ so

that there exists λ ∈ 1 + fΩ(r′, τ ′)−1 such that

(λA′
r′Λ

(p)
τ ′ , λA

′
r′Λ

(p)
N0τ ′

) = (ArΛ
(p)
τ , ArΛ

(p)
N0τ

).

Then there exists a matrix γ ∈ Γ̃0 such that

γ ⋆ (r′, τ ′) = (r, τ).

Proof Let Ω(r, τ) = ArΛ
(p)
τ and Ω(r′, τ ′) = A′

r′Λ
(p)
τ ′ . Since (r, τ) ∼ (r′, τ ′) there

exists a λ ∈ 1 + fΩ(r, τ)−1 such that

(λArΛ
(p)
τ , λArΛ

(p)
N0τ

) = (A′
r′Λ

(p)
τ ′ , A

′
r′Λ

(p)
N0τ ′

).(5.20)

By looking at the first coordinate of (5.20) we get λArΛ
(p)
τ = A′

r′Λ
(p)
τ ′ . Therefore there

exists a matrix γ =

(
a b

c d

)
∈ GL2(Z[1p ]) such that

(
a b

c d

)(
τ ′

1

)
= λ

Ar
A′
r′

(
τ

1

)
.(5.21)

In particular we have aτ ′+b
cτ ′+d

= τ .

Let φ : Λ
(p)
τ ′ → Λ

(p)
τ be the natural Z[1

p
]-module isomorphism defined by φ(1) = 1

and φ(τ ′) = τ . Note that the restriction φ|
Λ
(p)

N0τ
′
induces an isomorphism φ|

Λ
(p)

N0τ
′
:

Λ
(p)
N0τ ′

→ Λ
(p)
N0τ

which sends 1 7→ 1 and N0τ
′ 7→ N0τ . Let ψ : Λ

(p)
τ → Λ

(p)
τ ′ be the

Z[1
p
]-module isomorphism induced by multiplication by λ Ar

A′
r′
, so ψ(1) = λ Ar

A′
r′
· 1 and

ψ(τ) = λ Ar

A′
r′
τ ′. We thus have ϕ ◦ φ ∈ AutZ[ 1

p
](Λτ ′). By equation (5.21) we readily
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see that the matrix corresponding to ϕ ◦ φ with respect to the basis {1, τ ′} is γ =(
a b

c d

)
.

Using the second equality of (5.20) we get λ Ar

A′
r′
Λ

(p)
N0τ ′

= Λ
(p)
N0τ

. From this we deduce

that ϕ◦φ(Λ(p)
N0τ ′

) = Λ
(p)
N0τ ′

. In other words the automorphism ψ◦φ preserves the lattice

Λ
(p)
N0τ ′

. Therefore the matrix corresponding to ψ◦φ with respect to the basis {1, N0τ
′}

has coefficients in Z[1
p
]. But this matrix is nothing else than

(
a bN0

c/N0 d

)
. We

thus conclude that N0|c.

Because (r′, τ ′) ∈ (Z/fZ)× × HO
p (N0, f) we have O(p)

τ ′ = O(p)
N0τ ′

= O(p). Let

Qτ ′(x, y) = A′x2 + B′xy + C ′y2 and Qτ (x, y) = Ax2 + Bxy + Cy2. Without lost of

generality we can assume that B2 − 4AC = (B′)2 − 4A′C ′ = D otherwise replace

τ ′ 7→ pnτ ′ for a suitable integer n. We have τ ′ = −B′+
√
D

2A′ and τ = −B+
√
D

2A
. From

(5.21) we deduce that

A′
r′

Ar
(cτ ′ + d) = λ ∈ 1 + fΩ(r′, τ ′)−1 = 1 + f

A′

A′
r′
Λ

(p)
τ ′ .

Now using the fact that (A′
r′ , f) = 1 we deduce that f |c. Also one has r′d ≡ r

(mod f). It thus follows that γ ∈ Γ̃0 and

γ ⋆ (r′, τ ′) = (r, τ).

This concludes the proof □

Corollary 5.1 The relation of equivalence ∼ on (Z/fZ)××HO
p (N0, f) is equiva-

lent to the equivalence relation induced by the action of Γ̃0 on (Z/fZ)××HO
p (N0, f).

Corollary 5.2 Let (r, τ) ∈ (Z/fZ)× × HO
p (N0, f). Since

(
p 0

0 p

)
⋆ (r, τ) =

(pr, τ) we deduce that the first coordinate is well defined modulo the action of p in the

sense that (pnr, τ) ∼ (r, τ) for all n ∈ Z.
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5.5 Construction of the K×p -points u(δr, τ)

The family of measures constructed in theorem 5.1 will enable us to construct K×
p

points. Note that Kp is the unique quadratic unramified extension of Qp so

O×
Kp
≃ µp2−1 × (1 + pOKp).

In this section we assume that δ ∈ D(N0, f)
⟨p⟩ is a fixed good divisor. We remind

also the reader that

(1) Γ̃0 =

{(
a b

c d

)
∈ GL+

2 (Z[1p ]) : c ≡ 0 (mod fN0)

}
,

(2) Γ0 =
{
γ ∈ Γ̃0 : det(γ) = 1

}
,

(3) Γ1 =

{(
a b

c d

)
∈ SL2(Z[1p ]) : a ≡ 1(mod f), c ≡ 0 (mod fN0)

}

(4) Γ =

{(
a b

c d

)
∈ SL2(Z[1p ]) : a, d ≡ 1(mod f), b, c ≡ 0 (mod fN0)

}
.

Definition 5.9 Let k ∈ (Z/fZ)×. Let also c1, c2 ∈ Γ0(i∞) and τ1, τ2 ∈ Hp ∩Kp.

We define ∫ τ2

τ1

∫ c2

c1

dlog βδk,p(τ) :=

∫
P1(Qp)

logp

(
t− τ2
t− τ1

)
dµk{c1 → c2}(t).

where µk{c1 → c2} is the measure of Theorem 5.1 for the for the modular unit βδ,p(τ).

Since the measures µk{c1 → c2} are Z-valued it makes sense also to define a double

multiplicative integral

×
∫ τ2

τ1

∫ c2

c1

dlog βδk,p(τ) := lim
C={Ui}

∏
i

(
ti − τ2
ti − τ1

)µk{c1→c2}(Ui)

(5.22)

Where the limit goes over a set of covers that become finer and finer.

Definition 5.10 Let τ ∈ Hp ∩Kp, fix an x ∈ Γ0(i∞) and k ∈ (Z/fZ)×, then for

all γ1, γ2 ∈ Γ0 we define

κx,(k,τ)(γ1, γ2) := ×
∫ γ1τ

τ

∫ γ1γ2x

γ1x

dlog βδk,p(τ) ∈ K×
p
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We let the group Γ0 act trivially on K×
p . We have the following proposition.

Proposition 5.7 The 2-cochain κx,(k,τ) ∈ C2(Γ0, K
×
p ) is a ”twisted” 2-cocycle

satisfying the following relation:

(dκx,(k,τ))(γ1, γ2, γ3) = κx,(k,τ)(γ2, γ3)− κx,(γ−1
1 ⋆k,τ)(γ2, γ3)

for all γ1, γ2, γ3 ∈ Γ0. In particular (dκx,(k,τ))|Γ1 = 0, i.e. κx,(k,τ)|Γ1 ∈ Z2(Γ1, K
×
p ).

Proof We compute:

(dκx,(k,τ))(γ1, γ2, γ3)

= γ1κx,(k,τ)(γ2, γ3)− κx,(k,τ)(γ1γ2, γ3) + κx,(k,τ)(γ1, γ2γ3)− κx,(k,τ)(γ1, γ2)

= κx,(k,τ)(γ2, γ3)− κx,(k,τ)(γ1γ2, γ3) + κx,(k,τ)(γ1, γ2γ3)− κx,(k,τ)(γ1, γ2)

=

∫ γ2τ

τ

∫ γ2γ3x

γ2x

dlog βδk,p(z)−
∫ γ1γ2τ

τ

∫ γ1γ2γ3x

γ1γ2x

dlog βδk,p(z)

+

∫ γ1τ

τ

∫ γ1γ2γ3x

γ1x

dlog βδk,p(z)−
∫ γ1τ

τ

∫ γ1γ2x

γ1x

dlog βδk,p(z)

where the second equality follows from the trivial action of Γ0 on K×
p . Let π11(γ1) =

a ∈ Z[1
p
]. Using the invariance property of the measures under Γ0 we can multiply the

bounds of the integral of the second term by γ−1
1 at the cost of replacing k (mod f)

by ak (mod f). So we find

=

∫ γ2τ

τ

∫ γ2γ3x

γ2x

dlog βδk,p(z)−
∫ γ2τ

γ−1
1 τ

∫ γ2γ3x

γ2x

dlog βδak,p(z)(5.23)

+

∫ γ1τ

τ

∫ γ1γ2γ3x

γ1x

dlog βδk,p(z)−
∫ γ1τ

τ

∫ γ1γ2x

γ1x

dlog βδk,p(z).

Rearranging the first two terms together and and the last two in (5.23) we get

=

∫ γ2τ

τ

∫ γ2γ3x

γ2x

(dlog βδk,p(z)− dlog βδak,p(z))−
∫ τ

γ−1
1 τ

∫ γ2γ3x

γ2x

dlog βδak,p(τ)

+

∫ γ1τ

τ

∫ γ1γ2γ3x

γ1γ2x

dlog βδk,p(z)

=

∫ γ2τ

τ

∫ γ2γ3x

γ2x

(dlog βδk,p(z)− dlog βδak,p(z))

= κx,(k,τ)(γ2, γ3)− κx,(ak,τ)(γ2, γ3).
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In particular if a is congruent to 1 modulo f the right hand side of the last equality

vanishes. We thus have that κx,(k,τ)|Γ1 ∈ Z2(Γ1, K
×
p ) and κx,(k,τ)|Γ ∈ Z2(Γ, K×

p ). □

We can now state one the main theorem of the paper.

Theorem 5.2 The 2-cocycle κx,(k,τ)|Γ1 is a 2-coboundary i.e. there exists a 1-

cochain ρx,(k,τ) ∈ C1(Γ1, K
×
p ) s.t. d(ρx,(k,τ)) = κx,(k,τ)|Γ1.

Proof See Theorem 6.2 where we give an explicit splitting of κx,(k,τ)|Γ1 . □

The theorem 5.2 will allow us to define points in K×
p .

Let ρx,(k,τ) ∈ C1(Γ1, K
×
p ) be such that dρx,(k,τ) = κx,(k,τ). Let Γ1,τ = {γ ∈ Γ1 :

γτ = τ}. By Dirichlet’s theorem we can identify Γ1,τ with Z/2Z× Z. Let γτ be the

unique matrix in Γ1,τ s.t.

γτ

(
τ

1

)
= ϵ

(
τ

1

)
where 1 < ϵ is a positive generator of Γ1,τ/{±1}. When red(τ) = v0 (see chapter 5 of

[Dar04] for the definition of red) we have ⟨±γτ ⟩ = StabΓ1(fN0)(Qτ (x, y)), see Lemma

9.1. In particular, when red(τ) = v0, the matrix γτ has integral coefficients. We have

a similar thing if we replace Γ1 by Γ.

Proposition 5.8 The 1-cochain ρx,(k,τ)|Γ1,τ modulo Hom(Γ1, K
×
p )|Γ1,τ does not de-

pend on x.

Proof Let x, y ∈ Γ1(i∞). So we want to show that

ρx,(k,τ)|Γ1,τ − ρy,(k,τ)|Γ1,τ ∈ Hom(Γ1, K
×
p )|Γ1,τ = Z1(Γ1, K

×
p )|Γ1,τ .

This is equivalent to show that

(dρx,(k,τ))|Γ1,τ − (dρy,(k,τ))|Γ1,τ = 0.

The last equality means exactly that (κx,(k,τ) − κy,(k,τ))|Γ1,τ = 0.
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Let γ1, γ2 ∈ Γ1. We have

κx,(k,τ)(γ1, γ2)− κy,(k,τ)(γ1, γ2) =

∫ γ1τ

τ

∫ γ1γ2x

γ1x

dlog βδk,p(z)−
∫ γ1τ

τ

∫ γ1γ2y

γ1y

dlog βδk,p(z)

=

∫ γ1τ

τ

∫ γ1y

γ1x

dlog βδk,p(z)−
∫ γ1τ

τ

∫ γ1γ2y

γ1γ2x

dlog βδk,p(z)

=

∫ γ1τ

τ

∫ γ1y

γ1x

dlog βδk,p(z)−
∫ γ1γ2τ

τ

∫ γ1γ2y

γ1γ2x

dlog βδk,p(z)

+

∫ γ1γ2τ

γ1τ

∫ γ1γ2y

γ1γ2x

dlog βδk,p(z)

Now applying γ−1
1 to the bounds of the third term of the last equality (note that

γ−1
1 ⋆ k = k) and setting

cx,y(γ) :=

∫ γτ

τ

∫ γy

γx

dlog βδk,p(z) ∈ C1(Γ1, K
×
p ),

we get

= cx,y(γ2)− cx,y(γ1γ2) + cx,y(γ1)

= (dcx,y)(γ1, γ2)

We thus have proved that d(ρx,(k,τ)−ρy,(k,τ)−cx,y) = 0 on Γ1. So ρx,(k,τ)−ρy,(k,τ)−cx,y ∈
Hom(Γ1, K

×
p ). Finally evaluating at γτ and using the observation that cx,y(γτ ) = 0

proves the claim. □

Remark 5.11 The group Hom(Γ1, K
×
p ) is finite group. This comes from the fact

that (Γ1)
ab = Γ1/[Γ1,Γ1] is finite, see [Men67] and [Ser70]. It thus follows that the

exponent of the finite group Hom(Γ1, K
×
p ) divides p

2 − 1.

It now makes sense to define the following K×
p points:

Definition 5.11 We define the K×
p invariant

u(k, τ) = u(δk, τ) := ρx,(k,τ)(γτ ) = ρ(k,τ)(γτ ) ∈ K×
p /µp2−1,

where ⟨±γτ ⟩ = StabΓ1(τ) such that cτ + d > 1 for γτ =

(
a b

c d

)
.
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Remark 5.12 Implicitly in the notation for ρ(k,τ) and u(k, τ), a good divisor

δ ∈ D(N0, f)
⟨p⟩

is fixed. So it is important to keep this in mind!

Proposition 5.9 Let (r, τ), (r′, τ ′) ∈ (Z/fZ)× ×HO
p (N0, f) be equivalent then

ρ(r,τ)(γτ ) = ρ(r′,τ ′)(γτ ′).

Proof By Lemma 5.2 there exists a matrix η =

(
a b

c d

)
∈ Γ̃0 and integers Ar, A

′
r′

such that (
a b

c d

)(
τ

1

)
= λ

A′
r′

Ar

(
τ ′

1

)

where λ ∈ 1 + Ω(r′, τ ′)−1.

Now we want to exploit the Γ̃0-invariance of the measures in Theorem 5.1(see

Remark 5.3 for the Γ̃0-invariance) to show that ρ(r,τ)(γτ ) = ρ(r′,τ ′)(γτ ′) (mod µp2−1).

Remember that γτ , γτ ′ ∈ Γ1. We compute. Let γ1, γ2 ∈ Γ̃0 then

κx,(r′,τ ′)(γ1, γ2) =

∫ γ1τ ′

τ ′

∫ γ1γ2x

γ1x

dlog βδr′ ,p(z)

=

∫ γ1ητ

ητ

∫ γ1γ2x

γ1x

dlog βδr′ ,p(z)

now “multiplying”the bounds of last integral by η−1 and using the fact that gδr′ (ηz) =

gδη−1⋆r′
(z) and η−1 ⋆ r′ ≡ r (mod f) we find∫ η−1γ1ητ

τ

∫ η−1γ1ηη−1γ2ηη−1x

η−1γ1ηη−1x

dlog βδr,p(z) =∫ η−1γ1ητ

τ

∫ η−1γ1ηη−1γ2ηη−1x

η−1γ1ηη−1x

dlog βδr,p(z) =

κη−1x,(r,τ)(η
−1γ1η, η

−1γ2η).
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We thus deduce

κx,(r′,τ ′)(γ1, γ2) = κη−1x,(r,τ)(η
−1γ1η, η

−1γ2η).(5.24)

Let ρη−1x,(r,τ) ∈ C1(Γ1, K
×
p ) be a 1-cochain splitting κη−1x,(r,τ) i.e. dρη−1x,(r,τ) =

κη−1x,(r,τ). Then by Proposition 5.8 we have

ρη−1x,(r,τ)|Γ1,τ = ρx,(r,τ)|Γ1,τ (mod µp2−1).

If we define

ρx,(r′,τ ′)(γ) := ρη−1x,(r,τ)(η
−1γη)

then using (5.24) one finds that d(ρη−1x,(r′,τ ′)) = κx,(r′,τ ′), so this definition makes

sense.

Since γτ ′ = ηγτη
−1 we find that

ρx,(r′,τ ′)(γτ ′) = ρη−1x,(r,τ)(η
−1γτ ′η)

(3.6)
= ρx,(r,τ)(η

−1ηγτη
−1η) (mod µp2−1)

= ρx,(r,τ)(γτ )

□

Corollary 5.3 Let (r, τ) ∈ (Z/fZ)××HO
p (N0, f). Then invariant u(r, τ) depends

only on the class of (r, τ) modulo ∼. Therefore by Corollary 5.1

u(r, τ) = u(γ ⋆ r, γτ)

for any γ ∈ Γ̃0.

We are now ready to formulate the main conjecture.

Conjecture 5.1 Let (r, τ) ∈ (Z/fZ)× ×HO
p (N0, f). Then

u(r, τ) ∈ OL[1p ]
×,

where L = HO(f∞)⟨Fr℘⟩ where ℘ = pOK and HO(f∞) is the abelian extension

corresponding to the generalized ideal class group IO(f)/QO,1(f∞). Moreover we

have a Shimura reciprocity law. Let

rec : GL/K → IO(f)/⟨QO,1(f∞), p⟩,
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then for σ ∈ GL/K we have

u(k, τ)σ
−1

= u(k′, τ ′) (mod µp2−1)

where rec(σ) ⋆ (k, τ) = (k′, τ ′). Furthermore, if we let c∞ denotes the complex conju-

gation in GL/K then

u(r, τ)c∞ = u(r, τ)−1.

Remark 5.13 The last equality is in accordance with the fact that the modular

symbols defined in Remark 5.2 are odd.

Remark 5.14 In [DD06], since the conductor f = 1, one is lead to consider

various orders of K. However in our case, since f can vary, it is sufficient to consider

only the case where O = OK .

6 The measures µ̃{c1 → c2}

6.1 From P1(Qp) to (Qp ×Qp)\{(0, 0)}

The main ingredient in showing the splitting of the 2-cocycle κ(k,τ) (see Theorem

5.2)consists in the construction of a family of measures on Q2
p\(0, 0) taking values in

Zp. This family of measures encode the moments of some family of Eisenstein series

of varying weight that are Up,a-eigenvectors.

Following [DD06] we define X := {(x, y) ∈ Z2
p : (x, y) = 1}. The group Γ̃0 acts

by left translation on Q2
p\(0, 0) by

(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
. There is a

Z×
p -bundle map

π : X→ P1(Qp) given by (x, y) 7→ x/y.

From now on we assume a fixed choice of a good divisor δ ∈ D(N0, f)
⟨p⟩. Remember

that for r ∈ Z/fZ we have defined

Ek(r, τ) =

(
(−1)k(2πi)k

(k − 1)!

)−1∑
m,n

e−2πimr/f

(m+ nfτ)k
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for any integer k ≥ 2. In order to simplify the notation and have better looking

formulas we renormalize our Eisenstein series.

Definition 6.1 For every j ∈ (Z/fZ)×/⟨p⟩ we set

F̃k(j, z) := −12fFk,δj(z) F̃k,p(j, z) := −12fFk,δj ,p(z)

F̃ ∗
k (j, z) := −12F ∗

k,δj
(z) F̃ ∗

k,p(j, z) := −12F ∗
k,δj ,p

(z)

Since δ is not appearing in this notation it is important to keep in mind that such a

divisor δ is fixed from the beginning. The group Γ0(fN0) acts transitively on the set

{F̃k(j, z)}j∈(Z/fZ)×/⟨p⟩ and {F̃ ∗
k (j, z)}j∈(Z/fZ)×/⟨p⟩

Similarly the group Γ0(pfN0) acts transitively on

{F̃k,p(j, z)}j∈(Z/fZ)×/⟨p⟩ and {F̃ ∗
k,p(j, z)}j∈(Z/fZ)×/⟨p⟩.

where the action is induced by the change of variables τ 7→ γτ .

We can now state the key theorem which is used to show the splitting of the

2-cocycle.

Theorem 6.1 There exists a unique collection of p-adic measures on Qp×Qp−
(0, 0) taking values in Zp (in fact in Z see Theorem 13.1) indexed by triples (r, s, j) ∈
Γ̃0(i∞)× Γ̃0(i∞)× (Z/fZ)×/⟨p⟩, denoted by µ̃j{r → s} such that:

1. For every homogeneous polynomial h(x, y) ∈ Zp[x, y] of degree k − 2,∫
X
h(x, y)dµ̃j{r → s}(x, y) = (1− pk−2)

∫ s

r

h(z, 1)F̃k(j, z)dz

2. For all γ ∈ Γ̃0 and all open compact U ⊆ Q2
p\(0, 0),

µ̃j{r → s}(U) = µ̃γ⋆j{γr → γs}(γU)

3. (invariance under multiplication by p),

µ̃j{r → s}(pU) = µ̃j{r → s}(U)

Furthermore the measure satisfies:
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4. For every homogeneous polynomial h(x, y) ∈ Zp[x, y] of degree k − 2,∫
Zp×Z×

p

h(x, y)dµ̃j{r → s}(x, y) =
∫ s

r

h(z, 1)F̃k,p(j, z)dz

Remark 6.1 Note that (3) follows from (2) by taking the matrix γ =

(
p 0

0 p

)
.

Proof We prove it in section 12.

The family of measures constructed on P1(Qp) in Theorem 5.1 can be thought

of as the pushforward of the measures in Theorem 6.1. This is the content of the

following lemma:

Lemma 6.1 For all compact open U ⊆ P1(Qp) we have

µ̃j{r → s}(π−1(U)) = µj{r → s}(U).

where π : X→ P1(Qp) is the Z×
p -bundle given by (x, y) 7→ x

y
.

Proof Define a collection of measures νj{r → s} on P1(Qp) by the rule

νj{r → s}(U) = µ̃j{r → s}(π−1(U))

for any compact open U ⊆ P1(Qp). We claim that νj satisfy the three properties of

Theorem 5.1. Therefore by uniqueness we deduce that νj{r → s} = µj{r → s}.

Let us show the first property. Let Zp ⊆ P1(Qp). Then π−1(Zp) = Zp × Z×
p . We

have

νj{r → s}(Zp) = µ̃j{r → s}(π−1(Zp)) =
∫
Zp×Z×

p

dµ̃j{r → s}(x, y)

=

∫ s

r

F̃2,p(j, z)dz

=
1

2πi

∫ s

r

dlog βδj ,p(z)

= µj{r → s}(Zp)
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where the second equality follows from the 4th property of Theorem 6.1 and third

equality follows 2πiF̃k,p(j, z) = dlog(βδj ,p(z)).

Let us show the second property.

νj{r → s}(P1(Qp)) = µ̃j{r → s}(π−1(P1(Qp))) =

∫
X
dµ̃j{r → s}(x, y)

= 0

= µj{r → s}(P1(Qp))

where the third equality follows from the first property of Theorem 6.1.

It remains to show the third property. We need to show that for all γ ∈ Γ̃0 one

has

νγ⋆j{γr → γs}(γU) = νj{r → s}(U)(6.1)

for any compact open set U ⊆ P1(Qp). In order to prove the equality (6.1) we will

brake the open set U on smaller open sets on which we have a better control on the

p-adic valuation. Before starting note the π−1γ(U) ⊆ X but in general γπ−1(U) ⊈ X.
In order to show that both sets have the same measure we want to use the third

property of Theorem 6.1.

Since Γ̃0 is generated (without taking inverses) by the elements {P =

(
p 0

0 1

)
, P−1 =(

1
p

0

0 1

)
,Γ0(fN0)} it is enough to prove (6.1) when γ ∈ Γ0(fN0) or γ = P or P−1.

We define for n ∈ Z

Un = U ∩ pnZ×
p = {u ∈ U :

1

pn+1
< |u|p <

1

pn−1
}

Clearly the Un’s are disjoint and open. So in order to show equation (6.1) it is enough

to show that

νγ⋆j{γr → γs}(γUn) = νj{r → s}(Un)

for any Un.
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Let γ =

(
a b

c d

)
∈ Γ0(fN0) and n < 0 then

π−1(γUn) = π−1

{
au+ b

cu+ d
∈ P1(Qp) : u ∈ Un

}
= Z×

p {((p−n(au+ b), p−n(cu+ d)) ∈ X : u ∈ Un)}

= p−nZ×
p {(au+ b, cu+ d) ∈ (Qp ×Qp)\(0, 0) : u ∈ Un}

where Z×
p A := {(ka1, ka2) ∈ X : (a1, a2) ∈ A} (the Z×

p -saturation) for any subset

A ⊆ Qp ×Qp.

On the other hand

γπ−1(Un) = γZ×
p {(p−nu, p−n) ∈ X : u ∈ Un}

= Z×
p {(ap−nu+ bp−n, cp−nu+ dp−n) ∈ X : u ∈ Un}

= p−nZ×
p {(au+ b, cu+ d) ∈ (Qp ×Qp)\(0, 0) : u ∈ Un}

In that special case we really get the same sets. The case n ≥ 0 can be treated in a

similar way.

Let us verify it for γ = P−1 and U0. We have

π−1(γU0) = π−1

{
u

p
∈ P1(Qp) : u ∈ U0

}
= Z×

p {(u, p) ∈ X : u ∈ U0}

= pZ×
p {(

u

p
, 1) ∈ (Qp ×Qp)\(0, 0) : u ∈ U0)}

On the other hand

γπ−1(U0) = γZ×
p {(u, 1) ∈ X : u ∈ U0}

= Z×
p {(

u

p
, 1) ∈ (Qp ×Qp)\(0, 0) : u ∈ U0}

By the third property we conclude that µ̃j{r → s}(γπ−1(U0)) = µ̃j{r → s}(π−1(γU0)).

The remaining cases can be treated in a similar way. □
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6.2 Splitting of the 2-cocycle

We are now ready to prove the splitting of the 2-cocycle κc,(k,τ) appearing in Definition

5.10 where c ∈ Γ̃0{∞} is an arbitrary cusp and (k, τ) ∈ (Z/fZ)× × HOK
p (N0, f).

We will show the splitting of κc,(k,τ) by constructing explicitly a 1-cochain ρc,(k,τ) ∈
C1(Γ1, K

×
p ) such that

d(ρc,(k,τ)) = κc,(k,τ).

To each v ∈ V(T ) we associate a well defined partial modular symbol mv{r → s}
on the set of cusps Γ0(fN0)(i∞) taking values in the set of Γ̃0-invariant measures on

P1(Qp). We define

mv0,k{r → s} := 1

2πi

∫ s

r

dlog βδk(z), mγv,γ⋆k{γr → γs} = mv,k{r → s}.

for all v ∈ V(T ), γ ∈ Γ̃0, k ∈ (Z/fZ)×/⟨p⟩ and r, s ∈ Γ0(fN0)(i∞). Note that the

assignment v 7→ mv,k{r → s} satisfies the following harmonicity property:∑
d(v′,v)=1

mv′,k{r → s} = (p+ 1)mv,k{r → s}.

The latter equality comes from the fact that F̃2(k, z) is an eigenvector with eigenvalue

(1 + p) for the Hecke operator T2(p).

Remark 6.2 Using Proposition 5.4 we get an explicit formula for mv,k{c→ γc}
it terms of Dedekind sums.

Theorem 6.2 Let γ ∈ Γ1 and v = red(τ) and define

ρc,(k,τ)(γ) := pmv,k{c→γc)} ×
∫
X
(x− τy)dµ̃k{c→ γc}(x, y).(6.2)

Then we claim that ρc,(k,τ) ∈ C1(Γ1, K
×
p ) is a 1-cochain such that of dρc,(r,τ) = κc,(r,τ).

Note that the multiplicative integral in (6.2) makes sense since µ̃k{c → γc} takes

values in Z, see Theorem 13.1.
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Proof Our proof was inspired from the proof of Proposition 4.7 of [DD06]. A

formal computation shows that for every compact open set U ⊆ (Qp×Qp)\(0, 0) that

×
∫
U

(x− τy)dµ̃k{c1 → c2}(x, y) = ×
∫
γU

(Cτ +D)(x− γτy)dµ̃γ⋆k{γc1 → γc2}(x, y).

(6.3)

where γ =

(
A B

C D

)
∈ Γ̃0. This uses only the Γ̃0-equivariance of the measure

µ̃k{c1 → c2}, i.e., for all γ ∈ Γ̃0 and for all compact open set U ⊆ (Qp × Qp)\(0, 0)
one has

µ̃γ⋆k{γc1 → γc2}(U) = µ̃k{c1 → c2}(U).

Note that the group Γ1 is contained in the larger group

Γ̃1 =

〈
Γ1(f) ∩ Γ0(fN0),

(
p 0

0 1

)〉
.(6.4)

Let γ1, γ2 ∈ Γ̃1. We have

(dρc,(k,τ))(γ1, γ2)

=
pmv,k{c→γ1c}pmv,k{c→γ2c}

pmv,k{c→γ1γ2c}
ρ(k,τ)(γ1)ρ(k,τ)(γ2)

ρ(k,τ)(γ1γ2)

(6.5)

= p
mv,k{c→γ2c}−mγ−1

1 v,k
{c→γ2c}×

∫
X(x− yτ)dµ̃k{c→ γ1c}(x, y)×

∫
X(x− yτ)dµ̃k{c→ γ2c}(x, y)

×
∫
X(x− yτ)dµ̃k{c→ γ1γ2c}(x, y)

.

(6.6)

The equality (6.5) can be rewritten as

(dρc,(k,τ))(γ1, γ2)

= p
mv,k{c→γ2c}−mγ−1

1 v,k
{c→γ2c} ×

∫
X(x− yτ)dµ̃k{c→ γ2c}(x, y)

×
∫
X(x− yτ)dµ̃k{γ1c→ γ1γ2c}(x, y)

= p
mv,k{c→γ2c}−mγ−1

1 v,k
{c→γ2c}×

∫
γ1X(Cτ +D)(a− bγ1τ)dµ̃k{γ1c→ γ1γ2c}(a, b)

×
∫
X(x− yτ)dµ̃k{γ1c→ γ1γ2c}(x, y)

(6.7)

where γ1 =

(
A B

C D

)
. For the last equality used the identity (6.3).
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Because dρc,(k,τ) is a 2-cocyle it satifies the relation

dρc,(k,τ)(γ1γ2, γ3) = dρc,(k,τ)(γ1, γ2γ3)− dρc,(k,τ)(γ1, γ2) + dρc,(k,τ)(γ2, γ3).(6.8)

From (6.4) and (6.8) we see that in order to show that

dρ(k,τ)(γ1, γ2) = κc,(k,τ)(γ1, γ2)(6.9)

for all γ1, γ2 ∈ Γ̃1 it is enough to show (6.9) in the case where γ1 belongs to one of

the following two sets:

(1) γ1 ∈ Γ1(f) ∩ Γ0(fN0),

(2) γ1 ∈

{(
p 0

0 1

)
,

(
1
p

0

0 1

)}
.

In the first case, we deduce from (6.7) that

(dρc,(k,τ))(γ1, γ2)

= p
mv,k{c→γ2c}−mγ−1

1 v,k
{c→γ2c} ×

∫
X
(Cτ +D)

(x− yγ1τ)
(x− yτ)

µ̃k{γ1c→ γ1γ2c}(x, y),

= ×
∫
P1(Qp)

(Cτ +D)

(
t− γ1τ
t− τ

)
µk{γ1c→ γ1γ2c}(t),

= ×
∫
P1(Qp)

(
t− γ1τ
t− τ

)
µk{γ1c→ γ1γ2c}(t).

= κc,(k,τ)(γ1, γ2).

where the second equality follows from the fact that π∗µ̃ = µ and γ1v = v. The third

equality follows from the fact that the total measure of µr{c1 → c2} is 0. This treats
the the first case.
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Now let us assume that γ1 =

(
p 0

0 1

)
. First note that

E := mv,k{c→ γ2c} −mγ−1
1 v,k{c→ γ2c}

= mv,k{c→ γ2c} −mv,k{pc→ pγ2c}

=

∫ γ2c

c

F̃2(k, z)dz −
∫ γ2c

c

pF̃2(k, pz)dz

=

∫ γ2c

c

F̃2,p(k, z)dz

= ×
∫
Z×
p ×Zp

pdµ̃k{c→ γ2c}(x, y),

where the last equality follows from property (4) of the measure µ̃k{c→ γ2c}.

From (6.7) we deduce that

(dρc,(k,τ))(γ1, γ2)(6.10)

= pE
×
∫
X(x− yτ)dµ̃k{c→ γ2c}(x, y)
×
∫
X(x− yτ)dµ̃k{pc→ pγ2c}(x, y)

.

Now we want to rewrite the mutliplicative integral above in a different way. First

note that

X = (Zp × Z×
p )
⊔

(Z×
p × pZp)

Using (6.3) we deduce that

×
∫
X
(x− yτ)dµ̃k{c→ γ2c}(x, y)

= ×
∫
(pZp×Z×

p )
⊔
p(Z×

p ×Zp)

(x− ypτ)dµ̃k{pc→ pγ2c}(x, y).
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We can rewrite the previous equality as

×
∫
X
(x− yτ)dµ̃k{c→ γ2c}(x, y)

= ×
∫
(pZp×Z×

p )

(x− ypτ)dµ̃k{pc→ pγ2c}(x, y) · ×
∫
p(Z×

p ×Zp)

(x− ypτ)dµ̃k{pc→ pγ2c}(x, y)

= ×
∫
pZp×Z×

p

(x− ypτ)dµ̃k{pc→ pγ2c}(x, y) · ×
∫
Z×
p ×Zp

p(x− ypτ)dµ̃k{pc→ pγ2c}(px, py)

= ×
∫
pZp×Z×

p

(x− ypτ)dµ̃k{pc→ pγ2c}(x, y)×
∫
Z×
p ×Zp

(x− ypτ)dµ̃k{pc→ pγ2c}(x, y)

· ×
∫
Z×
p ×Zp

pdµ̃k{pc→ pγ2c}(x, y),

where the last equality follows from property (3) of µ̃k{c → γ2c}. Finally we can

rewrite the last equality as

×
∫
X
(x− yτ)dµ̃k{c→ γ2c}(x, y)

= ×
∫
X
(x− ypτ)dµ̃k{pc→ pγ2c}(x, y)×

∫
Z×
p ×Zp

pdµ̃k{pc→ pγ2c}(x, y).

(6.11)

Now because the total measure on X is 0, we deduce from property (4) of µ̃k{c1 → c2}
that

×
∫
Z×
p ×Zp

pdµ̃k{pc→ pγ2c}(x, y) =

(
×
∫
pZp×Z×

p

pdµ̃k{pc→ pγ2c}(x, y)

)−1

=

(
×
∫
Zp×Z×

p

pdµ̃k{c→ γ2c}(x, y)

)−1

= p−E,

where the second equality follows from (6.3). Finally, combining (6.11) with (6.10)

we deduce that

(dρc,(k,τ))(γ1, γ2) = ×
∫
X

(x− yγ1τ)
(x− yτ)

µ̃k{γ1c→ γ1γ2c}(x, y),

= ×
∫
P1(Qp)

(
t− γ1τ
t− τ

)
µk{γ1c→ γ1γ2c}(t)

= κc,(k,τ)(γ1, γ2).
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This finishes the proof. □

Corollary 6.1 Let γ ∈ Γ1 and τ be reduced, i.e., red(τ) = v0. Then

ordp(ρc,(k,τ)(γτ )) = mv0,r{c→ γτc}.

7 Archimedean zeta functions attached to totally

real number fields

7.1 Zeta functions twisted by additive characters

For this section we let K be an arbitrary totally real number field.

Let K be a totally real number field of degree r. Let {σ1, . . . , σr} be a complete

set of real embeddings of K. Let d be the different of K and ∆ = NK/Q(d) the

discriminant of K. Let f be an integral ideal of K. Let OK(f∞)× be the group

of totally positive units of OK that are congruent to 1 modulo f. Let w be a sign

character of K i.e. a product of a subset of the characters

sign ◦ σi : K× → R× → {±1}.

Let c be an integral ideal of K coprime to f. Following [Sie68] we define

Ψ

(
c

df
, w, s

)
= N

(
c

fd

)s ∑
OK(f∞)×\{0̸=µ∈ c

fd
}

w(µ)
e2πiTr(µ)

|N(µ)|s
, Re(s) > 1

where Tr and N are the usual trace and norm functions on K down to Q. Note that

for any ϵ ∈ OK(f∞)× and µ ∈ c
fd
we have µ− ϵµ ∈ cd−1 ⊆ d−1 thus Tr(µ− ϵµ) ∈ Z.

So the summation does not depend on the choice of representatives of {0 ̸= µ ∈ c
fd
}

modulo OK(f∞)×.

Let ρ ∈ K be such that ρc ⊆ OK and (ρc, f) = 1, then a straight forward calcula-

tion shows that

Ψ

(
ρ
c

fd
, w, s

)
= w(ρ)N

(
c

fd

)s ∑
OK(f∞)×\{0̸=µ∈ c

fd
}

w(µ)
e2πiTr(ρµ)

|N(µ)|s
.(7.1)
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From this it follows that the first entry of Ψ depends only on the narrow ray class

modulo f in the sense that if a, b ∈ IOK
(f), ρ ∈ K, ρ ≡ 1(mod f) and ρ ≫ 0 is such

that ρa = b then

Ψ

(
a

fd
, w, s

)
= Ψ

(
b

fd
, w, s

)
.(7.2)

Note that if there exists a ρ ∈ O×
K congruent to 1 modulo f such that w(ρ) = −1 we

find using (7.1) that Ψ( c
fd
, w, s) = 0. The existence of such units should be avoided.

Remark 7.1 One can relate the zeta functions Ψ( a
df
, w, s) to classical zeta func-

tions L(χ, s) where χ is a character of the narrow ideal class group of conductor f. In

order to do so we need to recall some properties of finite Hecke characters.

Definition 7.1 We define

(1) IOK
(f) = {Integral ideals of OK which are coprime to f}

(2) IK(f) = {fractional ideals of OK which are coprime to f}

(3) PK,1(f∞) = {αOK ⊆ K : α ∈ K,α ≡ 1(mod f), α≫ 0}

We identify the quotients IOK
(f)/PK,1(f∞) and IK(f)/PK,1(f∞) with the narrow ideal

class group of conductor f.

We have the following short exact sequence

1 - (OK/f)× /(O×
K(∞) (mod f))

ι
- IK(f)/PK,1(f∞) - IK(1)/PK(∞) - 1,

where ι(a(mod f)) = aOK where a is chosen to be totally positive. From this short

exact sequence we see that every character χ : IK(f)/PK,1(f∞) → S1 can be pulled

back to a character

χf := χ ◦ ι : (OK/f)× /(O×
K(∞) (mod f))→ S1

where the subscript f stands for finite.

Let α ∈ K× be coprime to f then we define χ∞(α) := χ((α))/χf (α). When α

is totally positive we have χ((α)) = χf (α) therefore χ∞(α) = 1. However if α is
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not totally positive and β is a totally positive element such that α ≡ β (mod f) then

χf (α) = χ((β)) therefore χ∞(α) = χ((α
β
)). In thus follows that χ∞ is a sign character

since
(
α
β

)2
is a totally positive element congruent to 1 modulo f. Thus every character

χ : IK(f)/PK,1(f∞)→ S1

when restricted to principal ideals (α) coprime to f can be written uniquely as χ =

χ∞χf where χ∞ : (R ⊗K)× → S1 and χf : (OK/f)×/(O×
K(∞)(mod f)) → S1. If we

think of χf as a character on (OK/f)× then the pair of characters (χ∞, χf ) satisfies

the identity

χf (ϵ)χ∞(ϵ) = 1 ∀ϵ ∈ O×
K .(*)

Conversely for every pair of characters (w, η) ∈ ( ̂(R⊗K)×, ̂(OK/f)×) satisfying (∗)
there exists a lift ψ : IK(f)/PK,1(f∞) → S1 (the number of lifts is exactly h+K , the

narrow class group of K) such that ψf = η and ψ∞ = w.

Let us assume thatO×
K(f) = O

×
K(f∞). In this case we have that PK,1(f)/PK,1(f∞) ≃

(Z/2)r. So the index of the wide ray class field of conductor f in the narrow ray

class field of conductor f is 2r. In order to simplify the notation we let Gf∞ =

IK(f)/PK,1(f∞) and Gf = IK(f)/PK,1(f). We identify Ĝf as a subgroup of Ĝf∞ via π∗

where

π : Gf∞ → Gf

is the natural projection. Let η1, . . . , ηr be generators of the group of characters of

PK,1(f)/PK,1(f∞)

defined in such a way that for a ∈ PK,1(f) we let ηi(a) = wi(α) = sign◦σi(α) where α
is a generator of a congruent to 1 modulo f . The ηi’s are well defined because of the

assumption on the units. For every i take an arbitrary lift of ηi to IK(f)/PK,1(f∞)

and denote it again by ηi. By construction (ηi)∞ = wi = sign ◦ σi. It is easy to

see that the group generated by the ηi’s is a complete set of representatives of Ĝf∞

modulo Ĝf. We thus have the disjoint union

Ĝf∞ =
⋃
i

ηiĜf.

Note that Ĝf corresponds precisely to the set of characters χ ∈ Ĝf∞ such that χ∞ = 1.

86



7.2 Gauss sums for Hecke characters and Dirichlet characters

Let χ ∈ Ĝf∞ be a Hecke character and γ ∈ K be such that (γ) = a
df
where (a, f) = 1.

For a ξ ∈ OK we define

gγ(χ, ξ) := χf (a)
∑

ρ (mod f)

χf (ρ)e
2πiTr(γρξ).

We define χf (ρ) = 0 if (ρ, f) ̸= 1. It is easy to see that gγ(χ, ξ) does not depend on

γ, so from now on we omit the subscript γ. When ξ is coprime to f we have

g(χ, ξ) = χf (ξ)g(χ, 1).(7.3)

Furthermore when χ is primitive (7.3) remains valid for ξ not coprime to f since

g(χ, ξ) = 0.

We also define Gauss sums for Dirichlet characters χ : (OK/m)× → S1 where m

is some integral and y ∈ OK

md
. We define the Gauss sum

τ(χ, y) :=
∑

x(mod m)
(x,m)=1

χ̄(x)e2πiTr(xy).

Let χ ∈ Ĝf∞ be a Hecke character and χf be the Dirichlet character corresponding

to the finite part of χ, then it is easy to see that

gγ(χ, 1) = χf (γ)τ(χf , γ)

where (γ) = a
df
.

7.3 Relation between Ψ( a
df , χ∞, s) and L(χ, s)

In this subsection we would like to relate the functions Ψ( a
df
, χ∞, s) to classical Artin

L-functions L(χ, s) where χ is a primitive character. We essentially reproduce a proof

that can be found in [Sie68].

Proposition 7.1 Let χ : IK(f)/PK,1(f∞)→ S1 be a primitive character then∑
c∈IK(f)/PK,1(f)

χ̄(ac)Ψ

(
ac
df
, χ∞, s

)
= g(χ, 1)L(χ, s)

where ac ∈ c is any integral ideal.
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Proof We first extend χ to IK(1) by setting χ(a) = 0 when (a, f) ̸= 1. We have

L(s, χ) =
∑
a⊆OK

χ(a)

N(a)s

=
∑

a−1∈IK(1)/PK,1(1)

∑
b∈a−1

b integral

χ(b)

N(b)s
.

For every class a we fix an integral ideal aa ∈ a. We have a natural bijection between

the elements µ ∈ aa modulo O×
K and integral ideals b ∈ a−1 given by µ 7→ µa−1

a ∈ a−1.

Therefore ∑
a−1∈IK(1)/PK,1(∞)

∑
{0̸=µ∈aa}/O×

K

χ((µ)a−1
a )

N((µ)a−1
a )s

=

∑
a−1∈IK(1)/PK,1(1)

N(aa)
sχ̄(aa)

∑
{0̸=µ∈aa}/O×

K

χ∞(µ)χf (µ)

|N(µ)|s
=(7.4)

Note that if (µ, f) ̸= 1 then χf (µ) = 0. Remember that

g(χ, 1) = gγ(χ, 1) = χf (a)τ(χf , γ)

where (γ) = g
df
with (g, f) = 1. For µ ∈ OK coprime to f we have

χf (µ)τ(χf , γ) = τ(χf , µγ)(7.5)

substituting in (7.4) we get

=
∑

a−1∈IK(1)/PK,1(∞)

N(aa)
sχ̄(aa)

∑
{0̸=µ∈aa,(µ,f)=1}/O×

K

τ(χf , µγ)χ∞(µ)

τ(χf , γ)|N(µ)|s
.(7.6)

Now using the assumption that χf is primitive we can remove the restriction (µ, f) = 1

under the last summation of (7.6) since (7.5) also holds for µ not coprime to f.
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Rearranging a bit (7.6) we get

=
∑

a−1∈IK(1)/PK,1(1)

N(aa)
sχ̄(aa)

∑
α (mod f)

∑
{0̸=µ∈aa,(µ,f)=1
,µ≡α(mod f)} /O×

K

τ(χf , µγ)χ∞(µ)

τ(χf , γ)|N(µ)|s

=
1

Af

∑
a−1∈IK(1)/PK,1(1)

N(aa)
sχ̄(aa)

∑
α (mod f)

∑
{0̸=µ∈aa,(µ,f)=1
,µ≡α(mod f)} /OK(f)×

τ(χf , µγ)χ∞(µ)

τ(χf , γ)|N(µ)|s

=
1

Afτ(χf , γ)

∑
a−1∈IK(1)/PK,1(1)

N(aa)
sχ̄(aa)

·
∑

α (mod f)

∑
{0̸=µ∈aa,(µ,f)=1
,µ≡α(mod f)} /O×

K(f∞)

∑
ρ (mod f)

χ̄f (ρ)e
2πiTr(µργ) χ∞(µ)

|N(µ)|s

where in the second equality every µ is counted Af := |O×
K (mod f)| times and in the

last summation we have used the fact that OK(f)× = OK(f∞)×. Rearranging a bit

the latter expression we get

=
1

Afτ(χf , γ)

∑
a−1∈IK(1)/PK,1(1)

∑
ρ (mod f)

N(aa)
sχ̄(aa)N(ρ)sχ̄((ρ))

·
∑

α(mod f)

∑
{0̸=µ∈aa,(µ,f)=1
,µ≡α(mod f)} /OK(f∞)×

e2πiTr(µργ)
χ∞(µρ)

|N(µρ)|s

=
1

Afτ(χf , γ)

∑
a−1∈IK(1)/PK,1(1)

∑
ρ (mod f)

N(aa)
sχ̄(aa)N(ρ)sχ̄((ρ))

·
∑

α(mod f)

∑
{0̸=µ∈ρaa,(µ,f)=1
,µ≡αρ(mod f)} /OK(f∞)×

e2πiTr(µγ)
χ∞(µ)

|N(µ)|s

=
χf (g)

Afτ(χf , γ)

∑
a−1∈IK(1)/PK,1(1)

∑
ρ (mod f)

χ̄(ρaag)Ψ (ρaaγ, χ∞, s)

=
1

g(χ, 1)

∑
a∈IK(f)/PK,1(f)

χ̄(aag)Ψ (aaγ, χ∞, s)

The last equality comes from the observation that the set of ideals {ρaa} covers every
element of IK(f)/PK,1(f) exactly Af times. □
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7.4 Partial zeta functions ζ(a−1, f, w, s) as the dual of Ψ( a
df , w, s)

Let K be any totally real number field. Let w : (K ⊗R Q)× → {±1} be a sign

character. Let f be an integral ideal of K and d be the different. For a fractional

ideal a coprime to f we define

ζ(a, f, w, s) := N(a)s
∑

OK(f∞)×\{µ∈a,µ≡1(mod f)}

w(µ)

|N(µ)|s

Note that both functions depend only on the narrow class of a modulo f. Observe

also that if b = λ−1a are integral ideals coprime to f then

ζ(b, f, w, s) = w(λ)N(a)s
∑

OK(f∞)×\{0 ̸=µ∈a,µ≡λ(mod f)}

w(µ)

|N(µ)|s
.(7.7)

Let {ai}ni=1 be the parity of w then we define

Fw(s) := |dK |s/2π−ns/2
n∏
i=1

Γ(
s+ ai
2

)

where n = [K : Q] and dK is the discriminant of K.

Theorem 7.1 We have the following functional equation

Fw(s)Ψ

(
a

fd
, w, s

)
= iTr(w)Fw(1− s)N(f)1−sζ(a−1, f, w, 1− s)(7.8)

where Tr(w) =
∑

i ai.

Proof The proof follows Hecke’s classical method and relies on the functional equa-

tion of the generalized theta function which is a direct consequence of the Poisson

summation formula. In order to prove (7.8) one needs to introduce heavy notation.

For this reasons we have decided to only prove (7.8) in the case where K is real

quadratic using a nice trick of Hecke which simplifies the argument. Moreover, this

second proof is better suited for the applications we have in mind since it involves an

integral of a classical Eisenstein series against a suitable power of a quadratic form.

□
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Remark 7.2 One can use Theorem 7.1 in conjunction with the well known func-

tional equation for L(s, χ) to give another proof of Proposition 7.1. However some

difficulties arise since in order to express the partial zeta functions ζ(a, w, f, s) as

linear combinations of L(s, χ) one needs to deal with non primitive characters χ of

IK(f)/PK,1(f∞).

Applying the last theorem in the case where K is real quadratic and letting a = aΛτ

and f = (f) one sees that

Fw1(s)Ψ

(
aΛτ

f
√
D
,w1, s

)
= −Fw1(1− s)N(f)1−sζ((aΛτ )

−1, f, w1, 1− s)(7.9)

and

Fw0(s)Ψ

(
aΛτ

f
√
D
,w0, s

)
= Fw0(1− s)N(f)1−sζ((aΛτ )

−1, f, w0, 1− s).

Note that if ΛτΛτσ = ( 1
A
) then (aΛτ )

−1 = A
a
Λτσ .

We conclude the end of this section by discussing some parity conditions on special

values of partial zeta functions at negative integers.

For integers m ≥ 2 which are even the quantity

Fw(m)

Fw(1−m)
(7.10)

is equal to 0 unless ai = 0 for all i. Similarly for integers m ≥ 1 odd the quantity

Fw(m)

Fw(1−m)
(7.11)

is 0 unless ai = 1 for all i. We define w0 = 1 and w1 = sign(NK/Q). We thus see that

for integers m ≥ 1 the quantity ζ(a, f, w, 1 − m) can be different than 0 only when

w = w0 and m is even or w = w1 and m is odd.

Let

ζ(a, f∞, s) := N(a)s
∑

O×
K(f∞)\{λ∈a,λ≡1(mod f),λ≫0}

1

|N(λ)|s
.(7.12)
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We simply call those partial zeta functions. Note here that the sum is restricted to

totally positive elements.

Let σ1, . . . , σn be the different embeddings of K and let {ai}ni=1 be such that

ai ∈ {0, 1}. We define

ζ(a, f∞, {ai}ni=1, s) = N(a)s
∑

{λ∈a:λ≡1(mod f)
λσi>0 if ai=0

λσi<0 if ai=1}/OK(f∞)×

1

|N(λ)|s
.

Let λ ∈ K× have parity {ai}ni=1 then using orthogonality relations we get∑
w is a sign character

w(λ)ζ(a, f, w, s) = 2nζ(a, f∞, {ai}ni=1, s)(7.13)

= 2nζ(aλ−1, f∞, s)

Choosing ai = 0 for all i with λ = 1 in (7.13) and combining it with (7.10) and (7.11))

we see that for even integers m ≥ 2

ζ(a, f, w0, 1−m) = 2nζ(a, f∞, 1−m)(7.14)

and that for odd integers m ≥ 1

ζ(a, f, w1, 1−m) = 2nζ(a, f∞, 1−m).(7.15)

Using again (7.13) we get that for any sign character η∑
(λ)∈PK,1(f)/PK,1(f∞)

η(λ)ζ(aλ−1, f∞, s) = ζ(a, f, η, s).

We have the following well known Theorem:

Theorem 7.2 (Siegel,Klingen) For integers k ≥ 1 the quantities

ζ(a, f∞, 1− k)

are rational numbers.

Proof See [Sie69].
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Corollary 7.1 For integers k ≥ 1 we have

Fw(k)

Fw(1− k)
Ψ

(
c

fd
, w, k

)
∈ Q,

where Fw(s) = |dK |s/2π−ns/2∏n
i=1 Γ(

s+ai
2

).

Proof Use Theorem 7.2 in combination with Theorem 7.1. □

We finish the section by recording one more result:

Proposition 7.2 Let (λ) ∈ PK,1(f) where λ have parity {ai}ni=1 then for odd

integers k ≥ 1 we have

ζ(aλ, f∞, 1− k) = (−1)
∑
aiζ(a, f∞, 1− k),

and for even integers k ≥ 2 we have

ζ(aλ, f∞, 1− k) = ζ(a, f∞, 1− k).

Proof We have

ζ(c−1, f, w1, s) =
Fw1(s)

Fw1(1− s)
Ψ

(
c

fd
, w1, 1− s

)
(7.16)

Now let (λ) ∈ PK,1(f) where have parity {ai}ni=1. Without lost of generality assumes

that λ ∈ OK . Then we have

Ψ

(
cλ

fd
, w1, s

)
= w1(λ)Ψ

(
c

fd
, w1, s

)
= (−1)

∑
aiΨ

(
c

fd
, w1, s

)
Substituting in (7.16) we find

ζ(c−1λ−1, f, w1, 1− s) = (−1)
∑
aiζ(c−1, f, w1, 1− s).

Now using (7.15) with s = k for k ≥ 1 odd we deduce

ζ(c−1λ−1, f∞, 1− k) = (−1)
∑
aiζ(c−1, f∞, 1− k).

The proof for an even integer k ≥ 2 is similar. We do the same calculation with w1

replaced by w0. □
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8 Archimedean zeta functions attached to real quadratic

number fields

We now specialize to the case where K is a quadratic number field of discriminant

D. Note that the different d of K is (
√
D). Let f be some positive integer that we

call the conductor and N0 another positive integer that we call the level. In order to

motivate the definitions of the various zeta functions attached to K we need to revisit

the involution ∗fN0 on X1(fN0).

8.1 Involution ∗fN0
on X1(fN0)(C) revisited

For this subsection we assume that K = Q(
√
D) is an imaginary quadratic number

field. Let [( r
fN0

, rΛτ )] be a point of Y1(fN0)(C). Using the definition on the involution

ιfN0 defined in section 4.6 and denoting it simply by ∗ we find that[
(
r

fN0

, rΛτ )

]∗
=

[
(− rτ

fN0

, rτZ+
r

fN0

Z)
]
=

[
(
−r
fN0

, rΛ 1
fN0τ

)

]
.

In particular we can think of ∗ as sending r
fN0
7→ −r

fN0
and τ 7→ 1

fN0τ
. Define

HOK (N0, f) as in Definition 5.6 but where H replaces Hp. Let (r, τ) ∈ HOK (N0, f)

then Qτ (x, y) = Ax2 + Bxy + Cy2 where (A, f) = 1, N0|A and B2 − 4AC = D. We

readily see that Q 1
fN0τ

(x, y) = Cf 2N0x
2 + Bfxy + A

N0
y2. Therefore we deduce that

disc(Q 1
fN0τ

) = f 2disc(Qτ ). Note that the leading coefficient of Q 1
fN0τ

(x, y) is not

coprime to f but its last coefficient A
N0

is. Remember that the group Γ0(fN0) acts

naturally on HOK (f,N0) by the rule

γ ⋆ (r, τ) =

(
dr,

aτ + b

cτ + d

)

where γ =

(
a b

c d

)
. There is a natural inclusion of HOK (N0, f)/Γ0(fN0) ⊆

Y1(fN0)(C) given by (r, τ) 7→ [( −r
fN0

, rΛτ )]. If (r, τ) ∼ (r′, τ ′) insideHOK (N0, f)/Γ0(fN0)
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then there exists a matrix

(
a b

c d

)
∈ Γ0(fN0) such that dr ≡ r′(mod f) and

(
a b

c d

)(
τ

1

)
= (cτ + d)

(
τ ′

1

)
.(8.1)

Rewriting (8.1) in term of τ ∗ = 1
fN0τ

and τ ′∗ = 1
fN0τ ′

we find that(
d c/fN0

bfN0 a

)(
τ ∗

1

)
= (bfN0τ

∗ + a)

(
τ ′∗

1

)
.

If we let ∗ : Γ̃0 → Γ̃0 be the involution defined by(
a b

c d

)∗

=

(
d c/fN0

bfN0 a

)

then we derive the following rule

(γ ⋆ [(r, τ)])∗ = (γ)∗ ⋆∗ [(r, τ)]∗.

where (
a b

c d

)
⋆∗ (r, τ) = (d−1r,

aτ + b

cτ + d
).

and

[(r, τ)]∗ = [(−r, τ ∗)].

Note however that strictly speaking [(−r, τ ∗)] does not belong to HOK (N0, f) since

EndK(Λτ∗) = Z+ fωZ ̸= Z+ ωZ = OK .

Letting StabΓ1(fN0)Qτ (x, y) = ⟨±γτ ⟩ where γτ =

(
a b

c d

)
we also see that

StabΓ1(fN0)(τ
∗) := γτ∗ =

(
d c/fN0

bfN0 a

)
= (γτ )

∗.(8.2)

This involution ∗ of level fN0 will play an important role later on.
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8.2 Zeta functions Ψ and Ψ∗

Let K be a real quadratic field with discriminant D. Let us suppose that f = (f)

where f is a positive integer. Let [a] ∈ IOK
(f)/QK,1(f) (the wide ideal class group of

conductor f) where a is an integral ideal coprime to f . Let also

w : (K ⊗Q R)× → {±1}

be any sign character. We are mainly interested by the sign character

w1 = sign ◦NK/Q.

Let Ψ( a√
Df
, w1, s) be the zeta function defined in section 7.1. In this section we would

like first to define a zeta function Ψ∗( a√
Df
, w1, s) where the ∗ refers to the involution

discussed in section 8.1 Second of all we would like to write down a functional equation

for the zeta functions Ψ and Ψ∗. In order to achieve those two goals it is more

convenient to take a Z-basis for the integral ideal a.

We take a Z-basis in the following way. There always exists an integer a ∈ Z>0,

(a, f) = 1 and a τ ∈ K such that

a(Z+ τZ) = a.

We let Qτ (x, y) = Ax2 + Bxy + Cy2 with A > 0 be the primitive quadratic form

associated to τ . Since EndK(Λτ ) = OK we have B2 − 4AC = D. Without lost of

generality we assume that τ = −B+
√
D

2A
. Note that the ideal AΛτ is an integral ideal

(in fact A is the smallest positive integer n for which nΛτ is integral).

A small computation shows that

Ψ

(
aΛτ

f
√
D
,w1, s

)
= N

(
aΛτ

f
√
D

)s ∑
OK(f∞)×\{0̸=µ∈ aΛτ

f
√
D
}

sign(NK/Q(µ))e
2πiTrK/Q(µ)

|N(µ)|s

= w1(
√
D)

∑
⟨ητ ⟩\{(m,n)∈Z2\(0,0)}

sign(Qτ (m,n))

|Qτ (m,n)|s
e

−2πi a
A

n

f , Re(s) > 1.(8.3)

where w1(
√
D) = −1, Qτ (x, y) = Ax2+Bxy+Cy2 = A(x−τy)(x−τσy), τ = −B−

√
D

2A
,
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⟨±ητ ⟩ = StabΓ1(f)(τ). The action of a matrix

(
a b

c d

)
acting on the vector (x, y) is

given by (ax+ by, cx+ dy). We choose ητ =

(
a b

c d

)
in such a way that cτ + d > 1.

Remark 8.1 Note that the variable appearing in the exponent of the exponential

of (8.3) is the negative of the second variable of the quadratic form.

Lemma 8.1 Let ⟨ϵ⟩ = OK(f∞)× where ϵ > 1. Then the matrix ητ ∈ Γ1(f)

corresponds to the matrix representation of the multiplication map by ϵn, for some

n ≥ 1, on the lattice Λτ with ordered basis {τ, 1}. In particular one has that ητ ∈ Γ(f).

Proof Let OK = Z + ωZ and assume that ω =
√
D. The case where ω = 1+

√
D

2
can

be treated in a similar way. The element τ can be written as τ = r
√
D+s
t

where t and r

are coprime to f (this uses the assumption that (Λτ , f) = 1). Let ϵ = u+ fv
√
D > 1

be a generator of OK(f∞)× and let ητ =

(
a b

c d

)
. Since

(
a b

c d

)(
τ

1

)
=

(cτ + d)

(
τ

1

)
we have by definition that cτ + d is a norm one algebraic integer

with f |c and d ≡ 1(mod f). Therefore cτ + d ∈ OK(f∞)× (this uses the fact that

(t, f) = 1) and so cτ + d = ϵn for some positive n. The matrix corresponding to ϵ

with respect to the basis {
√
D, 1} is

(
u fvD

fv u

)
. It thus follows that the matrix

corresponding to multiplication by ϵ for the basis {τ, 1} is given by(
r s

0 t

)(
u fvD

fv u

)(
1/r −s/rt
0 1/t

)
.

Computing the upper right entry we find − s2fv
rt

+ rfvD
t

which is divisible by f . It thus

follows that the upper right entry of the matrix corresponding to multiplication by

ϵn is divisible by f . □

If we consider the ideal τσaΛτ = aτσZ + a
A
CZ = aC

A
(Z + A

C
τσZ) then using (7.1)
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we find that

Ψ

(
aτσΛτ

f
√
D
,w1, s

)
= w1(τ

σ
√
D)

∑
⟨ητ ⟩\{(m,n)∈Z2\(0,0)}

sign(Qτ (m,n))

|Qτ (m,n)|s
e

2πi a
A

m

f .(8.4)

Remark 8.2 Note that this time the variable appearing in the exponent of the

exponential of (8.4) is the first variable of the quadratic form. Observe also that the

ideal aτσΛτ is coprime to f if and only if f ∤ C. The reader should keep in mind that

one can pass from (8.3) to (8.4) by multiplying the ideal in the first entry of Ψ by τσ.

We want to define a Ψ∗-zeta function attached to the lattice aΛτ where the ∗ corre-
sponds to a certain involution. The lattice aΛτ is equivalent to Ω(a,Λτ )∩OK modulo

PK,1(f∞). Remember that we have an involution

∗fN0 : Y1(fN0)→ Y1(fN0)(
r

fN0

, rΛτ

)
7→
(
−r
fN0

, rΛ 1
fN0

)
Let (1, τ) ∈ (Z/fZ)× × HOK

p (f,N0) where τ is reduced and consider the integral

primitive binary quadratic form of discriminant D attached to τ

Qτ (x, y) = Ax2 +Bxy + Cy2, A > 0.

The lattice AΛτ is the integral OK-ideal corresponding to Qτ (x, y). Consider also the

primitive binary quadratic form of discriminant f 2D attached to τ ∗ = 1
fN0τ

.

Qτ∗(x, y) = sign(C)

(
f 2CN0x

2 +Bfxy +
A

N0

)
.

The lattice f 2CN0Λτ∗ is the integral OK,f -ideal corresponding to Qτ∗(x, y) where

OK,f = Z+ fωZ is the order of conductor f . Note that

(1) Tr(µ) ∈ 1
f
Z if µ ∈ AΛτ

f
√
D
,

(2) Tr(µ) ∈ 1
f
Z if µ ∈ Cf2N0Λτ∗

f2
√
D

= CN0Λτ∗√
D

.

Note the appearance of f 2 in the denominator of the left hand side of the equality in

(2). This is accounted for the fact that that the ring of endomorphisms of Cf 2N0Λτ∗

is OK,f . This I hope motivates the following definition
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Definition 8.1 Let aΛτ be an integral OK-ideal and let Qτ (x, y) = Ax2 +Bxy+

Cy2 be the integral primitive binary quadratic form attched to τ . Note that A|a. We

define

Ψ∗
(
aΛτ

f
√
D
,w, s

)
:= N

(
CN0aΛτ∗

A
√
D

)s ∑
OK(f∞)×\{0̸=µ∈CN0aΛτ∗

A
√
D

}

sign(NK/Q(µ))e
2πiTrK/Q(µ)

|N(µ)|s

= w1(
√
D)

∑
⟨ητ∗ ⟩\(Z2\(0,0))

sign(Qτ∗(m,n))

|Qτ∗(m,n)|s
e

2πi a
A

n

f

(8.5)

= w1(
√
D)

∑
⟨ητ (fN0)⟩\(Z2\(0,0))

sign(QfN0τ (m,n))

|QfN0τ (m,n)|s
e

2πi a
A

m

f

(8.6)

where τ ∗ = 1
fN0τ

= −Bf+f
√
D

f2N0C
, Qτ∗(x, y) = sign(C)

(
f 2CN0x

2 +Bfxy + A
N0
y2
)
and

ητ∗ =

(
d c/fN0

bfN0 a

)
, ητ (fN0) =

(
a bfN0

c/fN0 d

)
.

The third equality follows from the change of variable (x, y) 7→ (y, x) and uses the

identity |Qτ∗(m,n)| = |QfN0τ (n,m)|. Again Ψ∗ depends only on the narrow ideal

class modulo f of the integral ideal aΛτ .

Remark 8.3 It is interesting to point out that the third equality reflects the

functional equation of a certain Eisenstein series. This is clear if one looks at the

proof of Lemma 9.2.

We want to define now dual zeta functions to Ψ and Ψ∗ (dual in the sense of the

functional equation).

Definition 8.2 For s ∈ C such that Re(s) > 1 we define

Ψ̂

(
aΛτ√
Df

,w1, s

)
:= f 2s

∑
⟨ητ ⟩\(0̸=(m,n)≡( a

A
,0)(mod f))

sign(Qτ (m,n))

|Qτ (m,n)|s
,(8.7)

and

Ψ̂∗
(
aΛτ√
Df

,w1, s

)
:= f 2s

∑
⟨ητ∗ ⟩\(0̸=(m,n)≡( a

A
,0)(mod f))

sign(Qτ∗(m,n))

|Qτ∗(m,n)|s
,
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where A is the leading coefficient of the quadratic form Qτ (x, y) = Ax2 +Bxy+Cy2.

Remark 8.4 Note that the matrices ητ and ητ∗ preserve the congruence( a
A
, 0
)

(mod f).

We can now write down the functional equation for Ψ and Ψ∗.

Theorem 8.1 For s ∈ C such that Re(s) < −1 we have

−Fw1(s)Ψ

(
aΛτ√
Df

,w1, s

)
= Fw1(1− s)Ψ̂

(
aΛτ

f
√
D
,w1, 1− s

)
,(8.8)

and

−F ∗
w1
(s)Ψ∗

(
aΛτ√
Df

,w1, s

)
= F ∗

w1
(1− s)Ψ̂∗

(
aΛτ

f
√
D
,w1, 1− s

)
.(8.9)

where Fw1(s) = disc(Qτ )
s/2π−sΓ

(
s+1
2

)2
and F ∗

w1
(s) = disc(Qτ∗)

s/2π−sΓ
(
s+1
2

)2
. Note

that the left hand side of (8.8) and (8.9) make sense when Re(s) < −1 since Ψ and

Ψ∗ admit a meromorphic continuation to C (see Corollary 8.1).

Remark 8.5 Later on we will relate special values of Ψ̂ and Ψ̂∗ at negative even

integers (see Proposition 9.4). At this stage it is not clear that Ψ̂ can be related to

Ψ̂∗ in any obvious way.

We end this subsection with this useful lemma

Lemma 8.2 We have

Ψ̂

(
aΛτ√
Df

,w1, s

)
= N(f)sζ

(
(aΛτ )

−1, f, w1, s
)
.

where the function on the right hand side is a partial zeta function of K weighted by

the infinite character w1 = sign ◦NK/Q.

Proof We have

Ψ̂

(
aΛτ√
Df

,w, s

)
= f 2s

∑
⟨ητ ⟩\(0̸=(m,n)≡( a

A
,0)(mod f))

sign(Qτ (m,n))

|Qτ (m,n)|s

=
f 2sAs

a2s

∑
⟨ητσ ⟩\(0̸=(m,n)≡( a

A
,0)(mod f))

sign(Qτσ(m,n))

| A
a2
Qτσ(m,n)|s
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= N(f)sN

(
A

a
Λτσ

)s ∑
OK(f∞)×\{0̸=µ∈A

a
Λτσ ,µ≡1(mod f)}

w1(µ)

|N(µ)|s

= N(f)sζ

(
A

a
Λτσ , f, w1, s

)
= N(f)sζ

(
(aΛτ )

−1, f, w1, s
)

The last equality follows from the fact that ΛτΛτσ =
(
1
A

)
. The term on the right

hand side of the last equality is nothing else than a partial zeta function twisted by

the character w1. Note that this coincides with equation (7.9). □

8.3 Proof of the functional equation of Ψ for K quadratic real

The key idea in the proof of Theorem 8.1 is a trick due to Hecke relating the zeta

function of definite quadratic forms to the zeta function of indefinite quadratic form.

After it is a matter of relating the functional equation appearing in (3.11) to the one

appearing in Theorem 8.1. We have decided to include the proof for the reader but

essentially all the ingredients are already contained in [Sie68].

Part 1 of the proof of Theorem 8.1 Our strategy will be to prove a more

general functional equation (see (8.19) of Theorem 8.2) and then deduce (8.8) and

(8.9) as special cases of it. Let

(
a b

c d

)
= γ ∈ SL2(Z) be an hyperbolic matrix

fixing two real points τ and τσ such that τ > τσ. Assume furthermore that a ≡ 1

(mod f) and c ≡ 0 (mod f).

Consider the normalized quadratic form Q̃τ (z, 1) = (z − τ)(z − τσ) = 1
A
Qτ (z, 1)

where Qτ (x, y) = Ax2 +Bxy + Cy2. We find the transformation formula

sign(cτ + d)Q̃τ (z, 1) = (cz + d)2Q̃τ (γz, 1).

We define

ψr(s, z) =
∑′

m

e2πim2r/f

|(m2z −m1)|2(s−1)(m2z −m1)2
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which converges for all s ∈ C such that Re(s) > 1. We will use the functional equation

in s of ψr(s, z) to deduce it for Ψ( a
fd
, w1, s). The function z 7→ ψr(s, z) satisfies the

following transformation formula

ψr(s, αz) = |Pz +Q|2(s−1)(Pz +Q)2ψr(s, z)(8.10)

for any

(
R S

P Q

)
= α ∈ Γ1(f). It thus follows that the C

∞ 1-form |Q̃τ (z)|s−1ψr(s, z)dz

is invariant under the transformation z 7→ γz. The next identity will be used in the

sequel

(Pz +Q)(m2(αz)−m1) = (m′
2z −m′

1),(8.11)

where α =

(
R S

P Q

)
and

(
Q −S
−P R

)(
m1

m2

)
=

(
m′

1

m′
2

)
.

Lemma 8.3 Let C be the half circle of the upper half plane joining τ and τσ. Let(
m1

m2

)
∈ Z2 and (γl)−1

(
m1

m2

)
=

(
m′

1

m′
2

)
(for some integer l) then

∫
C

1

|m2z −m1|2(s−1)(m2z −m1)2
|Q̃τ (z)|s−1dz

=

∫
C

1

|m′
2z −m′

1|2(s−1)(m′
2z −m′

1)
2
|Q̃τ (z)|s−1dz.

Note that C, as a subset of H, is fixed (the orientation also is preserved) by the

Moebius transformation z 7→ γlz.

Proof of the Lemma 8.3 We prove it for l = 1. We compute:∫
C

1

|m2z −m1|2(s−1)(m2z −m1)2
|Q̃τ (z)|s−1dz

=

∫
γ−1C

1

|m2γz −m1|2(s−1)(m2γz −m1)2
|Q̃τ (γz)|s−1dγz(8.12)

=

∫
C

1

|m2γz −m1|2(s−1)(m2γz −m1)2
|Q̃τ (γz)|s−1dγz,
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where the second equality follows from the invariance of C by γ. We thus have∫
C

1

|m2z −m1|2(s−1)(m2z −m1)2
|Q̃τ (z)|s−1dz

=

∫
C

1

|(am2 − cm1)z − (−bm2 + dm1)|2(s−1)((am2 − cm1)z − (−bm2 + dm1))2
|Q̃τ (z)|s−1dz

=

∫
C

1

|m′
2z −m′

1|2(s−1)(m′
2z −m′

1)
2
|Q̃τ (z)|s−1dz,

where

(
m′

1

m′
2

)
= γ−1

(
m1

m2

)
. The second equality follows from (8.10) and (8.11).

□

Let x be an arbitrary point on C. From the previous computation we see that for

any (m1,m2) ∈ Z2\{(0, 0)} we have∫
C

1

|m2z −m1|2(s−1)(m2z −m1)2
|Q̃τ (z)|s−1dz(8.13)

=
∑

(n1,n2)∈⟨γ−1⟩(m1,m2)

∫ γx

x

1

|n2z − n1|2(s−1)(n2z − n1)2
|Q̃τ (z)|s−1dz,

where the last summation goes over all the γ−1-translate of the fixed pair (m1,m2).

Geometrically the small arc with end points x and γ−1x gives a tessellation of C under

the action of the ⟨γ−1⟩. Note that we were allowed to change the order of summation

with integration because of absolute convergence since Re(s) > 1.

Fix a complete set of representatives {(m1,m2)} for the action of ⟨γ⟩ on (Z2\{(0, 0)}).
Then for every representative (m1,m2) multiply the left hand side of (8.12) by

e2πim2r/f . Taking the summation and using (8.13) gives us∑
(m1,m2)∈⟨γ⟩\(Z2\(0,0))

e2πim2r/f

∫
C

1

|m2z −m1|2(s−1)(m2z −m1)2
|Q̃τ (z)|s−1dz(8.14)

= j

∫ γx

x

|Q̃τ (z)|s−1ψr(s, z)dz.

The orientation of C is taken to be the orientation of the arc segment joining τσ to

τ . It is therefore in the clockwise orientation. The quantity j := sign(a+d
c
) takes

care of this choice of orientation. By Lemma 8.3 the summation on the left hand side

does not depend on the set of representatives which is clear from the right hand side.
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Also since the left hand side does not depend on x we get that the right hand side is

independent of the base point x.

We are thus lead to evaluate the following expression∫
C

1

|m2z −m1|2(s−1)(m2z −m1)2
|Q̃τ (z)|s−1dz.

This is the content of the next lemma

Lemma 8.4 For Re(s) > 1 we have

∫
C

1

|m2z −m1|2(s−1)(m2z −m1)2
|Q̃τ (z)|s−1dz =

Γ( s+1
2
)2

Γ(s+ 1)
disc(Q̃τ )

s−1/2 sign(Q̃τ (m1,m2))

|Q̃τ (m1,m2)|s
.

(8.15)

Proof We omit the proof since this calculation is done in [Sie68] and a later on we

will do a similar calculation. □

Corollary 8.1 Let Re(s) > 1 then∫ γx

x

|Q̃τ (z)|s−1ψr(s, z)dz = j
Γ( s+1

2
)2

Γ(s+ 1)
disc(Q̃τ )

s−1/2Asφ

(
r

f
, τ, γ, s

)
,(8.16)

where

φ

(
r

f
, τ, γ, s

)
:=

∑
⟨γ⟩\(Z2\{(0,0)})

sign(Qτ (m1,m2))e
2πim2r/f

|Qτ (m1,m2)|s
,

j = sign(a+d
c
), Qτ (x, y) = AQ̃τ (x, y) = A(x− τy)(x− τσy).

Proof Combine (8.14) with Lemma 8.4. □

Note that disc(Qτ ) = disc(AQ̃τ ) = A2disc(Q̃τ ).

Lemma 8.5 We have∫ γx

x

|Q̃τ (z)|s−1ψr(s, z)dz = j
Γ(2−s

2
)2π2s−1

f 2(s−1)Γ(s+ 1)

∑
⟨γ⟩\{(m1,m2)≡(r,0) (mod f)}

sign(Q̃τ (m1,m2))

|Q̃τ (m1,m2))|1−s
,

for any s ∈ C such that Re(s) < 0.
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Remark 8.6 Note that the matrix γ ∈ Γ1(f) preserves the congruence (r, 0)

(mod f) so that the summation on the right hand side of the last equality does not

depend of the choice of representatives.

Proof of Lemma 8.5 The proof uses the same ideas as Lemma 8.1.

Let ζ(s, u∗, v∗, z, g) (see (3.10) for the definition) with g = 2, u∗ =

(
r
f

0

)
and

v∗ =

(
0

0

)
we get

ζ(s,

(
r
f

0

)
,

(
0

0

)
, z, 2) = ys

∑
m̸=0

e−2πim2r/f

|(m1 +m2z)|2(s−1)(m1 +m2z)2

= ys
∑
m̸=0

e2πim2r/f

|(m2z −m1)|2(s−1)(m2z −m1)2

= ysψr(s, z).(8.17)

Using the functional equation in (3.11) applied to ψr(s, z) we get∫ γx

x

|Q̃τ (z)|s−1ψr(s, z)dz

=
π2s−1Γ(2− s)
f 2(s−1)Γ(s+ 1)

∫ γx

x

|Q̃τ (z)|s−1

im(z)2s−1

ζ

(
1− s,

(
0

0

)
,

(
r
f

0

)
, z, 2

)
im(z)1−sf 2(1−s) dz

=
π2s−1Γ(2− s)
f 2(s−1)Γ(s+ 1)

∫ γx

x

|Q̃τ (z)|s−1

im(z)2s−1

∑
(m1,m2)≡(r,0) (mod f)

1

|m1 −m2z|−2s(m1 −m2z)2
dz

= j
π2s−1Γ(2− s)
f 2(s−1)Γ(s+ 1)

∫
C

|Q̃τ (z)|s−1

im(z)2s−1

∑
⟨γ⟩\(m1,m2)≡(r,0) (mod f)

1

|m1 −m2z|−2s(m1 −m2z)2
dz

= j
π2s−1Γ(2− s)
f 2(s−1)Γ(s+ 1)

∑
⟨γ⟩\(m1,m2)≡(r,0) (mod f)

∫
C

|Q̃τ (z)|s−1

im(z)2s−1

1

|m1 −m2z|−2s(m1 −m2z)2
dz.

We are thus lead to evaluate the integral

J :=

∫ τ

τσ

∣∣∣ Q̃τ (z)

(m− nz)2
∣∣∣s−1∣∣∣(m− nz)2

im(z)

∣∣∣2s−1 dz

(m− nz)2
.
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The two end points of C correspond to τ and τσ. We integrate from τσ to τ , therefore

since τ > τσ this is integrating along C in the clockwise orientation.

In order to compute this integral we do a change of variables. The variables are z

and w and t and we fix a pair (m,n) ∈ Z2\{(0, 0)}. We let

z = τw+τσ

w+1
, w = z−τσ

τ−z v = nτ −m, vσ = nτσ −m
nz −m = vw+vσ

w+1
j = sign(a+d

c
)

Q̃τ (
τw+τσ

w+1
) = −(τ − τσ)2 w

(w+1)2
g = sign(vvσ) = sign(Q̃τ (m,n))

w = |vσ
v
|it (nz −m)−2dz = i(τ − τσ)|vvσ|−1

·(1 + igt)−2dt

The of variables z 7→ τw+τσ

w+1
sends the hyperbolic triangle C on the positive y-axis.

Applying this change of variable we find

J =

∫ i∞

0

∣∣∣−(τ − τσ)2 w
(w+1)2

(vw+v
σ

w+1
)2

∣∣∣s−1∣∣∣ (vw+v
σ

w+1
)2

(τ − τσ) im(w)
|w+1|2

∣∣∣2s−1

(τ − τσ)(vw + vσ)−2dw

=

∫ i∞

0

∣∣∣ w

(vw + vσ)2

∣∣∣s−1∣∣∣(vw + vσ)2

im(w)

∣∣∣2s−1

(vw + vσ)−2dw

=

∫ ∞

0

∣∣∣ (vvσ)−1it

(1 + igt)2

∣∣∣s−1∣∣∣(1 + igt)2

(vvσ)−1it

∣∣∣2s−1

i|vvσ|−1(1 + igt)−2dt

= i|vvσ|−(1−s)
∫ ∞

0

∣∣∣ t

1 + t2

∣∣∣−s(1 + igt)−2dt

= i|vvσ|−(1−s)
∫ ∞

0

(
t

1 + t2

)−s

(1 + igt)−2dt.(8.18)

So we need to evaluate the quantity I :=
∫∞
0
( t
1+t2

)−s(1 + igt)−2dt. Doing the change

of variables t 7→ 1
t
in the right hand side of the last equality we find that I =

−
∫∞
0
( t
1+t2

)−s(1− igt)−2dt = −Ī, so I is purely imaginary. Therefore

I =
1

2

∫ i∞

0

(
(1 + igt)−2 − (1− igt)−2

)
(

t

1 + t2
)s−1dt

= −2ig
∫ ∞

0

t

(1 + t2)2

(
t

1 + t2

)−s

dt

= −2ig
∫ ∞

0

t−s+1(1 + t2)s−2dt.
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Doing the change of variable 1 + t2 = u followed by u 7→ 1
u
in the right hand side of

the last equality we find that

I = −2ig
∫ ∞

0

t−s+1(1 + t2)s−2dt = −ig
∫ 1

0

(1− u)−s/2u−s/2du.

Using the well know formula
∫ 1

0
ux−1(1 − u)y−1du = Γ(x)Γ(y)

Γ(x+y)
in the last equality we

obtain

I = −ig
Γ(2−s

2
)2

Γ(2− s)
.

Substituting the latter expression of I in (8.18) we find∫ γx

x

|Q̃τ (z)|s−1ψr(s, z)dz = j
Γ(2−s

2
)2π2s−1

f 2(s−1)Γ(s+ 1)

∑
⟨γ⟩\(m,n)≡(r,0) (mod f)

sign(Q̃τ (m,n))

|Q̃τ (m,n))|1−s
.

This completes the proof of Lemma 8.5. □

Lemma 8.5 suggests the following definition:

Definition 8.3

φ̂

(
r

f
, τ, γ, s

)
:= f 2s

∑
⟨γ⟩\{0̸=(m,n)≡(r,0) (mod f)}

sign(Qτ (m,n))

|Qτ (m,n))|s
.

We have the following functional equation:

Theorem 8.2 We have

Γ

(
s+ 1

2

)2

disc(Q̃τ )
s
2Asφ

(
r

f
, τ, γ, s

)
= disc(Q̃τ )

1−s
2 Γ

(
2− s
2

)2

π2s−1A1−sφ̂

(
r

f
, τ, γ, 1− s

)
.

(8.19)

Proof Combine Corollary 8.1 with Lemma 8.5. □

We can now finish the proof of Theorem 8.1 by using the functional equation

(8.19).

Part 2 of the proof of Theorem 8.1 We only prove the functional equation

(8.8) since (8.9) can be proved in a similar way. Let K = Q(
√
D) where D is the
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discriminant and let OK be the maximal order of K. Let (r, τ) ∈ Z/fZ×HOK
p (N0, f)

and let A be the coefficient of the x2-term of the primitive quadratic form Qτ (x, y) =

Ax2 +Bxy + Cy2. Since τ ∈ HOK
p (N0, f) one has (A, f) = 1.

Let ⟨γτ ⟩ = StabΓ1(f)(τ)/{±I} where γτ is chosen in a such a way that γτ =(
a b

c d

)
with cτ + d > 1. Since (A, f) = 1 we deduce that cτ + d is the unique

generator of OK(f∞)× such that cτ + d > 1. Using the previous observation in the

definition of Ψ
(
rAΛτ

f
√
D
, w1, s

)
a computation (see for example (8.3)) shows that

Ψ

(
rAΛτ

f
√
D
,w1, s

)
= −ζ((r, s), w1, s)

= −φ
(
r

f
, τ, γτ , s

)
,(8.20)

Note the appearance of the sign −1 on the right hand side which is accounted by the

fact that w1(
√
D) = −1.

Now unfolding the definitons of Ψ̂ and φ̂ one immediatly sees that

Ψ̂

(
rAΛτ

f
√
D
,w1, s

)
= φ̂

(
r

f
, τ, γτ , s

)
.(8.21)

Now combining (8.20) and (8.21) we may rewrite the functional equation (8.19) in

the following way

−Fw1(s)Ψ

(
rAΛτ√
Df

,w1, s

)
= Fw1(1− s)Ψ̂

(
rAΛτ

f
√
D
,w1, 1− s

)
.

This proves the functional equation (8.8). □
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9 Relation between special values of zeta functions

and Eisenstein series

9.1 Archimedean zeta function associated to a class in

((Z/fZ)× ×HOp (N0, f))/Γ̃0

In this section we want to associate to any class in ((Z/fZ)××HO
p (N0, f))/Γ̃0 a well

defined Archimedean zeta function. We first start by proving an elementary lemma.

Lemma 9.1 Let τ ∈ Hp ∩K s.t. (disc(Qτ ), p) = 1 and let

⟨±γτ ⟩ = StabSL2(Z[ 1p ])
(τ),

then γτ ∈ SL2(Z). Note that γτ is well defined up to ±1.

Proof Let

(
a b

c d

)
= γτ . Since det(γτ ) = 1 this implies that NK/Q(cτ + d) = 1.

Since the denominators of c and d are at most powers of p and N(cτ + d) = 1 we

have that cτ + d is norm 1 unit of O(p)
K

×
. But since p is inert in K we have O(p)

K

×
≃

±1×pZ×O×
K . Therefore this forces cτ+d ∈ O

×
K . We also have cτ 2+(d−a)τ+b = 0.

Therefore there exists a rational number of the form ps

m
((m, p) = 1) such that

ps

m
(cx2 + (d− a)x+ b) = Qτ (x) = Ax2 +Bx+ C.(9.1)

let E = B2− 4AC then without lost of generality we can assume τ = −B+
√
E

2A
. We

have (cτ + d)− (cτσ + d) = c(τ − τσ) ∈ OK . Therefore c
√
E
A
∈ OK . But c/A = m/ps

we thus have m
√
E

ps
∈ OK . Since (E, p) = 1 and (m, p) = 1 this forces s = 0. Because

A,B,C are integers, (m, p) = 1 and a, b, c, d ∈ Z[1
p
], we deduce from (9.1) that

c, b, (d− a) ∈ Z. Finally note that A|c so we find that cτ ∈ OK and therefore d ∈ Z.
□

We would like to attach now a zeta function to certain pairs (r, τ) ∈ (Z/fZ)× ×
HO
p (N0, f).
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Remark 9.1 It is easy to show that if τ is reduced, i.e. if red(τ) = v0 where v0

is the standard vertex on the Bruhat-Tits tree and red is the reduction map, then

(disc(Qτ ), p) = 1. However the converse is false. We can therefore think of the reduced

requirement as a finer notion compare to the more naive condition (disc(Qτ ), p) = 1.

Definition 9.1 Let (r, τ) ∈ (Z/fZ)× ×HO
p (N0, f). Assume that τ is reduced i.e.

red(τ) = v0. We set

⟨±ητ ⟩ := StabΓ1(fZ[ 1p ])
(τ).

Then by Lemma 9.1 we know that ητ ∈ Γ1(f), in other words StabΓ1(fZ[ 1p ])
(τ) =

StabΓ1(f)(τ). We choose ητ =

(
a b

c d

)
in such a way that cτ + d > 1. We define

several zeta functions associated to the pair (r, τ) by

(1) ζ((r, τ), s) := Ψ
(

Ω(r,τ)∩O
f
√
D

, w1, s
)

(2) ζ̂((r, τ), s) := Ψ̂
(

Ω(r,τ)∩O
f
√
D

, w1, s
)

and similarly

(3) ζ∗((r, τ), s) := Ψ∗
(

Ω(r,τ)∩O
f
√
D

, w1, s
)
,

(4) ζ̂∗((r, τ), s) := Ψ̂∗
(

Ω(r,τ)∩O
f
√
D

, w1, s
)
,

where w1 = sign ◦NK/Q and d = (
√
D).

The reader should keep in mind that the map Ω (see Definition 5.7) depends on the

quantities O, p, f and N0.

Proposition 9.1 If (r, τ), (r′, τ ′) ∈ (Z/fZ)× ×HO
p (N0, f) satisfy the assumption

of the definition 9.1, namely red(τ) = red(τ ′) = v0, then if (r, τ) ∼ (r′, τ ′) we have

(1) ζ((r, τ), s) = ζ((r′, τ ′), s),

(2) ζ∗((r, τ), s) = ζ∗((r′, τ ′), s).
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Proof Let Ω(r, τ) = ArΛ
(p)
τ and Ω(r′, τ ′) = A′

r′Λ
(p)
τ ′ (where the exponent (p) means

that we have tensored the Z-lattices AΛτ and A′Λτ ′ over Z[1p ]). Since (r, τ) ∼ (r′, τ ′)

there exists a matrix γ =

(
a b

c d

)
∈ Γ̃0 such that

(
a b

c d

)(
τ

1

)
= λ

A′
r′

Ar

(
τ ′

1

)
.(9.2)

where λ ∈ 1 + fΩ(r′, τ ′)−1, (fN0)|c. Because τ and τ ′ are reduced this forces γ ∈
GL2(Zp). It thus follows that γ ∈ SL2(Z). Using (9.2) we deduce that ArΛτ ≡ A′

r′Λτ ′

(mod QO,1(f∞)). Finally since τ and τ ′ are reduced we have ArΛ
(p)
τ ∩O = ArΛτ and

A′
r′Λ

(p)
τ ′ ∩ O = A′

r′Λτ ′ . It thus follows that

Ψ

(
Ω(r, τ) ∩ O
f
√
D

,w, s

)
= Ψ

(
Ω(r′, τ ′) ∩ O

f
√
D

,w, s

)
.

This proves (1). The proof of (2) is similar. □

We have thus succeeded to attach well defined Archimedean zeta functions to any

class of (Z/fZ)× ×HO
p (N0, f)/ ∼.

So far we haven’t used the level N0-structure build in inside (Z/fZ)××HO
p (N0, f).

The next object we define is a zeta function attached to a good divisor δ ∈ D(N0, f)
⟨p⟩

and a pair (r, τ) ∈ (Z/fZ)× × HO
p (N0, f). From now on, in order to simplify the

calculation we make the following assumption

Assumption 9.1 We assume that the good divisor

δ =
∑
d0,r

n(d0, r)d0 ∈ D(N0, f)
⟨p⟩

is primitive i.e. n(d0, r) = 0 if (r, f) ̸= 1.

Definition 9.2 Let δ =
∑

d0,r
n(d0, r)[d0, r] ∈ D(N0, f)

⟨p⟩ be a good divisor and

(j, τ) ∈ (Z/fZ)× ×HO
p (N0, f) with red(τ) = v0 then we define

(1) ζ(δj, (1, τ), s) :=
∑

d0|N0,r∈(Z/fZ)×
n (d0, r) d

s
0ζ̂((rj, d0τ), s),
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(2) ζ∗(δj, (1, τ), s) :=
∑

d0|N0,r∈(Z/fZ)×
n(N0

d0
, r)
(
N0

d0

)s
ζ̂((−rj, d0τ ∗), s),

where τ ∗ = 1
fN0

.

It is an easy exercise to show that ζ(δj, (1, τ), s) and ζ∗(δj, (1, τ), s) depend only

on the class of (1, τ) modulo ∼. We also have the useful formula ζ(δaj, (1, τ), s) =

ζ(δj, (a, τ), s).

Remark 9.2 First of all note that there is a hat on zeta functions appearing on

the right hand side of (1) and (2). Note also that the lattices Λd0τ has endomorphism

by OK = Z + ωZ and Λd0τ∗ has endomorphism by Z + fωZ which is the order of

conductor f of OK .

Remark 9.3 In the case where f = 1 as in [DD06] one has that ζ(δj, τ, s) =

ζ∗(δj, τ, s). In general if f > 1 then ζ(δj, (1, τ), s) ̸= ζ∗(δj, (1, τ), s). In proposition

9.4 we relate both of them under the assumption that the primes dividing f are inert

in K.

9.2 Special values of ζ(δr, (A, τ), 1−k) as integrals of Eisenstein
series of even weight F2k

We are now ready to relate periods of Eisenstein series with special values of the

Archimedean zeta functions ζ(δr, (1, τ), s) and ζ
∗(δr, (1, τ), s). For this section

δ =
∑

d0|N0,r∈Z/fZ

n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩,

is a fixed good divisor.

Lemma 9.2 Let (j, τ) ∈ (Z/fZ)××HO
p (N0, f) where Qτ (x, y) = Ax2+Bxy+Cy2

and red(τ) = v0. Then for all odd integers k ≥ 1 we have

(1) 3ζ∗(δj, (1, τ), 1− k) = −N1−k
0

∫ γτ∗ξ2
ξ2

Qτ∗(z, 1)
k−1F̃ ∗

2k(−j, z)dz

= f 2k−2
∫ γτ ξ1
ξ1

Qτ (z, 1)
k−1F̃2k(j, z)dz,
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(2) 3ζ(δj, (1, τ), 1− k) =
∫ γτ ξ1
ξ1

Qτ (z, 1)
k−1G̃2k (j, z) dz,

where for any integer w ≥ 2

(1) F̃w(j, z) = −12f
∑

d0|N0,r∈Z/fZ n(d0, jr)d0Ew(r, d0z),

(2) F̃ ∗
w(j, z) = −12

∑
d0|N0,r∈Z/fZ n

(
N0

d0
, jr
)
dw−1
0 E∗

w(r, d0z),

(3) G̃w(j, z) := −12
∑

d0|N0,r∈Z/fZ n(d0, jr)d0E
∗
w(−r, d0z).

Here ξ1 = ∞, ξ2 = 0, ⟨±γτ ⟩ = StabΓ1(τ) where γτ =

(
a b

c d

)
is chosen in such a

way that cτ + d > 0.

For the definition of Ew(j, z) and E∗
w (j, z) see Definitions 4.7 and 4.8. Note that

because δ is a good divisor the Eisenstein series F̃w(j, z) and G̃w(j, z) are holomorphic

at ∞ = 1
0
. Similarly, the Eisenstein series F̃ ∗

w(j, z) is holomorphic at 0
1
. Therefore all

the integrals appearing in Lemma 9.2 make sense. From the identity (4.25) one may

deduce the following relation(
−1
fN0z

)w
F̃ ∗
w

(
j,
−1
fN0z

)
=

(−1)w

fN0

F̃w(j, z).(9.3)

Remark 9.4 Note that since τ ∈ HO
p (N0, f) we have τ > τσ. Since cτ + d is

a unit and ad − bc = 1 we have necessarily cτ + d > 1 > cτσ + d > 0. Moreover

Tr(γτ ) = a+ d = (cτ + d) + (cτσ + d) > 1. We thus deduce that

sign

(
a+ d

c

)
> 0.

Since (
a b

c d

)(
τ

1

)
= (cτ + d)

(
τ

1

)
,

we have (
d c

fN0

bfN0 a

)(
τ ∗

1

)
= (cτ + d)

(
τ ∗

1

)
,
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and therefore γτ∗ =

(
d c

fN0

bfN0 a

)
and bfN0τ

∗ + a = cτ + d. From this we may

deduce that

sign

(
a+ d

bfN0

)
< 0.

Remark 9.5 In the case when f = 1 one has G̃w(z) = F̃w(z) and therefore

ζ∗(δj, (A, τ), s) = ζ(δj, (A, τ), s).

If we use Proposition 5.1 we see that we can replace ξ2 in (1) by any point in H
without changing the value of the integral and similarly for the integral in (2). Note

also that if (disc(Qτ ), p) = 1 then

StabΓ1(τ) = StabΓ1(f)(τ).(9.4)

In particular the equality (9.4) holds true when red(τ) = v0.

Proof We only prove (1) since (2) can be proved in a similar way. We compute∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1F̃ ∗

2k(j, z)dz = −12
∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1
∑
d0,r

n

(
N0

d0
, r

)
d2k−1
0 E∗

2k(rj, d0z)dz

= −12
(

(2πi)2k

(2k − 1)!

)−1∑
d0,r

n

(
N0

d0
, r

)
d2k−1
0

∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1

∑
(0,0)̸=(m,n)

e2πinrj/f

(m+ nd0z)2k
dz

= −12
(
(−1)k(2π)2k

(2k − 1)!

)−1∑
d0,r

n

(
N0

d0
, r

)
d2k−1
0

∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1Θrj(k, d0z)dz,

(9.5)

where

Θk(r, z) =
∑
m,n

′ e2πinr/f

(nz −m)2k
.(9.6)

Note that since 2k is even one has Θk(−r, z) = Θk(r, z). Note also that the the right

hand side of (9.6) converges absolutely only for integers k larger or equal to 2. Fix a
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d0|N0. Applying the change of variable z 7→ z
d0

to the integral of the right hand side

of (9.5) we get∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1F̃ ∗

2k(j, z)dz

= −12
(
(−1)k(2π)2k

(2k − 1)!

)−1∑
d0,r

dk−1
0 n

(
N0

d0
, r

)∫ d0γτ∗
1
d0
ξ2

ξ2

(
d0Qτ∗

(
1

d0
z, 1

))k−1

Θk(−rj, z)dz.

(9.7)

Let Qτ (x, y) = Ax2+Bxy+Cy2. Since (r, τ) ∈ (Z/fZ)××HO
p (N0, f) and τ

∗ = 1
fN0τ

we have for any d0|N0

Qd0τ∗(x, y) = sign(C)

(
f 2C

N0

d0
x2 +Bfxy +

Ad0
N0

y2
)
.

Thus

Qd0τ∗(d0x, y) = d0Qτ∗(x, y).(9.8)

Substituting (9.8) in (9.7) we obtain that∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1F̃ ∗

2k(j, z)dz

= −12
(
(−1)k(2π)2k

(2k − 1)!

)−1∑
d0,r

n

(
N0

d0
, r

)
d
−(1−k)
0

∫ γd0τ∗ξ2

ξ2

Qd0τ∗ (z, 1)
k−1Θk(−rj, z)dz.

(9.9)

Now using the absolute convergence of of Θk(−rj, z) for odd integer k ≥ 3 one may

apply the Hilfssatz 1 of [Sie68] to the integral on the right hand side of (9.9). From

this we may deduce that∫ γd0τ∗ξ

ξ

Qd0τ∗(z, 1)
k−1Θk(−rj, z)dz(9.10)

= (−1)k−1sign

(
a+ d

bfN0/d0

)
Γ(k)2

Γ(2k)
disc(Qd0τ∗)

k− 1
2φ

(
−rj
f
, d0τ

∗, γd0τ∗ , k

)
,

where the φ is the function which appears in Corollary 8.1. We want to point out

here that the Hilfssatz 1 does not apply for k = 1. The case k = 1 will be treated
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separately. Note that the matrix γd0τ∗ satisfies the property that
(
u v

)
γd0τ∗ ≡(

u v
)

(mod Z2) for all (u, v) ∈ Z2 such that (u, v) ≡ (−rj, 0) (mod f) so that

φ
(
− rj

f
, d0τ

∗, γd0τ∗ , k
)
makes sense.

Now from the functional equation which appears in (8.19) one may deduce that

F ∗(s)φ

(
−rj
f
, d0τ

∗, γd0τ∗ , k

)
= F ∗(1− s)φ̂

(
−rj
f
, d0τ

∗, γd0τ∗ , k

)
,(9.11)

where F ∗(s) = π−sdisc(Qd0τ∗)
s
2Γ( s+1

2
)2. On the other hand note that

φ̂

(
−rj
f
, d0τ

∗, γd0τ∗ , s

)
= ζ̂ ((−rj, d0τ ∗) , s).(9.12)

Substituting (9.11), (9.12) in (9.10) we may rewrite the equality (9.9) as∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1F̃ ∗

2k(j, z)dz =

12
F ∗(1− k)
F ∗(k)

(
(−1)k(2π)2k

(2k − 1)!

)−1

disc(Qτ∗)
k− 1

2
Γ(k)2

Γ(2k)

∑
d0,r

n

(
N0

d0
, r

)(
1

d0

)1−k

ζ̂ ((−rj, d0τ ∗) , 1− k) .

(9.13)

We have used here the fact that k is odd, sign
(

a+d
bfN0/d0

)
< 0 and disc(Qd0τ∗) =

disc(Qτ∗). Recall that the gamma function satisfies the following identities:

Γ(s)Γ(1− s) = π

sin(πs)
and Γ(s)Γ

(
s+

1

2

)
= 21−2s

√
πΓ(2s).

Using the Euler’s reflection formula with s = k
2
and the duplication formula with

s = k
2
we may deduce that

(−1)kπ−1Γ
(
2−k
2

)2
Γ(k)2

22kΓ
(
k+1
2

)2 =
1

4
(−1)kπ−2

(
π

sin
(
πk
2

))2

= −1

4
,(9.14)

where for the last equality we have used the fact that k is an odd integer. Finally

using (9.14) in (9.13) we obtain

−N1−k
0

∫ γτ∗ξ2

ξ2

Qτ∗(z, 1)
k−1F̃ ∗

2k(j, z)dz = 3ζ∗(δj, (1, τ), 1− k).
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This conclude the proof of the first equality in (1) of Lemma 9.2 for positive odd

integers k ≥ 3.

Now, let us prove the first equality of (1) in the case where the convergence is

not absolute, i.e., when k = 1. We want to use the identity (8.16) and let s → 1−.

Let us first try to evaluate lims→1− ψr(s, z) (see equation (8.10) for the definition of

ψr(s, z)). Intuitively this limit should not differ too much from

−4π2E∗
2(r, z) =

∑
m ̸=(0,0)

e2πim2r/f

(m2z −m1)2
.

Note that originally ψr(s, z) was only defined when Re(s) > 1 in order to have

absolute convergence. But from (8.17) we may deduce that ψr(s, z) has a meromorphic

continuation to all of C and lims→1− ψr(s, z) makes sense. We have the following key

lemma:

Lemma 9.3 We have

(1) lims→1 ψr(s, z) =
(

−π
Im(z)

− 4π2E∗
2(r, z)

)
, if r ≡ 0 (mod f)

(2) lims→1 ψr(s, z) = −4π2E∗
2(r, z) if r ̸≡ 0 (mod f).

Proof See Theorem 7 of chapter 3 in [B. 74]. □

With this lemma we thus obtain that for any r ∈ (Z/fZ)× one has

lim
s→1

ψr(s, z) = Θ1(r, z) = −4π2E∗
2(r, z).(9.15)

Using (9.15) in Lemma 8.5 we deduce that∫ γx

x

E∗
2(r, z)dz

= −1

4
j′π−2 lim

s→1−

Γ(2−s
2
)2π2s−1

f 2(s−1)Γ(s+ 1)

∑
⟨γ⟩\{(m1,m2)≡(r,0) (mod f)}

sign(Q̃τ ′(m1,m2))

|Q̃τ ′(m1,m2))|1−s

= −1

4
j′φ̂

(
r

f
, τ ′, γ′, 0

)
(9.16)
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where x ∈ H, γ′ =

(
a′ b′

c′ d′

)
∈ Γ1(f) is a matrix which fixes τ ′ ∈ H and j′ =

sign
(
a′+d′

c′

)
.

From (9.16), the fact that γτ =

(
d c/fN0

bfN0 a

)
and sign

(
a+d
fbN0

)
< 0 we may

deduce that

−
∫ γτ∗x

x

Ẽ∗
2(r, z)dz = 3ζ̂ ((r, τ ∗), 0) .(9.17)

From (9.17), it is easy to deduce

3ζ∗(δj, (1, τ), 0) = 12

∫ γτ∗ξ2

ξ2

F ∗
2 (j, z)dz(9.18)

= −
∫ γτ∗ξ2

ξ2

F̃ ∗
2 (j, z)dz.

This concludes the proof of the first equality of (1) in the case k = 1.

It remains to prove the second equality of (1). For this we do the change of

variables z 7→ 1
fN0z

in equation (1) of Lemma 9.2 and we use the identities

F̃ ∗
2k

(
−j, 1

fN0z

)
d

(
1

fN0z

)
= −(fN0)

2k−2z2kF̃2k(j, z)
dz

z2
,(9.19)

Qτ∗

(
1

fN0z
, 1
)
= sign(C)

N0
(Cz−2+Bz−1+A) and γτ∗ =

(
d c

fN0

bfN0 a

)
. This conclude

the proof of Lemma 9.2. □

Remark 9.6 The relation (9.18) continues to hold even if the divisor δ is not

primitive because the non holomorphic terms cancel since δ is good.

At this point it makes sense to draw the following corollary from (9.19)

Proposition 9.2 Let ξ1 = i∞ and ξ2 = 0. Then for γ ∈ Γ0(fN0) and k ≥ n− 2

we have ∫ γξ1

ξ1

znF̃k(j, z)dz = (−1)k+n(fN0)
−n
∫ −γ∗ξ2

ξ2

zk−n−2F̃ ∗
k (j, z)dz.

118



where for γ =

(
a b

c d

)
we denote γ∗ =

(
d c/fN0

bfN0 a

)
.

Proof From (9.3) we may deduce that(
−1
fN0z

)n
F̃k

(
j,
−1
fN0

)
d

(
−1
fN0z

)
= (−1)k+n(fN0)

−nzk−nF̃ ∗
k (j, z)

dz

z2
.(9.20)

Apply the change of variable z 7→ −1
fN0

and use (9.20). □

Proposition 9.3 Let δ =
∑

d0,r
n(d0, r)[d0, r] ∈ D(N0, f) be such that∑

d0|N0

n(d0, r)d0 =
∑
d0|N0

n(d0, r)
N0

d0
= 0 for all r ∈ Z/fZ,

then the Eisenstein series F̃k,δ(r, τ) is holomorphic at the set of cusps Γ0(fN0){0, i∞}.
Using Proposition 5.1 we may deduce∫ γ(i∞)

i∞
znFk,δ(r, z)dz =

∫ γ(0)

0

znFk,δ(r, z)dz

=

∫ γ(0)

i∞
znFk,δ(r, z)dz +

∫ i∞

0

znFk,δ(r, z)dz.

If we let γ =

(
a b

c d

)
we get

∫ a
c

i∞
znFk,δ(r, z)dz =

∫ b
d

i∞
znFk,δ(r, z)dz +

∫ i∞

0

znFk,δ(r, z)dz.

Remark 9.7 This is a reciprocity formula.

9.3 Some explicit formulas for ζ∗(δr, (A, τ), 0)

We record in this subsection a special value of particular importance namely ζ(δj, (1, τ), 0).

From Lemma 9.2 we have

ζ∗(δr, (1, τ), 0) =
1

3
·
∫ γτ i∞

i∞
F̃2,δ(r, z)dz(9.21)

=
1

3
· 1

2πi
(log βδr(γτz)− log βδr(z))|z=i∞
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Let γτ =

(
a b

c d

)
. Using equation (5.4) of Proposition 5.4 and using the fact that

δ is a good divisor we deduce

ζ∗(δj, (A, τ), 0) = −4 · sign(c)
∑

r∈Z/fZ,d0|N0

n(d0, r)s
f

( jr
f
,0)
(a,

c

fd0
)

= −4 · sign(c)
∑

r∈Z/fZ,d0|N0

n(d0, r)
∑

i (mod c/fd0)

B̃1

(
jr + if

c/d0

)
B̃1

(
jra+ aif

c/d0

)

= −4 · sign(c)
∑

r∈Z/fZ,d0|N0

n(d0, r)
∑

i (mod c/fd0)

B̃1

(
jr/f + i

c/fd0

)
B̃1

(
a
jr/f + i

c/fd0

)

= −4 · sign(c)
∑

r∈Z/fZ,d0|N0

n(d0, r)D
rj (mod f)
1,1 (a, c/d0).

(9.22)

9.4 Relation between ζ(δ, (1, τ), s) and ζ∗(δ, (1, τ), s)

For later purposes it will be important to relate those two zeta functions. We have

the following

Proposition 9.4 Assume that f is divisible only by primes that are inert in K

then we have

Ψ̂∗
(
aΛτ

f
√
D
,w1, s

)
=

f−1∑
u=0

Ψ̂

(
λu,a

aΛN0τ

f
√
D
,w1, s

)

where λu,a is an algebraic integer chosen so that λu,a ≡ (uA/N0

a
+ τσ)(mod f), λu,a is

coprime to p and totally positive.

Corollary 9.1 Using Lemma 8.2 we deduce

f−1∑
u=0

ζ(λu,a ⋆ δ, (a,N0τ), s) = ζ∗(δ, (a, τ), s).
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Proof of Proposition 9.4 We have

f−2sΨ̂∗
(
aΛτ

f
√
D
,w1, s

)
=

∑
⟨γτ (fN0)⟩\{0̸=(m,n)≡(0, a

A
)(mod f)}

sign(QfN0τ (m,n))

|QfN0τ (m,n)|s

=

f−1∑
u=0

∑
⟨γN0τ

⟩\{0̸=(m,n)≡(u, a
A
)(mod f)}

sign(QN0τ (m,n))

|QN0τ (m,n)|s
.

Note that the discriminant of QN0τ (x, y) is equal to D. Since γN0τ ∈ Γ(f) the second

summation makes sense since the congruences (u, a
A
)(mod f) are preserved under the

action of γN0τ . Now because the primes dividing f are inert inK we get automatically

that the algebraic numbers {λu,a}f−1
u=0 are coprime to fp. We have that the right hand

side of the last equality equals to

=

f−1∑
u=0

N(ΛN0τ )
s

∑
OK(f∞)×\{0̸=λ∈ΛN0τ

,λ≡u+ a
A
N0τ(mod f)}

w1(λ)

|N(λ)|s

=

f−1∑
u=0

N

(
A/N0

a
ΛN0τσ

)s ∑
OK(f∞)×\{0̸=λ∈A/N0

a
ΛN0τ

σ ,λ≡A/N0
a

u+τσ(mod f)}

w1(λ)

|N(λ)|s

=

f−1∑
u=0

ζ

(
λ−1
u,a

A/N0

a
ΛN0τσ , f, w1, s

)

=

f−1∑
u=0

ζ
(
(λu,aaΛN0τ )

−1, f, w1, s
)
.

where for the last equality we have used the fact that ΛN0τΛN0τσ =
(

1
A/N0

)
. □

10 P-adic zeta functions and p-adic Kronecker limit

formula

Definition 10.1 We define the p-adic zeta function attached to a good divisor

δ ∈ D(N0, f)
⟨p⟩
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and a pair (j, τ) ∈ (Z/fZ)× × HO
p (N0, f) with Qτ (x, y) = Ax2 + Bxy + Cy2 and

(disc(Qτ ), p) = 1 to be

ζ∗p (δj, (A, τ), s) :=
1

3

∫
X
⟨Qfτ (fx, y)⟩−sdµ̃j{i∞→ γτ (i∞)}(x, y)(10.1)

=
1

3
⟨f⟩−2s

∫
X
⟨Qτ (x, y)⟩−sdµ̃j{i∞→ γτ (i∞)}(x, y)

where ⟨x⟩ denotes the unique element in 1+ pZp that differs from x by a p− 1 root of

unity. This zeta function makes sense for any s ∈ Zp. As usual ⟨±γτ ⟩ = StabΓ1(τ).

Corollary 10.1 For n ≤ 0 an even negative integer congruent to 0 modulo p− 1

we have

(1− p−2n)ζ∗(δj, (1, τ), n) = ζ∗p (δj, (1, τ), n).

Proof Combine (1) of Lemma 9.2 with (1) of Theorem 6.1. □

Remark 10.1 We thus see that our p-adic zeta function interpolates rational

values of the Archimedean zeta function ζ∗(δj, (A, τ), s) at negative integers.

Lemma 10.1 The derivative (ζ∗p )
′(δj, (A, τ), 0) at s = 0 is given by

(ζ∗p )
′(δj, (A, τ), 0) = −

1

3

∫
X
dlogp(Qτ (x, y))dµ̃j{ξ → γτξ}(x, y)

where ξ = i∞.

Proof This is a direct calculation using equation (10.1). Note that the integral over

X of logp(Qfτ (fx, y)) = logp f
2 + logpQτ (x, y) is the same as logpQτ (x, y) since the

total measure is zero so that the constant term logp f
2 vanishes. □

We can now deduce a p-adic Kronecker limit formula

Theorem 10.1 Let (r, τ) ∈ (Z/fZ)××HO
p (N0, f) with τ reduced, i.e. red(τ) =

v0. Then we have

3(ζ∗p )
′(δr, (A, τ), 0) = − logpNKp/Qp(u(δr, τ)).(10.2)
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Proof From Theorem 6.2 we may deduce that

log(u(δr, τ)) = ×
∫
X
logp(x− τy)dµ̃r{i∞→ γτ (i∞)}(x, y)(10.3)

Replacing τ by τσ in the previous identity gives us

log(u(δr, τ
σ)) = ×

∫
X
logp(x− τσy)dµ̃r{i∞→ γτσ(i∞)}(x, y)(10.4)

But γτ = γτσ . Therefore multiplying (10.3) with (10.4) together and taking the p-adic

logarithm of this product combined with Lemma 10.1 gives us (10.2). □

We end this subsection with the following useful proposition

Proposition 10.1

3ζ∗(δr, (A, τ), 0) = ordp(u(δr, τ)).

Proof Use Theorem 6.2 with equation (9.21). □

11 Dedekind sums and periods of Eisenstein series

11.1 Dedekind sums

In order to give explicit formulas we need to introduce certain Dedekind sums. Let

B̃n be the n-th periodic Bernoulli polynomial, see Definition 4.6. It is easy to show

that they satisfy the following distribution relations

Nk−1

N−1∑
i=0

B̃k

(
a
x+Mi

MN

)
= B̃k

(ax
M

)
(11.1)

where M and N are nonzero integers and a is coprime to N .

Definition 11.1 Let a and c ̸= 0 be two integers, not necessarily coprime with

f |c. Let s, t ≥ 1 be integers and choose a residue class r ∈ Z/fZ. We define

D
r (mod f)
s,t (a, c) := cs−1

∑
1≤h≤c

h≡r(mod f)

B̃s(h/c)

s

B̃t(ha/c)

t
.(11.2)

where B̃n is the n-th periodic Bernoulli polynomial, see Definition 4.6.
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When the level f is fixed we omit the mod f notation.

Lemma 11.1 Those Dedekind sums satisfy the following useful identities:

(1) D
r(mod f)
s,t (ad, dc) = D

r(mod f)
s,t (a, c)

(2) d
−(t−1)
0 D

r(mod f)
s,t (a, c/d0) =

(
c
d0

)s−1 c∑
h=1

h≡r(mod f)

B̃s(
h

c/d0
)

s

B̃t(
ha
c
)

t

for any a, c, d ∈ Z s.t. d0f |c.

Proof Let us prove the first identity first.

D
r(mod f)
s,t (ad, dc) = (dc)s−1

∑
h(mod dc)
h≡r(mod f)

B̃s(h/dc)

s

B̃t(ha/c)

t

= (dc)s−1
∑

i(mod c)
i≡r(mod f)

d−1∑
j=0

B̃s(
i+cj
dc

)

s

B̃t(
a(i+cj)

c
)

t

= (dc)s−1
∑

i(mod c)
i≡r(mod f)

d−1∑
j=0

B̃s(
i+cj
dc

)

s

B̃t(
ai
c
)

t

= (dc)s−1
∑

i(mod c)
i≡r(mod f)

B̃t(
ai
c
)

t

d−1∑
j=0

B̃s(
i/c+j
d

)

s

=
(dc)s−1

ds−1

∑
i(mod c)

i≡r(mod f)

B̃t(
ai
c
)

t

B̃s(i/c)

s
.
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This completes the first part of the lemma. Let us prove the second part.

(
c

d0
)s−1

c∑
h=1

h≡r(mod f)

B̃s(h/(c/d0))

s

B̃t(ha/c)

t
=

(
c

d0
)s−1

c/d0∑
h=1

h≡r(mod f)

d0−1∑
j=0

B̃s(
h+jc/d0
c/d0

)

s

B̃t(a
h+jc/d0

c
)

t
=

(
c

d0
)s−1

c/d0∑
h=1

h≡r(mod f)

d0−1∑
j=0

B̃s(
h

c/d0
)

s

B̃t(a
h+jc/d0
d0(c/d0)

)

t
=

(
c

d0
)s−1

c/d0∑
h=1

h≡r(mod f)

B̃s(
h

c/d0
)

s

d0−1∑
j=0

B̃t(a
h+jc/d0
d0(c/d0)

)

t
=

d
−(t−1)
0 (

c

d0
)s−1

c/d0∑
h=1

h≡r(mod f)

B̃s(
h

c/d0
)

s

B̃t(
ah
c/d0

)

t
=

d
−(t−1)
0 D

r(mod f)
s,t (a, c/d0).

□

11.2 A technical lemma

Here is some technical lemma that will turn out to be essential later on.

Lemma 11.2 Let s, t ≥ 1. For any rational number a
c
(p could divide c), we have

inside Qp the following identity:

lim
j→∞

D
r(mod f)

s+(p−1)pj ,t
(a, c) = D

r(mod f)
s,t (a, c)− ps−1D

p−1r(mod f)
s,t (pa, c)

The proof is similar to [DD06] but it avoids the use of Dedekind reciprocity formulas.

Proof Let x = a
c
∈ Q with (a, c) = 1 and assume first that p ∤ c. Let b be an

integer such that abp ≡ 1(mod c).
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Note that

D
r(mod f)
s,t (a, c) = cs−1

∑
1≤l≤c

l≡ar(mod f)

B̃s(lbp/c)

s

B̃t(l/c)

t
(11.3)

therefore

D
r(mod f)

s+(p−1)pj ,t
(a, c) = cs−1+(p−1)pj

∑
1≤l≤c

l≡ar(mod f)

B̃s+(p−1)pj(lbp/c)

s

B̃t(l/c)

t
(11.4)

and similarly

D
r(mod f)

s+(p−1)pj ,t
(pa, c) = cs−1

∑
1≤l≤c

l≡ar(mod f)

B̃s+(p−1)pj(lb/c)

s

B̃t(l/c)

t
(11.5)

Write y = {lbp/c} and y′ = {lb/c}. Since c(p−1)pj → 1, then subtracting ps−1 times

(11.5) to (11.4) we see that it suffices to prove that

lim
j→∞

Bs+(p−1)pj(y) = Bs(y)− ps−1Bs(y
′).(11.6)

For s > 0, this follows from the proof of Theorem 3.2 of [You01]. In the course of the

proof of Theorem 3.2 of [You01] he gets that for any positive integer b coprime to p

the following equality

(bs+(p−1)pj − 1)
Bs+(p−1)pj(x)− ps−1+(p−1)pjBs+(p−1)pj(x

′)

s+ (p− 1)pj
(11.7)

−(bs − 1)
Bs(x)− ps−1Bs(x

′)

s
≡ 0(modpj+1Zp)

where x′ is such that px′−x ∈ {0, 1, . . . , p− 1} and s ≥ 1. The denominator of Bn

n
at

p is well behaved. If (p− 1) ∤ n then Bn

n
is p-integral. If (p− 1)|n then vp(

Bn

n
) = −1−

vp(n). Using the previous observation it follows that limj→∞ p(p−1)pjBs+(p−1)pj(x
′) = 0.

Letting j →∞ in (11.7) we get that

(bs − 1) lim
j→∞

Bs+(p−1)pj(x)

s
= (bs − 1)

Bs(x)− ps−1Bs(x
′)

s
.(11.8)

When s ≥ 1 we can always choose b such that bs − 1 ̸= 0. Therefore we can cancel

the two factors bs−1 in (11.8) to get (11.6). It remains to treat the case where s = 0.
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We have vp(y) ≥ 1. Let g = (p− 1)pj. Note that

Bg(y) =

g∑
k=0

(
g

k

)
Bky

g−k(11.9)

= yg + g

(
g−1∑
k=1

(
g − 1

k − 1

)
Bk

k
yg−k

)
+Bg.

If (p − 1) ∤ k then Bk

k
∈ Zp. If (p − 1)|k then we can write k = (p − 1)pum with

(m, p) = 1. So vp(
Bk

k
yg−k) ≥ −1 − u + (p − 1)pu ≥ 0 since pj−u − 1 ≥ m. We thus

deduce from (11.9) that limj→∞B(p−1)pj(y) = B(p−1)pj .

Let ω be the Teichmüller character at p. If we look at Lp(s) the p-adic L-function

twisted by the trivial character. We have the formula

Lp(1− n) = −(1− ω−n(p)pn−1)
Bn,ω−n

n

Here ω−n means the primitive character associated to ω−n (so ω−n(a) is not necessarily

equal to ω(a)−n). So letting n = (p− 1)pj therefore ω−n(p) = 1 we get

Lp(1− (p− 1)pj) = −(1− p(p−1)pj−1)
B(p−1)pj

(p− 1)pj

Now we know that lims→1(s− 1)Lp(s) = 1− 1
p
. So letting j →∞ we get

lim
j→∞

B(p−1)pj = 1− 1

p
.

this proves the claim for s = 0.

We need to treat now the case where p|c. This case turns out to be simple. Let

us prove the following elementary lemma

Lemma 11.3 Let h be any integer and 0 ̸= c ∈ Z such that p|c. Then we have

the following:

(1) limj→∞ cs+gB̃s+g(
h
c
) = csB̃s(

h
c
), if (h, p) = 1.

(2) limj→∞ cs+gB̃s+g(
h
c
) = 0, if p|h.
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where g = (p− 1)pj.

Proof of Lemma 11.3 Let us prove the first case. We have

cs+gB̃s+g(
h

c
) =

s+g∑
k=0

(
s+ g

k

)
Bkh

s+g−kck(11.10)

=
s∑

k=0

(
s+ g

k

)
Bkh

s+g−kck +

s+g∑
k=s+1

(
s+ g

k

)
Bkh

s+g−kck(11.11)

Now since |c|p < 1, |h|p = 1, |
(
m
k

)
|p ≤ 1 and |Bk|p ≤ p, the limit in (11.11) exists when

j → ∞. Since (h, p) = 1 the limit of the first term is csB̃s(
h
c
) and the limit of the

second term is 0. This proves the first part of the lemma.

Assume now that p|h. If vp(h) ≥ vp(c) then h
c
∈ Zp. In this case we know that

limj→∞ B̃s+(p−1)pj(
h
c
) exists by (11.6). Finally since p|c it follows that limj→∞ cs+gB̃s+g(

h
c
) =

0. Assume now that vp(c) > vp(h) = m ≥ 1. Then by the first part of the Lemma 11.3

we know that limj→∞( c
pm

)s+gB̃s+g(
h/pm

c/pm
) exists. It follows limj→∞ cs+gB̃s+g(

h
c
) = 0

since m ≥ 1. □

With Lemma 11.3 it is now easy to prove Lemma 11.2 for the case where p|c. We

have

lim
j→∞

D
r(mod f)
s+g,t (a, c) = lim

j→∞

∑
1≤h≤c

h≡r(mod f)

cs+g−1B̃s+g−1(
h

c
)B̃t(

ah

c
)

=
∑

1≤h≤c
h≡r(mod f)

(p,h)=1

cs−1B̃s−1(
h

c
)B̃t(

ah

c
)(11.12)
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On the other hand we have

D
r(mod f)
s,t (a, c)− ps−1D

p−1r(mod f)
s,t (pa, c)

= D
r(mod f)
s,t (a, c)− ps−1D

p−1r(mod f)
s,t (a, c/p)

=
∑

1≤h≤c
h≡r(mod f)

cs−1B̃s−1(
h

c
)B̃t(

ah

c
)−

∑
1≤h≤c/p

h≡p−1r(mod f)

ps−1(
c

p
)s−1B̃s−1(

h

c/p
)B̃t(

ah

c/p
)

=
∑

1≤h≤c
h≡r(mod f)

cs−1B̃s−1(
h

c
)B̃t(

ah

c
)−

∑
1≤h≤c

h≡r(mod f)
h≡0(mod p)

cs−1B̃s−1(
h

c
)B̃t(

ah

c
)

=
∑

1≤h≤c
h≡r(mod f)

(p,h)=1

cs−1B̃s−1(
h

c
)B̃t(

ah

c
).

Compare with (11.12). This concludes the proof of Lemma 11.2. □

11.3 Moments of Eisenstein series

In this section we compute the moments of certain Eisenstein series. This will turn

out to be essential for the proof of Theorem 6.1.

We remind the reader that for r ∈ Z/fZ we have defined

Ek(r, z) =

(
(−1)k(2πi)k

(k − 1)!

)−1 ∑′

m,n

e−2πimr/f

(m+ nfτ)k
.(11.13)

where r ∈ Z/fZ.

Remark 11.1 When k ≥ 3 the convergence of the right hand side of (11.13) is

absolute and therefore Ek(r, τ) is a modular form of weight k for the modular group

Γ1(f). When k = 2 the convergence is not absolute. Nevertheless, the corresponding

q-expansion of (11.13) still converges and therefore we take it as the definition of

E2(r, τ). In the case where r ̸≡ 0 (mod f) and k = 2, one can show that Ek(r, τ) sat-

isfies the correct transformation formula and therefore corresponds to a holomorphic

modular form of weight 2 for the modular group Γ1(f).
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Those Eisenstein series are modular with respect to the group Γ0(f), in the sense

that for all γ =

(
a b

c d

)
∈ Γ0(f) we have the transformation formula

Ek(γ ⋆ r, γτ)(cτ + d)−k = Ek(r, τ).(11.14)

where γ ⋆ r = dr(mod f). In order to simplify the notation we define only for this

section

Ek,r(τ) := Ek(r, τ).

Let

Ek,r(τ) =
∑
n≥0

aEk,r
(n)qnτ .

be the q-expansion at i∞. We want to compute the behaviour Ek,r(τ) in a neigh-

bourhood of a cusp a
c
∈ Γ0(f)(i∞). For that we will use the transformation formula

(11.14). Let γ =

(
a b

c d

)
∈ Γ0(f). Then we have the identity

γ(it′) =
ait′ + b

cit′ + d
=
a

c
− 1

c(cit′ + d)
, t′ > 0.

From (11.14) we deduce

Ek,r(it
′) = Ek,dr(γ(it

′))(cit′ + d)−k

= Ek,dr

(
a

c
− 1

c(cit′ + d)

)
(cit′ + d)−k

=
Ek,dr

(
a
c
+ it′

)
(−ict′)−k

where it = − 1
c(cit′+d)

. When t′ →∞, t→ 0. We thus deduce the formula

lim
t→0

(
Ek,r(

a

c
+ it)−

ikaEk,ar
(0)

(ct)k

)
= 0(11.15)

Observe that the convergence to 0 in (11.15) is exponential.

Let δ =
∑

d0|N0,r∈Z/fZ n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩ be a good divisor. Remember

that

Fk,δ(j, z) =
∑
d0,r

n(d0, r)d0Ek,jr(d0z).
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Because of the choice of the n(d0, r)’s we have

Fk,δ(j, z) =
∑
d0,r

n(d0, r)d0Ek,jr(d0z)

=
∑
d0,r

n(d0, r)d0

(
Ek,jr(d0z)−

ikaEk,ajr
(0)

(tc)k

)
=
∑
d0,r

n(d0, r)d0
(
Ek,jr(d0z)− aEk,ajr

(0)
)
.

For the last equality we have used the assumption
∑

d0|N0
n(d0, r)d0 = 0 for every

r ∈ Z/fZ. Let a
c
∈ Γ0(f)(i∞). Since

lim
t→0

(
Ek,jr(a/c+ it)−

ikaEk,jr
(0)

(tc)k

)
= 0

we find

limt→0Fk,δ(j, a/c+ it) = 0.(11.16)

The limit (11.16) is valid for any j ∈ Z/fZ, a
c
∈ Γ0(f)(i∞) and it converges expo-

nentially to 0 when t→ 0+.

It thus makes sense to consider line integrals of the form∫ i∞

a
c

Fk,δ(j, z)z
s−1dz(11.17)

since Fk,δ(j, z) tends to zero exponentially for both endpoints of the line integral. In

the sequel we will compute (11.17) for the integers 1 ≤ s ≤ k−1. In order to compute

(11.17) it is enough to compute integrals as in the next proposition.

Proposition 11.1 Let a
c
∈ Γ0(f) with c ≥ 1 then we have∫ ∞

t=0

(
Ek,r

(a
c
+ it

)
− aEk,r

(0)
)
ts−1dt =

is

fk−1
D
r(mod f)
k−s,s (a, c).

Before the proof of Proposition 11.1 we remind the reader the Fourier expansion of

periodic Bernoulli polynomials:

B̃r(x) = Br({x}) = −
r!

(2πi)r

∑
n̸=0

e2πinx

nr
.
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For integers s ≥ 1 we also define

Lis(z) =
∑
n≥1

zn

ns
.

A direct calculation shows that

Lis(e
2πix) + (−1)sLis(e−2πix) = −(2πi)s

s!
B̃s(x).

Proof of Proposition 11.1 We have

(11.18)

∫ ∞

t=0

(Ek,r(
a

c
+ it)− aEk,r

(0))ts−1dt =

1

fk

f−1∑
b=0

e−2πibr/f

∫ ∞

0

[∑
m≥1

∑
n≥1

mk−1(qmn(a
c
+it)+b/f + (−1)kqmn(a

c
+it)−b/f )

]
ts−1dt

Let us evaluate first the interior of the integral on the right hand side.∫ ∞

0

[∑
m≥1

∑
n≥1

mk−1(e2πim(n(a
c
+it)+b/f) + (−1)ke2πim(n(a

c
+it)−b/f))

]
ts−1dt

=
∑
m≥1

∑
n≥1

mk−1(e2πim(na
c
+b/f) + (−1)ke2πim(na

c
−b/f))

∫ ∞

0

e−2πmntts−1dt

=
Γ(s)

(2π)s

∑
m≥1

∑
n≥1

mk−1(e2πim(na
c
+b/f) + (−1)ke2πim(na

c
−b/f))

1

(mn)s

=
Γ(s)

(2π)s

∑
m≥1

∑
n≥1

(e2πim(na
c
+b/f) + (−1)ke2πim(na

c
−b/f))

1

m1−(k−s)ns

=
Γ(s)

c1−(k−s)(2π)s

∑
n≥1

c∑
l=1

∑
j≥0

1

ns(j + l/c)1−(k−s) (e
2πi(cj+l)(na

c
+b/f) + (−1)ke2πi(cj+l)(n

a
c
−b/f)).

Since f |c we deduce

=
Γ(s)

c1−(k−s)(2π)s

∑
n≥1

c∑
l=1

∑
j≥0

1

ns(j + l/c)1−(k−s) (e
2πil(na

c
+b/f) + (−1)ke2πil(n

a
c
−b/f))

=
Γ(s)

c1−(k−s)(2π)s

∑
n≥1

c∑
l=1

(e2πil(n
a
c
+b/f) + (−1)ke2πil(na

c
−b/f))

ns

∑
j≥0

1

(j + l/c)1−(k−s)

=
Γ(s)

c1−(k−s)(2π)s

∑
n≥1

c∑
l=1

(e2πil(n
a
c
+b/f) + (−1)ke2πil(na

c
−b/f))

ns
ζ(1− (k − s), l

p
)
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where for the second equality we have used ζ(x, 1− k) = −Bk(x)
k

where ζ(x, s) is the

Hurwitz zeta function.

=
−Γ(s)

c1−(k−s)(2π)s

∑
n≥1

c∑
l=1

(e2πil(n
a
c
+b/f) + (−1)ke2πil(na

c
−b/f))

ns

B̃k−s(
l
p
)

k − s

=
−Γ(s)

c1−(k−s)(2π)s

c∑
l=1

[e2πilb/f + (−1)ke−2πilb/f ]
B̃k−s(

l
p
)

k − s
∑
n≥1

e2πin(
la
c
)

ns

=
−Γ(s)

c1−(k−s)(2π)s

c∑
l=1

[e2πilb/f + (−1)ke−2πilb/f ]
B̃k−s(

l
p
)

k − s
Lis(e

2πi la
c ).

Substituting the latter expression in equation (11.18) we get that (11.18) is equal to

=
−Γ(s)

fkc1−(k−s)(2π)s

f−1∑
b=0

e−2πibr/f

c∑
l=1

[e2πilb/f + (−1)ke−2πilb/f ]
B̃k−s(

l
p
)

k − s
Lis(e

2πi la
c )

=
−Γ(s)f

fkc1−(k−s)(2π)s

 c∑
l=1

l≡r(mod f)

Lis(e
2πila/c)

B̃k−s(l/c)

k − s
+ (−1)k

c∑
l=1

l≡−r(mod f)

Lis(e
2πila/c)

B̃k−s(l/c)

k − s


=

−Γ(s)f
fkc1−(k−s)(2π)s

c∑
l=1

l≡r(mod f)

B̃k−s(l/c)

k − s
[Lis(e

2πila/c) + (−1)sLis(e−2πila/c)]

=
isc(k−s)−1

fk−1

c∑
l=1

l≡r(mod f)

B̃k−s(l/c)

k − s
B̃s(la/c)

s
.

□

We take the opportunity here to prove a functional equation between the L-

function of F̃k,δ and F̃
∗
k,δ. Before we need to introduce some definitions and prove a

analytic continuation result.

Proposition 11.2 Let f ∈ Mk(G,C) where G is a discrete subgroup of SL2(Z)
and a

c
∈ G(i∞). Define

Af (s; a, c) := eπis/2cs−1

∫ ∞

0

(f(it+ a/c)− af (0))ts−1dt

then Af (s; a, c) admits a meromorphic continuation on C.
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Proof Since limt→0

(
f(it+ a/c)− af (0)

(−cit)k

)
converges to 0 exponentially we find that

Af (s; a, c)

is holomorphic for Re(s) > k. We want to extend it to C\{k, 0} where k is the weight

of f . We have

Af (s; a, c)

= eπis/2cs−1

∫ ∞

t0

(f(a/c+ it)− af (0))ts−1dt

+ eπis/2cs−1

∫ t0

0

(
f(a/c+ it)− af (0)

(−cit)k
+

af (0)

(−cit)k
− af (0)

)
ts−1dt

= eπis/2cs−1

∫ ∞

t0

(f(a/c+ it)− af (0))ts−1dt+ eπis/2cs−1

∫ t0

0

(
f(a/c+ it)− af (0)

(−cit)k

)
ts−1dt

+ eπis/2cs−1af (0)

∫ t0

0

(
1

(−cit)k
− 1

)
ts−1dt

= eπis/2cs−1

∫ ∞

t0

(f(a/c+ it)− af (0))ts−1dt+ eπis/2cs−1

∫ t0

0

(
f(a/c+ it)− af (0)

(−cit)k

)
ts−1dt

+ eπis/2cs−1af (0)

(
ts−k0

(−ci)k(s− k)
− ts0
s

)
.

□

From this computation we can deduce a very nice functional equation between

F̃δ,k and F̃ ∗
δ,k.

Corollary 11.1 Define

L(F̃k,δ, s) :=

∫ ∞

0

F̃k,δ(it)t
s−1dt

and

L(F̃ ∗
k,δ, s) :=

∫ ∞

0

F̃ ∗
k,δ(it)t

s−1dt

then L(F̃k,δ, s) and L(F̃ ∗
k,δ, s) are entire functions in s related by the following func-

tional equation

ik(fN0)
s−1L(F̃k,δ, s) = L(F̃ ∗

k,δ, k − s).(11.19)
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Proof Since F̃k,δ(z) and F̃
∗
k,δ(z) decay exponentially to 0 when t tends to 0 and i∞

we get that s 7→ L(F̃k,δ, s) and s 7→ L(F̃ ∗
k,δ, s) are analytic on all of C. Let us prove

the functional equation.

Using the calculations in Proposition 11.2 and setting t0 =
1√
fN0

we deduce that

L(F̃k,δ, s) =

∫ ∞

1√
fN0

F̃k,δ(it)t
s−1dt+

∫ 1√
fN0

0

F̃k,δ(it)t
s−1dt

Now applying the change of variable t 7→ 1
fN0t

in the second term and using equation

(9.19) we find

L(F̃k,δ, s) =

∫ ∞

1√
fN0

F̃k,δ(it)t
s−1dt+ (fN0)

−s+1(−1)kik
∫ ∞

1√
fN0

F̃ ∗
k,δ(it)t

k−s−1dt(11.20)

Doing a similar computation we find that

L(F̃ ∗
k,δ, s) =

∫ ∞

1√
fN0

F̃ ∗
k,δ(it)t

s−1dt+ (fN0)
k−s−1ik

∫ ∞

1√
fN0

F̃k,δ(it)t
k−s−1dt(11.21)

Comparing (11.20) with (11.21) we obtain (11.19). □

Proposition 11.3 Let a
c
∈ Γ1(f)(i∞). For the integers 1 ≤ s ≤ k−1 AEk,r

(s; a, c)

admits rational values. More precisely we have

AEk,r
(s; a, c) =

(−1)scs−1

fk−1
D
r(mod f)
k−s,s (a, c).

Proof It is a direct consequence of Proposition 11.1. □

We can now write down an explicit formula for the moments∫ i∞

a
c

znFk,δ(j, z)dz.

Proposition 11.4 Let a
c
∈ Γ0(f) and 1 ≤ s ≤ k − 1. Then we have∫ i∞

a
c

znFk(j, z)dz =
1

fk−1

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
k−l−1,l+1(a, c/d0)
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Proof We have

AFk,δ(j,z)(s; a, c) = eπis/2cs−1

∫ i∞

0

Fk,δ(j,
a

c
+ it)ts−1dt

= eπis/2cs−1

∫ ∞

0

Fk,δ(j,
a

c
+ it)ts−1dt

= eπis/2cs−1

∫ ∞

0

∑
d0,r

n(d0, r)d0Ek,rj(d0(
a

c
+ it))ts−1dt

= eπis/2cs−1

∫ ∞

0

∑
d0,r

n(d0, r)Ek,rj((
a

c/d0
+ id0t))t

s−1d(d0t)

= eπis/2
∑
d0,r

n(d0, r)(
c

d0
)s−1

∫ ∞

0

Ek,rj((
a

c/d0
+ id0t))(d0t)

s−1d(d0t)

=
∑
d0,r

n(d0, r)AEk,jr
(s; a, c/d0)

Therefore∫ ∞

a
c

znFk,δ(j, z)dz =

∫ ∞

0

(
a

c
+ it)nFk,δ(j,

a

c
+ it)idt

=
n∑
l=0

(
n

l

)
(
a

c
)n−l

∫ ∞

0

(it)lFk,δ(j,
a

c
+ it)idt

=
n∑
l=0

(
n

l

)
(
a

c
)n−lc−le

πi
2
(l+1)c(l+1)−1

∫ ∞

0

Fk,δ(j,
a

c
+ it)t(l+1)−1dt

=
n∑
l=0

(
n

l

)
(
a

c
)n−lc−lAFk,δ(j,z)(l + 1; a, c)

=
n∑
l=0

(
n

l

)
(
a

c
)n−lc−l

∑
d0,r

n(d0, r)AEk,jr
(l + 1; a, c/d0)

=
n∑
l=0

(
n

l

)
(
a

c
)n−l

∑
d0,r

n(d0, r)d
−l
0 (

c

d0
)−(l+1)+1AEk,jr

(l + 1; a, c/d0).

Using Proposition 11.3 we find

=
1

fk−1

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
k−l−1,l+1(a, c/d0).

□
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11.4 Moments of µ̃r{c1 → c2}

We can now give explicit formulas for the moments of µ̃j{i∞→ a
c
}.

Proposition 11.5 Let ξ = a
c
∈ Γ0(fN0)(i∞) with c ≥ 1 and let µ̃j{i∞→ a

c
} be

as in Theorem 6.1. Then we have∫
X
xnymdµ̃j{i∞→

a

c
}(x, y) = (1− pn+m)

∫ i∞

ξ

znF̃n+m+2(j, z)dz =

−12
fn+m

(1− pn+m)
n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0|N0,r∈(Z/fZ)×

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0).

(11.22)

Proof Using the first property of Theorem 6.1 we have∫
X
xnymµ̃j{i∞→

a

c
}(x, y) = (1− pm+n)

∫ i∞

a
c

znF̃m+n+2(j, z)dz

= − 12

fn+m
(1− pn+m)

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0)

where the second equality follows from Proposition 11.4. □

Remark 11.2 In the case where δ =
∑

d0,r
[d0, r] ∈ D(N0, f)

+ and n + m ≡
1(mod 2) we have ∑

d0,r

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0) = 0.

Similarly when δ =
∑

d0,r
[d0, r] ∈ D(N0, f)

− and n+m ≡ 0(mod 2) we have∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0) = 0.

Proposition 11.6 Let µ̃j{i∞ → a
c
} be as in Theorem 6.1 with c ≥ 1 then we
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have∫
Zp×Z×

p

xnymdµ̃j{i∞→
a

c
}(x, y) =

∫ i∞

ξ

znF̃n+m+2,p(j, z)dz

=
−12
fn+m

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

·
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)d

−l
0

(
D
jr(mod f)
n+m−l+1,l+1(a, c/d0)− p

n+m−lD
jr(mod f)
n+m−l+1,l+1(pa, c/d0).

)

Proof Using the fourth property of Theorem 6.1 we have∫
Zp×Z×

p

xnymµ̃j{i∞→
a

c
}(x, y) =

∫ i∞

a
c

znF̃m+n+2,p(j, z)dz

=

∫ i∞

a
c

zn(F̃m+n+2(j, z)− pm+n+1F̃m+n+2(j, pz))dz

=

∫ i∞

a
c

znF̃m+n+2(j, z)dz − pm+n+1

∫ i∞

a
c

znF̃m+n+2(j, pz))dz

=

∫ i∞

a
c

znF̃m+n+2(j, z)dz − pm
∫ i∞

pa
c

znF̃m+n+2(j, z)dz

and using Proposition 11.4 and the assumption that p ⋆ δ = δ we deduce

−12
fn+m

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

·
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)d

−l
0

(
D
jr(mod f)
n+m−l+1,l+1(a, c/d0)− p

n+m−lD
jr(mod f)
n+m−l+1,l+1(pa, c/d0)

)
.

This conclude the proof. □

12 Proof of Theorem 6.1

In this section we prove Theorem 6.1 following essentially the same steps as [DD06].

We brake the proof in four steps.
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12.1 Measures on Zp × Zp

Let ξ = a
c
∈ Γ0(fN0)(i∞) with p ∤ c. In this subsection we prove the following crucial

Lemma

Lemma 12.1 There exists a unique family of Zp-valued measures on Zp × Zp
indexed by (Z/fZ)×/⟨p⟩ denoted by νξ,j for some j ∈ (Z/fZ)×/⟨p⟩ such that∫

Zp×Zp

h(x, y)dνξ,j(x, y) = (1− pk−2)

∫ i∞

ξ

h(z, 1)F̃k(j, z)dz,(12.1)

for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.

If we use the equation (12.1) to the monomials xnym we get∫
Zp×Zp

xnymdνξ,j(x, y) = −12f(1− pn+m)
∫ i∞

ξ

znFn+m+2(j, z)dz

= − 12

fn+m
(1− pn+m)

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0)

(12.2)

for all integers n,m ≥ 0. We set

In,m(j) := (1− pn+m)
n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0).

Our key tool in showing the existence and uniqueness of {νξ,j}j∈(Z/fZ)×/⟨p⟩ is the

following result, which is a two variables version of a classical theorem of Mahler.

Lemma 12.2 Let bn,m ∈ Zp be constants indexed by integers n,m ≥ 0. There

exists a unique measure ν on Zp × Zp such that∫
Zp×Zp

(
x

n

)(
y

m

)
dν(x, y) = bn,m.

We define rational numbers cn,i’s to be(
x

n

)
=

n∑
i=0

cn,ix
i.
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for any 0 ≤ n and 0 ≤ i ≤ n.

For j ∈ (Z/fZ)×/⟨p⟩ we define

Jn,m(j) =
n∑
i=0

m∑
i=0

cn,icm,i′Ii,i′(j).

So in order to prove Lemma 12.1 it is enough to show that Jn,m(j) ∈ Zp. Note that

we can ignore the denominator f in the expression in (12.2) since f is coprime to p.

Proof of the p-integrality of Jn,m(j) In order to show the p-integrality of the

terms Jn,m(j) we need to analyze more closely the terms In,m(j). By definition we

have

In,m(r) = (1− pn+m)
n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
r∈(Z/fZ)×

∑
d0|N0

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0).

Let us concentrate on the terms
∑

d0|N0
n(d0, r)d

−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0). Using

(2) of Lemma 11.1 we find

d−l0 D
r(mod f)
k−l−1,l+1(a, c/d0) = (

c

d0
)k−l−2

c∑
h=1

h≡jr(mod f)

B̃k−l−1(h/(c/d0))

k − l − 1

B̃l+1(ha/c)

l + 1
.(12.3)

We would like to think of (12.3) as the coefficients of a generating function. For the

sequel we construct such a generating function.

We have by definition
xeθx

ex − 1
=
∑
n≥0

Bn(θ)
xn

n!

We set θ(h) = {ha
c
} for 1 ≤ h ≤ c. For the value of h in this range we let Fh = 1/2

when h = c and 0 otherwise. We thus have

xeθ(h)x

ex − 1
+ xFh =

∑
t≥0

B̃t+1(
ha

c
)
xt+1

(t+ 1)!
.

Rearranging a bit we find that

eθ(h)x

ex − 1
− 1

x
+ Fh =

∑
s≥0

B̃s+1(
ha
c
)

t+ 1

xt

t!
=: B(h, x)
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We also define for 1 ≤ h ≤ c

A(r, h, y) :=
∑
d0|N0

n(d0, r)

(
e{hd0/c}(y/d0)

ey/d0 − 1
− 1

y/d0
+ Fh

)

=
∑
s≥0

∑
d0|N0

n(d0, r)
B̃s+1(h/(c/d0))

s+ 1
(
y

d0
)s.

We have

A(r, h, y)B(h, x) =
∑
s,t≥0

∑
d0|N0

n(d0, r)
B̃s+1(h/(c/d0))

s+ 1

B̃t+1(ha/c)

t+ 1

( y
d0
)s

s!

(x)t

t!

So ∑
1≤h≤c

h≡jr(mod f)

A(r, h, y)B(h, x)

=
∑
s,t≥0

∑
d0|N0

n(d0, r)c
−s(c/d0)

s
∑

1≤h≤c
h≡jr(mod f)

B̃s+1(h/(c/d0))

s+ 1

B̃t+1(ha/c)

t+ 1

ys

s!

xt

t!

=
∑
s,t≥0

∑
d0|N0

n(d0, r)c
−sd−t0 D

rj(mod f)
s+1,t+1 (a, c/d0)

ys

s!

xt

t!
.(12.4)

Now taking the summation over the r’s in (Z/fZ)× of equation (12.4) we find∑
r∈(Z/fZ)×

∑
1≤h≤c

h≡jr(mod f)

A(r, h, y)B(h, x)(12.5)

= c−s
∑
s,t≥0

∑
r∈(Z/fZ)×

∑
d0|N0

n(d0, r)d
−t
0 D

rj(mod f)
s+1,t+1 (a, c/d0)

ys

s!

xt

t!
.

In the summation (12.5) some cancellations occur and it is important to take them
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into account. We have∑
r∈(Z/fZ)×

∑
1≤h≤c

h≡jr(mod f)

A(r, h, y)B(h, x)

=
∑

1≤h≤c
(h,f)=1

B(h, x)A(hj−1, h, y)

=
∑

1≤h≤c
(h,f)=1

(
eθ(h)x

ex − 1
− 1

x
+ Fh)

∑
d0|N0

n(d0, hj
−1)(

e{hd0/c}(y/d0)

ey/d0 − 1
− 1

y/d0
+ Fh)

=
∑

1≤h≤c
(h,f)=1

(
eθ(h)x − 1

ex − 1
+ g(x))

∑
d0|N0

n(d0, hj
−1)(

e{hd0/c}(y/d0)

ey/d0 − 1
− 1

y/d0
)(12.6)

where g(x) := 1
ex−1
− 1

x
. Note that the term Fh has vanished since f |c and (h, f) = 1.

Now we want to use the fact that
∑

d0|N0
n(d0, r)d0 = 0 for all r ∈ (Z/fZ)×.

Expanding (12.6) we find

=
∑

1≤h≤c
(h,f)=1

(
eθ(h)x − 1

ex − 1
)
∑
d0|N0

n(d0, hj
−1)(

e{hd0/c}(y/d0)

ey/d0 − 1
− 1

y/d0
)+(12.7)

g(x)
∑

1≤h≤c
(h,f)=1

∑
d0|N0

n(d0, hj
−1)(

e{hd0/c}(y/d0)

ey/d0 − 1
− 1

y/d0
).

Because
∑

d0|N0
n(d0, hj

−1)d0 = 0 the first term in (12.7) is equal to

∑
1≤h≤c
(h,f)=1

(
eθ(h)x − 1

ex − 1
)
∑
d0|N0

n(d0, hj
−1)(

e{hd0/c}(y/d0)

ey/d0 − 1
).
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For the second term of (12.7) we find

g(x)
∑

1≤h≤c
(h,f)=1

∑
d0|N0

n(d0, hj
−1)d−t0

B̃t+1(h/(c/d0))

t+ 1

yt

t!

= g(x)
∑

r∈(Z/fZ)×

∑
1≤h≤c

h≡jr(mod f)

∑
d0|N0

n(d0, hj
−1)d−t0

B̃t+1(h/(c/d0))

t+ 1

yt

t!
=

= g(x)
∑

r∈(Z/fZ)×

∑
d0|N0

d−t0

∑
1≤h≤c

h≡jr(mod f)

n(d0, hj
−1)

B̃t+1(h/(c/d0))

t+ 1

yt

t!

= g(x)
∑

r∈(Z/fZ)×

∑
d0|N0

∑
1≤h≤ c

d0
h≡jr(mod f)

d0n(d0, hj
−1)d−t0

B̃t+1(h/(c/d0))

t+ 1
.
yt

t!
.(12.8)

But using equation (11.1) we have

∑
1≤h≤ c

d0
h≡jr(mod f)

B̃t+1(h/(c/d0))

t+ 1
=

∑
h(mod f c

fd0
)

h≡jr(mod f)

B̃t+1(h/(c/d0))

t+ 1

=

(
c

fd0

)−t B̃t+1(
jr
f
)

t+ 1
.

It thus follows that (12.8) vanishes completely since
∑

d0|N0
n(d0, hj

−1)d0 = 0.

So with all those cancellations we find the important identity∑
r∈(Z/fZ)×

∑
1≤h≤c

h≡jr(mod f)

A(r, h, y)B(h, x) =
∑

1≤h≤c
(h,f)=1

(
eθ(h)x − 1

ex − 1
)
∑
d0|N0

n(d0, hj
−1)(

eβ(d0h)(y/d0)

ey/d0 − 1
)

= c−s
∑
s,t≥0

∑
r∈(Z/fZ)×

∑
d0|N0

n(d0, r)d
−t
0 D

rj(mod f)
s+1,t+1 (a, c/d0)

ys

s!

xt

t!

=: Hj(x, y),(12.9)

where β(d0h) := { h
c/d0
}. We have

∂s

∂ys
∂t

∂xt
Hj(x, y) = c−s

∑
r∈(Z/fZ)×

∑
d0|N0

n(d0, r)d
−t
0 D

rj(mod f)
s+1,t+1 (a, c/d0)
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and also

∂s

∂ys
∂t

∂xt
Hj(x

p, yp) = ps+tc−s
∑

r∈(Z/fZ)×

∑
d0|N0

n(d0, r)d
−t
0 D

rj(mod f)
s+1,t+1 (a, c/d0).

Combining everything we obtain

In,m(j) = (1− pn+m)
n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
r∈(Z/fZ)×

∑
d0|N0

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0)

= (1− pn+m)
n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)lcn+m−l ∂

n+m−l

∂yn+m−l
∂l+1

∂xl+1
(Hj(x, y) +Hj(x

p, yp))|(0,0).

In order to ease the notation we set

H∗
j (x, y) := Hj(x, y) +Hj(x

p, yp),(12.10)

Dx =
∂
∂x

and Dy =
∂
∂y
. With this new notation we have

(1− pn+m)
n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)lcn+m−lDn+m−l

y Dl
xH

∗
j (x, y)|(0,0) =

(1− pn+m)
n∑
l=0

(
n

l

)
an−l(−1)lcmDn+m−l

y Dl
xH

∗
j (x, y)|(0,0) =

(1− pn+m)(cDy)
m

n∑
l=0

(
n

l

)
an−l(−1)lcmDn−l

y Dl
xH

∗
j (x, y)|(0,0) =

(1− pn+m)(cDy)
m(aDy −Dx)

nH∗
j (x, y)|(0,0).

Now we do a change of variable, we set u = ex and v = ey so Dx = ∂
∂u

∂u
∂x

+ ∂
∂v

∂v
∂x

=

u ∂
∂u

:= Du and similarly and Dy =
∂
∂u

∂u
∂y

+ ∂
∂v

∂v
∂y

= v ∂
∂v

:= Dv. Note that

Hj(u, v) =
∑

1≤h≤c
(h,f)=1

(
uθ(h) − 1

u− 1
)
∑
d0|N0

n(d0, hj
−1)(

vβ(d0h)/d0

v1/d0 − 1
).(12.11)

So Hj(u, v) is a rational function in u1/c and v1/c.

We do another change of variable. We set (u, v) = (1
z
, wcza). So the inverse

change of variables is given by (z, w) = ( 1
u
, ua/cv1/c). We let Du := u ∂

∂u
. So by the
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chain rule we get Du = u( ∂
∂z

∂z
∂u

+ ∂
∂w

∂w
∂u
) = −z ∂

∂z
+ a

c
w ∂
∂w

. Similarly, Dv := v ∂
∂v

=

v( ∂
∂z

∂z
∂v

+ ∂
∂w

∂w
∂v
) = 1

c
w ∂
∂w

. If we set Dw := w ∂
∂w

and Dz := z ∂
∂z

we get

In,m(j) = (1− pn+m)Dm
wD

n
zH

∗
j (u, v)|(1,1).

Consequently we have

Jn,m(j) =

(
Dw

m

)(
Dz

z

)
H∗
j (u, v)|(1,1).(12.12)

Now the p-integrality of Jn,m(j) will be a direct consequence of the following lemma:

Lemma 12.3 Consider the subset R of Zp(u1/c, v1/c) defined by

R :=

{
P

Q
where P,Q ∈ Zp[u1/c, v1/c] and Q(1, 1) ∈ Z×

p

}
.

Then R is a ring stable under the operators
(
Dw

m

)
and

(
Dz

n

)
. Furthermore Hj(u, v) ∈ R

for all j ∈ (Z/fZ)×.

Proof The stability of R under the operators
(
Dw

m

)
and

(
Dz

n

)
follows directly from

the proof of Lemma 4.12 of [DD06]. It thus remains to show that Hj(u, v) ∈ R for

all j ∈ (Z/fZ)×. We note that if Hj(u, v) ∈ R, then Hj(x
p, yp) ∈ R and therefore

H∗
j (u, v) ∈ R. Looking at the right hand side of (12.11) and using the fact that R is

a ring it is enough to show that for all 1 ≤ h ≤ c

(i) (u
θ(h)−1
u−1

) ∈ R and

(ii)
∑
d0|N0

n(d0, hj
−1)(v

β(d0h)/d0

v1/d0−1
) ∈ R.

For each integer d ∈ Z≥1, let us define

Ψd(v) :=
(v1/d)d − 1

v1/d − 1
= 1 + v1/d + . . .+ (v1/d)d−1.

We note that Ψd(v)|v=1 = d.

Let us show (i). Let θ(h) = b
c
for some 0 ≤ b ≤ c− 1. We have

uθ(h) − 1

u− 1
=

(u1/c)b − 1

u− 1
=

1

Ψc(u)
· (u

1/c)b − 1

u1/c − 1
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Since (u1/c)b−1

u1/c−1
is a polynomial in u1/c and Ψc(1) = c and p ∤ c, it follows that uθ(h)−1

u−1
∈

R.

Let us show (ii). We have

∑
d0|N0

n(d0, hj
−1)

(
vβ(d0h)/d0

v1/d0 − 1

)
=

1

v − 1

∑
d0|N0

n(d0, hj
−1)(v1/d0)β(d0h)Ψd0(v)

=
1

Ψc(v)
·
∑

d0|N0
n(d0, hj

−1)(v1/d0)β(d0h)Ψd0(v)

v1/c − 1
(12.13)

Now using the assumption that
∑

d0|N0
n(d0, r)d0 = 0 for all r ∈ (Z/fZ)× that the

polynomial (in the variable v1/c)∑
d0|N0

n(d0, hj
−1)(v1/d0)β(d0h)Ψd0(v),

is divisible by v1/c − 1. Since Ψc(1) = c and p ∤ c, it follows that the right hand side

of (12.13) is R. This concludes the proof of Lemma 12.3. □

Finally from Lemma 12.3 we obtain that
(
Dw

m

)(
Dz

z

)
H∗
j (u, v)|(1,1) ∈ Zp and therefore

Jn,m(j) ∈ Zp. This concludes the proof of Lemma 12.1. □

12.2 A partial modular symbol of measures on Zp × Zp

In this subsection, we use the family of measures {νξ,j}j∈(Z/fZ)×/⟨p⟩ of lemma 12.1

to construct a family of partial modular symbols (supported on the set of cusps

Γ0(fN0)(i∞)) of measures on Zp ×Zp encoding the periods of {F̃k(j, z)}j∈(Z/fZ)×/⟨p⟩.
Note that Zp × Zp is stable under the action of Γ0(fN0).

Lemma 12.4 There exists a unique family of partial modular symbols {νj}j∈(Z/fZ)×/⟨p⟩
supported on the set of cusps Γ0(fN0)(i∞) of Zp-valued measures on Zp × Zp such

that ∫
Zp×Zp

h(x, y)dνj{r → s}(x, y) = (1− pk−2)

∫ s

r

h(z, 1)F̃k(j, z)dz
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for r, s ∈ Γ0(fN0)(i∞) and every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree

k − 2. Furthermore if γ =

(
a b

c d

)
∈ Γ0(fN0) then νj{r → s}(U) = νγ⋆j{γr →

γs}(γU). So in this sense the measures are Γ0(fN0)-invariant.

Proof Uniqueness is easy. We must show the existence. Let M denote the

Γ0(fN0)-module of degree zero divisors on the set Γ0(fN0)(i∞) = Γ(i∞). Let

M ′ ⊆M be the set of divisors m ∈ Div0(Γ0(fN0)(i∞)) for which there exists a fam-

ily of Zp-valued measures indexed by (Z/fZ)×/⟨p⟩, {νj{m}}j∈(Z/fZ)×/⟨p⟩ on Zp × Zp,
such that ∫

Zp×Zp

h(x, y)dνj{m}(x, y) = (1− pk−2)

∫
m

h(z, 1)F̃k(j, z)dz.

Here
∫
m

is defined by
∫
[c1]−[c2]

:=
∫ c2
c1
, and extend by linearity. We must show that

M ′ =M .

It is clear that M ′ is a subgroup of M . We will show that M ′ is Γ0(fN0)-stable.

Let m ∈ M ′ and γ =

(
A B

C D

)
∈ Γ0(fN0); for compact open U ⊆ Zp × Zp we

define

νj{γm}(U) := νγ−1⋆j{m}(γ−1U)

Also for γ −

(
A B

C D

)
∈ Γ0(fN0) we define polynomials in two variables by

h|γ(x, y) = h(Ax+By,Cx+Dy),

and

µ(γ, z) = Cz +D.
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We calculate ∫
Zp×Zp

h(u, v)dνj{γm}(u, v)

=

∫
Zp×Zp

h(u, v)dνγ−1⋆j{m}(γ−1(u, v))

=

∫
Zp×Zp

h|γ(x, y)dνγ−1⋆j{m}(x, y)

where γ−1(u, v) = (x, y). Therefore we have∫
Zp×Zp

h(u, v)dνj{γm}(u, v)

=

∫
Zp×Zp

h|γ(x, y)dνγ−1⋆j{m}(x, y)

= (1− pk−2)

∫
m

h(γz, 1)µ(γ, z)k−2F̃k(γ
−1 ⋆ j, z)dz

= (1− pk−2)

∫
γm

h(z, 1)F̃k(j, z)dz

where in the last line we use the change of variables u = γz and the fact that

F̃k(γ
−1 ⋆ j, γ−1z)µ(γ−1, z)−(k−2)d(γ−1z) = F̃k(j, z)dz.

Therefore M ′ is a Γ0(fN0)-submodule of M . Lemma 12.1 shows that

[a/c]− [i∞] ∈M ′

when p does not divide c. Finally we claim that

Z[Γ0(fN0)]{[a/c]− [i∞]}p∤c =M.

Let us prove this last assertion. Let us take 1, fN0 ∈ Z which a are obviously

coprime. Note that p ∤ fN0 so [i∞] − [ 1
fN0

] ∈ M ′. Let a
c
∈ Γ0(fN0)(i∞) with p|c.

Let γ =

(
a b

c d

)
∈ Γ0(fN0) so γ(i∞) = a

c
. Then

γ

(
[i∞]−

[
1

fN0

])
=
[a
c

]
−
[
a+ bfN0

c+ dfN0

]
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Note that p ∤ (c+ dfN0). We thus have[a
c

]
− [i∞] = γ([i∞]−

[
1

fN0

]
) + (

[
a+ bfN0

c+ dfN0

]
− [i∞]) ∈M ′

Finally the Γ0(fN0)-invariance of νj{m} follows from the definition. □

12.3 From Zp × Zp to X

In this section we show that the family of measures {νj{x→ y}}j∈(Z/fZ)×/⟨p⟩ (Lemma

12.4) are supported on the set X ⊆ Zp×Zp of primitive vectors. We start with some

lemma.

Lemma 12.5 Let c1, c2 ∈ Γ(i∞). We have∫
Zp×Z×

p

h(x, y)dνj{c1 → c2}(x, y) =
∫ c2

c1

h(z, 1)F̃k,p(j, z)dz

for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.

Proof The characteristic function of the open set Zp×Z×
p is (x, y) 7→ limj→∞y

(p−1)pj .

Let ξ = a
c
∈ Γ0(fN0)(i∞) then for n,m ≥ 0, we have∫

Zp×Z×
p

xnymdν{i∞→ ξ}(x, y) = limj→∞

∫
Zp×Zp

xnym+(p−1)pjdνj{ξ →∞}(x, y)

= lim
j→∞

−12
fn+m+(p−1)pj

(1− pn+m+(p−1)pj)

·
n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)

n+m−l+1+(p−1)pj ,l+1
(a, c/d0)

=
−12
fn+m

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 lim

j→∞
D
jr(mod f)

n+m−l+1+(p−1)pj ,l+1
(a, c/d0)

(12.14)
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Meanwhile we calculate∫ i∞

a
c

znF̃k,p(j, z)dz

=

∫ i∞

a
c

znF̃k(j, z)dz − pk−1

∫ i∞

a
c

znF̃k(j, pz)dz

=

∫ i∞

a
c

znF̃k(j, z)dz − pk−n−2

∫ i∞

pa
c

znF̃k(j, z)dz

=
12

fn+m

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(a, c/d0)

−12
fn+m

p(n+m+2)−n−2

n∑
l=0

(
n

l

)
(
pa

c
)n−l(−1)l

∑
d0,r

n(d0, r)d
−l
0 D

jr(mod f)
n+m−l+1,l+1(pa, c/d0)

=
12

fn+m

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

(12.15)

·
∑
d0,r

n(d0, r)d
−l
0 (D

jr(mod f)
n+m−l+1,l+1(a, c/d0)− p

n+m−lD
jr(mod f)
n+m−l+1,l+1(pa, c/d0))

Combining Lemma 11.2 with the assumption that p ⋆ δ = δ gives us that (12.14) is

equal to (12.15). □

Let r, s ∈ Γ(i∞). We want to show that the measures νj{r → s} are supported

on the set X ⊆ Zp × Zp of primitive vectors.

Lemma 12.6 Let r, s ∈ Γ(i∞). Then the measures νj{r → s} are supported on

X.

Proof Let γ =

(
a b

c d

)
∈ Γ0(fN0). We set µ(γ, z) := (cz+d). Let h(x, y) ∈ Z[x, y]

be a homogeneous polynomial of degree k − 2 = m+ n− 2. Then∫
γ(Zp×Z×

p )

h(x, y)dνj{r → s}(x, y) =
∫
Zp×Z×

p

h(γ(x, y))dνj{r → s}(γ(x, y))

=

∫
Zp×Z×

p

h(γ(x, y))dνγ−1⋆j{γ−1r → γ−1s}(x, y)
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=

∫ γ−1s

γ−1r

h(γz, 1)µ(γ, z)k−2F̃k,p(γ
−1 ⋆ j, z)dz

=

∫ s

r

h(z, 1)µ(γ−1, z)−(k−2)F̃k,p(γ
−1 ⋆ j, γ−1z)d(γ−1z).

Let M(p) ⊂M2(Z) be the set of primitive matrices of determinant p. Let{
ηi =

(
ai bi

ci di

)}p+1

i=1

be a complete set of representatives of SL2(Z)\M(p). Then we have

Tk(p)Ek(j, z) = pk−1

p+1∑
i=1

Ek(dij, ηiz)µ(ηi, z)
−k,(12.16)

where Tk(p) stands for the Hecke operator at p. For some background about Hecke

operators in this context see Section 4.8.

Let P =

(
p 0

0 1

)
and

{
γi =

(
ai bi

ci di

)}p+1

i=1

be a complete set of represen-

tatives of Γ0(pfN0)\Γ0(fN0). Note that the set {Pγ−1
i }

p+1
i=1 is a complete set of

representatives of SL2(Z)\M(p). From (12.18) we deduce that

−1
12f

p+1∑
i=1

F̃k,p(γ
−1
i ⋆ j, γ−1

i z)µ(γ−1
i , z)−(k−2)d(γ−1

i z)

=
∑
d0,r

n(d0, r)d0

p+1∑
i=1

Ek(airj, d0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z)−(12.17)

pk−1
∑
d0,r

n(d0, r)d0

p+1∑
i=1

Ek(airj, pd0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z).

Because

Ek(r, γz)µ(γ, z)
−(k−2)d(γz) = Ek(γ

−1 ⋆ r, z)dz,

for any γ ∈ Γ0(f), we have that

Ek(airj, d0γ
−1
i z)µ(γ−1

i , z)−(k−2)d(γ−1
i z) = Ek(γi ⋆ (airj), d0z)dz

= Ek(jr, d0z)dz.
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From equation (4.19) one may deduce that

Tk(p)Ek(j, z) = pk−1Ek(j, z) + Ek(pj, z).(12.18)

Using the fact that (12.16) is equal to (12.18), that µ(Pγ, z) = µ(γ, z) and pd0γ
−1
i z =

d0Pγ
−1
i z we obtain

pk−1

p+1∑
i=1

Ek(airj, d0Pγ
−1
i z)µ(γ−1

i , z)d(γ−1
i z) = pk−1

p+1∑
i=1

Ek(airj, d0Pγ
−1
i z)µ(Pγ−1

i , z)−(k−2)d(Pγ−1
i z)

= (Tk(p)Ek(rj, d0z))dz

= (pk−1Ek(rj, d0z) + Ek(prj, d0z))dz.

Now because p ⋆ δ = δ we find that∑
d0,r

n(d0, r)d0(p
k−1Ek(rj, d0z) + Ek(prj, d0z))dz = (pk−1 + 1)

∑
d0,r

n(d0, r)d0Ek(rj, d0z).

Substituting the last expression in (12.17) we find

−12f((p+ 1)− (pk−1 + 1))
∑
d0,r

n(d0, r)d0Ek(rj, d0) = (p− pk−1)F̃k(j, z).

Finally note that ∪p+1
i=1 γi(Zp × Z×

p ) is a degree p cover of X. Hence we get

p

∫
X
h(x, y)dνj{r →}(x, y) =

p+1∑
i=1

∫
γi(Zp×Z×

p )

h(x, y)dνj{r →}(x, y)

=

p+1∑
i=1

∫ s

r

h(z, 1)F̃k,p(γ
−1
i ⋆ j, γ−1

i z)µ(γ−1
i , z)−(k−2)d(γ−1z)

= (p− pk−1)

∫ s

r

h(z, 1)F̃k,p(j, z)dz

= (p− pk−1)

∫
Zp×Z×

p

h(x, y)dνj{r → s}(x, y)

= p

∫
Zp×Zp

h(x, y)dνj{r → s}(x, y).

Since this holds for any h homogeneous of degree k we get that the support of νj{r →
s} is included in X. □
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12.4 The measure µ̃r{c1 → c2} is Γ̃0 invariant

The compact open set X is a fundamental domain for the action of multiplication by

p on Q2
p\{(0, 0)},

(
p 0

0 1

)
(x, y) = (px, py). Hence if we define for compact open

U ⊆ X:

µ̃j{r → s}(U) := νj{r → s}(U)

then µ̃j extends uniquely to a Γ0(fN0)-invariant partial modular symbol of Zp-valued
measures on Q2

p\{0} which is invariant under the action of multiplication by p:

µ̃j{r → s}(pU) = µ̃j{r → s}(U)

for all compact open U ⊆ Q2
p\{(0, 0)}. This almost proves Theorem 8. It remains to

show that µ̃j is Γ̃0-invariant i.e. for all compact open set U ⊆ Q2
p\{(0, 0)}

µ̃γ⋆j{γr → γs}(γU) = µ̃j{r → s}(U).

Note that Γ̃0 = ⟨Γ0(fN0), P ⟩ where P =

(
p 0

0 1

)
.

Lemma 12.7 The partial modular symbol µ̃j is invariant under Γ̃0.

Proof Since Γ̃0 is generated by Γ0(fN0) and P =

(
p 0

0 1

)
, and that µ̃j is Γ0(fN0)-

invariant, it suffices to show that µ̃j is invariant for the action of P . For a homogeneous

polynomial h(x, y) of degree k − 2, we have∫
X
h(x, y)dµ̃P−1⋆j{P−1r → P−1s}(P−1(x, y)) =

∫
X
h(x, y)dµ̃j

{
r

p
→ s

p

}
(x/p, y)

=

∫
P−1X

h(px, y)dµ̃j

{
r

p
→ s

p

}
(x, y)

Writing P−1X as a disjoint union

P−1X = (Zp × Z×
p )
⊔

(
1

p
Z×
p × Zp)

= (Zp × Z×
p )
⊔(

p 0

0 p

)−1

(Z×
p × pZp)(12.19)
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Using the invariance of µ̃j under multiplication by p, (12.19) becomes∫
Zp×Z×

p

h(px, y)dµ̃j{r/p→ s/p}(x, y) +

∫
Z×
p ×pZp

h(x, y/p)dµ̃j{r/p→ s/p}(x, y)

= (p2−k + (1− p2−k))
∫
Zp×Z×

p

h(px, y)dµ̃j{r/p→ s/p}(x, y)

+ p2−k
∫
Z×
p ×pZp

h(px, y)dµ̃j{r/p→ s/p}(x, y)

= p2−k
∫
X
h(px, y)dµ̃j{r/p→ s/p}(x, y)

+ (1− p2−k)
∫
Zp×Z×

p

h(px, y)dµ̃j{r/p→ s/p}(x, y)

= p2−k(1− p2−k)
∫ s/p

r/p

h(pz, 1)F̃k(j, z)dz + (1− p2−k)
∫ s/p

r/p

h(pz, 1)F̃k(j, z)
∗dz

= (p2−k − 1)

∫ s/p

r/p

h(pz, 1)F̃k(j, z)dz

+ (1− p2−k)
∫ s/p

r/p

h(pz, 1)(F̃k(j, z)− pk−1F̃k(j, pz))dz

= pk−1(1− p2−k)
∫ s/p

r/p

h(pz, 1)F̃k(j, pz)dz

= (1− pk−2)

∫ s

r

h(w, 1)F̃k(j, w)dw

=

∫
X
h(x, y)dµ̃j{r → s}(x, y).

This concludes the proof of theorem 6.1. □

13 The measure µ̃r{c1 → c2} is Z-valued

In this section we want to prove the integrality of the measures µ̃j{i∞ → a
c
} of

theorem 6.1 for a
c
∈ Γ0(fN0)(i∞). We use the same approach as in [Das07].
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Let e ≥ 1 be a positive integer divisible by fN0 but not by p and let

Z = lim←−
n

Z/epnZ ≃ Z/eZ× Zp(13.1)

Definition 13.1 Let δ =
∑

d0|N0,r∈(Z/fZ)× n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩ be a good

divisor. For each integer k ≥ 1 and r ∈ (Z/fZ)× we define a distribution on Z by

the rule

Fk,r(a+ epnZ) :=
∑
d0|N0

n(d0, r)

(
epn

d0

)k−1 B̃k(
a

epn/d0
)

k
.(13.2)

where a is any integer.

We have a natural action of (Z/fZ)× on the measures Fk,r given simply by j ⋆Fk,r =
Fk,rj. Note that for any compact open set U ⊆ Z we have

Fk,r(pU) = pk−1Fk,r(U).(13.3)

For x ∈ Z we let xp denote the projection of x on Zp.

Proposition 13.1 The distributions Fk,r are Zp-valued measures, and for every

compact open set U ⊆ Z and every k ≥ 1, r ∈ (Z/fZ)× we have

Fk,r(U) =
∫
U

xk−1
p dF1,r(x).

Proof See [Das07]. □

Remark 13.1 From the previous proposition we deduce that for any compact

open set U ⊆ Z and any integer k ≥ 1, limn→∞Fϕ(pn)−k,r(U) exists. Therefore

it makes sense to define F−k,r(U) := limn→∞Fϕ(pn)−k,r(U). Note that one cannot

define directly F−k,r using (13.2) since Bernoulli polynomials with negative index

can only be evaluated on elements x ∈ Cp with |x|p ≤ 1
p
. The fact that (13.2) is

formally the summation of the special values “B̃−k(
a

epn/d0
)”weighted by the integers

n(d0, r)
(
epn

d0

)k−1

can be viewed as a way to regularize the convergence.

Theorem 13.1 The measures µ̃j{∞ → a
c
} take values in Z.
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Proof We adapt the proof of Theorem 1.3 in [Das07]. By Theorem 6.1, we know

already that the measure νj := µ̃j{∞ → a
c
} takes values in Zp, so it is enough to

show that it takes also values in Z[1
p
]. First, we want to find a closed formula for the

quantities νj(Zp× (v+psZp)) when (v, p) = 1. We claim that for any ball of the form

v + psZp, we can always find a sequence of polynomials {hi(y)} in Qp[y] such that

limi hi(y) = 11(v+psZp)(y), where 11(v+psZp)(y) is the characteristic function of v+ psZp.
We can write down such a sequence of polynomials explicitely by setting

hi(y) =

 1

pm

∏
j ̸≡v(mod ps)

(y − j)

pi(p−1)

where m = vp((p
s − 1)!). Let V ⊆ Z×

p be a compact open set. Since any compact

open set can be decomposed as a finite disjoint union of balls of the form v + psZp,
it follows from the above that there exists a sequence of polynomials {fi(y)} in Qp[y]

such that limi fi(y) = 11V (y). Write fi(y) =
∑di

n=0 cn(i)y
n. We have∫

Zp×V
dνj(x, y) =

∫
X
lim
i
fi(y)dνj(x, y) = lim

i

∫
X
fi(y)dνj(x, y) = lim

i

di∑
n=0

cn(i)

∫
X
yndνj(x, y)

= lim
i
−12

di∑
n=0

cn(i)
1− pn

fn

∑
d0|N0

r∈Z/fZ

n(d0, r)D
jr (mod f)
n+1,1 (a, c/d0),

(13.4)

where the last equality uses Proposition 11.5.

We have

lim
i
−12

di∑
n=0

cn(i)
1− pn

fn

∑
d0|N0

r∈Z/fZ

n(d0, r)

(
c

d0

)s−1 c∑
h=1

h≡jr (mod f)

B̃n+1(
h

c/d0
)

n+ 1
B̃1

(
ha

c

)

= −12 lim
i

di∑
n=0

cn(i)

fn
(1− pn)

∑
r∈Z/fZ

c∑
h=1

h≡jr (mod f)

B̃1

(
ha

c

) ∑
d0|N0

(
c

d0

)n
n(d0, r)

B̃n+1(
h

c/d0
)

n+ 1

= −12 lim
i

di∑
n=0

cn(i)
∑

r∈Z/fZ

c∑
h=1

h≡jr (mod f)

B̃1

(
ha

c

)
1

fn
(Fn+1,r(h+ cZ)−Fn+1,r(ph+ pcZ)),
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where c = ept with (e, p) = 1. For the last equality we have used the definition of

Fk,r and the identity (13.3). Applying Proposition 13.1 to the last equality, we get

νj(Zp × V ) = −12
∑

r∈Z/fZ

c∑
h=1

h≡jr (mod f)

B̃1

(
ha

c

)∫
h+cZ

lim
i

(
fi

(
xp
f

)
− fi

(
pxp
f

))
dF1,r(x).

(13.5)

Now let us assume that V = v + psZp for v ∈ Z coprime to p and t ≤ s. With

this special choice of V the limit as i→∞ for fi(
xp
f
) converges to 1 or 0 according to

whether xp
f
is V or not. The sequence fi(

pxp
f
) always converges 0. It now follows that

νj(Zp × V ) = −12
∑

r∈(Z/fZ)×

ept∑
h=1

h≡jr (mod f)
h≡fv(mod pt)

B̃1

(
ha

ept

)
F1,r({x ∈ h+ epsZ : xp ∈ fV })

= −12
∑

r∈(Z/fZ)×

ept∑
h=1

h≡jr (mod f)
h≡fv(mod pt)

B̃1

(
ha

ept

) ∑
d0|N0

n(d0, r)B̃1

(
yh

eps/d0

)
,(13.6)

where yh is chosen so that yh ≡ h (mod e) and yh ≡ fv (mod ps). Therefore,

νj(Zp × V ) = −12
∑

r∈(Z/fZ)×

ept∑
h=1

h≡jr (mod f)
h≡fv (mod pt)

B̃1

(
ha

ept

) ∑
d0|N0

n(d0, r)B̃1

(
yh

eps/d0

)

= −12
∑

r∈(Z/fZ)×

ept∑
h=1

h≡jr (mod f)
h≡fv (mod pt)

(
ha

ept
−
[
ha

ept

]
− 1

2

) ∑
d0|N0

n(d0, r)

(
yh

eps/d0
−
[

yh
eps/d0

]
− 1

2

)
.

From the last equality we deduce that

−
∑

r∈(Z/fZ)×

ept∑
h=1

h≡jr (mod f)
h≡fv (mod pt)

(
2
ha

ept
− 2

[
ha

ept

]
− 1

) ∑
d0|N0

n(d0, r)

(
2

yh
eps/d0

− 2

[
yh

eps/d0

]
− 1

)

≡ 2a

ept

∑
r∈(Z/fZ)×

ept∑
h=1

h≡jr (mod f)
h≡fv (mod pt)

h
∑
d0|N0

n(d0, r)(2

[
yh

eps/d0

]
− 1) (mod Z).(13.7)
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So if the right hand side of (13.7) is in Z for a = 1, it will be in Z for any integer a.

Thus in order to prove the integrality of the measure νj it is enough to show that the

right hand side of (13.7) is in Z for a = 1. If we go back to (13.6) and set a = 1 we

can rewrite it as

νj(Zp × V ) = −12
∑
d0|N0

∑
r∈(Z/fZ)×

n(d0, r)

ept∑
h=1

h≡jr (mod f)
h≡fv (mod pt)

B̃1

(
h

ept

)
B̃1

(
yh

eps/d0

)(13.8)

= −12
∑
d0|N0

∑
r∈(Z/fZ)×

n(d0, r)

ept/d0∑
h=1

h≡jr (mod f)
h≡fv (mod pt)

B̃1

(
h

ept/d0

)
B̃1

(
yh

eps/d0

)
,

where the second equality comes from the facts that if h ≡ h′(mod ept/d0) then

yh ≡ yh′(mod ep
s/d0) and that

∑
µ(mod d0)

B̃1(x+
µ
d0
) = B̃1(d0x).

Now fix r ∈ (Z/fZ)× and consider the term

∑
d0|N0

n(d0, r)

ept/d0∑
h=1

h≡jr (mod f)
h≡fv (mod pt)

B̃1

(
h

ept/d0

)
B̃1

(
yh

eps/d0

)
=

∑
d0|N0

n(d0, r)

e/fd0∑
µ=1

B̃1

(
ps−t

psfµ+ eA

eps/d0

)
B̃1

(
psfµ+ eA

eps/d0

)
,(13.9)

where A ∈ Z[ 1
f
] is chosen in such a way that eA ≡ jr (mod f) and eA ≡ fv (mod ps).

Note, in particular, that eA ∈ Z and (eA, f) = 1. We obtain (13.9) by performing

the change of variables h = psfµ+ eA and yh = h. This is justified as:

{
h (mod ept/d0) : h ≡ jr (mod f), h ≡ fv (mod pt)

}
=

{
psfµ+ eA (mod

ept

d0
)

}
1≤µ≤ e

fd0

.

This equality of sets results from the fact that psfµ ≡ psfµ′ (mod ept

d0
) if and only

if e
fd0
|(µ − µ′). Finally, since yh = h, we readily see that yh ≡ h (mod e) and that

yh ≡ fv (mod ps).
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Using the notation in [Hal85] (see the top of page 23) we find that

e
fd0∑
µ=1

B̃1

(
ps−t

psfµ+ eA

eps/d0

)
B̃1

(
psfµ+ eA

eps/d0

)
= C

(
1, 1, ps−t, e/fd0,

eA

fps
, 0

)
.(13.10)

Using the Dedekind reciprocity formulas for such sums for the matrix

(
0 −1
1 0

)
(see Theorem 2 of [Hal85] for the exact formula) we find

C

(
1, 1, ps−t,

e

fd0
,
eA

fps
, 0

)
=

∑
µ (mod ps−t)

B̃1

(
µ

ps−t

)
B̃1

(
eA

fps
−

e
fd0
µ

ps−t

)

+
1

2

∑
µ (mod ps−t)

1
e
fd0

B̃2

(
eA

fps
−

e
fd0
µ

ps−t

)
+

1

2

ps−t

e
fd0

B̃2

(
eA

fps

)
+

1

2

e
fd0

ps−t
B̃2 (0)− B̃1

(
eA

fps

)
.

Since (d0, p
s−t) = 1 and eA ≡ y (mod fps) for an integer y (not depending on d0)

such that y ≡ jr (mod f) and y ≡ fv (mod ps) we may rewrite the right hand side

of the equality above as

∑
µ (mod ps−t)

B̃1

(
µ

ps−t

)
B̃1

(
y

fps
−

e
fd0
µ

ps−t

)
+

1

2

∑
µ (mod ps−t)

1
e
fd0

B̃2

(
y

fps
−

e
f
µ

ps−t

)(13.11)

+
1

2

ps−t

e
fd0

B̃2

(
y

fps

)
+

1

2

e
fd0

ps−t
B̃2 (0)− B̃1

(
y

fps

)
.

If we take the summation of (13.11) over d0|N0, weighted by n(d0, r), then we see that

the second summation and the third term of (13.11) vanishes since
∑

d0
n(d0, r)d0 = 0.

The fourth term does not contribute to any denominator dividing f . It remains to deal

with the first summation and the last term. Taking the summation over all r ∈ Z/fZ
we get cancellations for the prime dividing f by pairing the elements jr (mod f) with

their additive inverses −jr (mod f). This uses the fact that B̃1(−x) = −B̃1(x).

Because the right hand side of (13.7) is in Z[1
p
] this implies that νj(Zp × V ) ∈

Z[1
p
] ∩ Zp = Z. Finally, since the Γ̃0 translates of the sets Zp × V form a basis of

compact open sets for (Q2
p\{(0, 0)}/pZ) ≃ X, the Γ̃0-invariance of the {νj}j∈(Z/fZ)×

implies that {νj}j∈(Z/fZ)× are Z-valued. □
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14 Explicit formulas of µ̃r{c1 → c2} on balls of X

We want to give an explicit formula of those measures on the compact open sets of

the form (u+ psZp)× (v + psZp) for u, v ∈ Z and (u, v, p) = 1.

Proposition 14.1 Let u, v ∈ Z such that (u, v) ∈ X. For a positive integer s, let

Uu,v,s denote the ball of radius 1
ps

around (u, v) ∈ X i.e.

Uu,v,s = (u+ psZp)× (v + psZp) ⊆ X.

Let a
c
∈ Γ0(fN0)(i∞). Let Ar be an integer such that Ar ≡ fv(mod ps) and Ar ≡

r(mod f) then

µ̃j{i∞→
a

c
}(Uu,v,s)

(14.1)

= −12
∑
d0|N0

∑
r∈(Z/fZ)×

n(d0, r)

c/fd0∑
h=1

B̃1

(
a

c/fd0

(
h+

Arj
fps

)
− d0fu

ps

)
B̃1

(
1

c/fd0

(
h+

Arj
fps

))(14.2)

= −12
∑
d0,r

n(d0, r)
∑

1≤h≤psc/d0
h≡fv(mod ps)
h≡rj(mod f)

B̃1

(
ah

psc/d0
− d0fu

ps

)
B̃1

(
h

psc/d0

)
,

where as usual {x} denotes the fractional part of a real number. Note that if we

replace v 7→ v + ps or u 7→ u+ ps the quantity is unchanged as expected.

Proof The proof follows essentially from the explicit formula obtained in equation

(13.8) for balls of the form Zp × V . We just sketch the proof. Let c = ept where

(e, p) = 1. Assume that p ∤ v. Let l be such that u ≡ lv(mod ps). In the case where

s ≥ t using (13.9) we have

µ̃j{i∞→
a

c
}(Zp × (v + psZp)) = −12

∑
d0|N0

n(d0, r)

e/fd0∑
µ=1

B̃1

(
a
psfµ+ eA

ept/d0

)
B̃1

(
psfµ+ eA

eps/d0

)(14.3)
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Similarly when s ≤ t we have

µ̃j{i∞→
a

c
}(Zp × (v + psZp))(14.4)

= −12
∑
d0|N0

n(d0, r)

ept−s/fd0∑
µ=1

B̃1

(
a
psfµ+ eA

ept/d0

)
B̃1

(
psfµ+ eA

ept/d0

)
.(14.5)

Consider the matrix γ =

(
ps l

0 1

)
and observe that

γ(Zp × (v + psZp)) = Uu,v,s.

The Γ̃0-invariance of µ̃j{i∞→ a
c
} implies that

µ̃j{i∞→
a

c
}(Uu,v,s) = µ̃j{i∞→

a− lc
cps
}(Zp × (v + psZp))

Let (a− lc, cps) = pm and assume that t−m ≥ 0 then using (14.4) we deduce

µ̃{i∞→ (a− lc)/pm

eps+t−m
}(Uu,v,s)

= −12
∑
d0|N0,r

n(d0, r)

ept−m/fd0∑
µ=1

B̃1

(
(a− lc)
pm

· p
sfµ+ eA

eps+t−m/d0

)
B̃1

(
psfµ+ eA

eps+t−m/d0

)

= −12
∑
d0|N0,r

n(d0, r)

c/fd0∑
µ=1

B̃1

(
(a− lc)
c/d0

· p
sfµ+ eA

ps

)
B̃1

(
psfµ+ eA

cps/d0

)

= −12
∑
d0|N0,r

n(d0, r)

c/fd0∑
µ=1

B̃1

(
a

c/fd0
· (µ+

eA

fps
)− ld0

eA

ps

)
B̃1

(
µ+ eA

fps

c/fd0

)

which is nothing else than (14.1). The second equality follows from the distribution

relation of B̃1(x). A similar computation holds when t−m ≤ 0. To handle the case

when p|v one can use the exact same idea as in [Das07]. This concludes the proof.

□

Let us verify if (14.1) is in accordance with 4) of Theorem 6.1 on a simple compact

open set. First note that

(Z×
p × pZp)

∐
(Zp × Z×

p ) = X.
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It thus follows that

−µ̃j{i∞→
a

c
}(Z×

p × pZp) = µ̃j{i∞→
a

c
}(Zp × Z×

p ).(14.6)

Since
∐p−1

u=1 Uu,0,1 = (Z×
p × pZp) we deduce from (14.1) and (14.6) that

µ̃j{i∞→
a

c
}(Zp × Z×

p ) = 12
∑
d0,r

n(d0, r)
∑

1≤h≤pc/d0
h≡jr(mod f)
h≡0(mod p)

p−1∑
u=1

B̃1(
ha

pc/d0
+
d0fu

p
)B̃1(

h

pc/d0
)

= 12
∑
d0,r

n(d0, r)
∑

1≤h≤c/d0
ph≡jr(mod f)

p−1∑
u=1

B̃1(
pha

pc/d0
+
u

p
)B̃1(

ph

pc/d0
)

= 12
∑
d0,r

n(d0, r)
∑

1≤h≤c/d0
h≡jr(mod f)

p−1∑
u=1

B̃1(
ha

c/d0
+
u

p
)B̃1(

h

c/d0
)(14.7)

where the second equality uses the fact that (d0f, p) = 1 and the last equality uses

the assumption n(d0, p
−1r) = n(d0, r) for all r ∈ (Z/fZ)×.

On the other hand if we use 4) of Theorem 6.1 combined with the explicit formula

given by equation (12.15) we find

µ̃j{i∞→
a

c
}(Zp × Z×

p ) = −12
∑
d0,r

n(d0, r)(D
jr(mod f)
1,1 (a, c/d0)−Djr(mod f)

1,1 (pa, c/d0))

= −12
∑
d0,r

n(d0, r)
∑

1≤h≤c/d0
h≡jr(mod f)

B̃1(
h

c/d0
)B̃1(

ah

c/d0
)

+ 12
∑
d0,r

n(d0, r)
∑

1≤h≤c/d0
h≡jr(mod f)

B̃1(
h

c/d0
)B̃1(

pah

c/d0
)(14.8)

Now using the identity B̃1(px) =
∑p−1

j=0 B̃1(x+
j
p
) and substituting it in (14.8) we get

after simplification the right hand side of (14.7).

15 Stability property of the measures

In this section, we show that our measures µ̃j{c1 → c2} satisfy a certain stability

property when evaluated on a family of balls of decreasing radius for which the center
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is fixed and has integral coordinates.

Proposition 15.1 Let c1, c2 ∈ Γ0(fN0){∞} be two fixed cusps and let (u, v) ∈
Z2 ∩X. Then there exists a positive integer C(u, v) such that for s ≥ C(u, v) one has

that

µ̃j{c1 → c2}(Uu,v,s) =M ∈ Z

where M is an integer independent of the center of the ball (u, v) ∈ Z2 ∩ X. In the

special case where c1 =∞ and c2 =
a
c
one has that

µ̃j{∞ →
a

c
}(Uu,v,s) = −12

∑
d0|N0,r∈(Z/fZ)×

n(d0, r)D
jr (mod f)
1,1 (a, c/d0)

for s large enough.

Proof In order to prove the proposition it is enough to show that for s large enough

one has

µ̃1{∞ →
a

c
}(Uu,v,s) = −12

∑
d0,r

n(d0, r)D
r (mod f)
1,1 (a, c/d0).(15.1)

Because n(d0, r) = n(d0, pr) for all r ∈ Z/fZ we deduce from Proposition 14.1 that

µ̃1{∞ →
a

c
}(Uu,v,s) =

(15.2)

− 12
∑
d0|N0

∑
r∈Z/fZ

c/fd0∑
h=1

n(d0, r)B̃1

(
a

c/fd0

(
h+

Apsr
fps

)
− d0fu

ps

)
B̃1

(
1

c/fd0

(
h+

Arps

fps

))
.

Set Arps = fv + rps. Substituting in the right hand side of (15.2) we obtain

− 12
∑
d0|N0

∑
r∈Z/fZ

c/fd0∑
h=1

n(d0, r)B̃1

(
a

c/fd0

(
h+

v

ps
+
r

f

)
− d0fu

ps

)
· B̃1

(
1

c/fd0

(
h+

v

ps
+
r

f

))

= −12
∑
d0|N0

∑
r∈Z/fZ

∑
0≤h≤c/d0−1
h≡r (mod f)

n(d0, r)B̃1

(
ah

c/d0
+

av

(c/fd0)ps
− d0fu

ps

)
B̃1

(
h

c/d0
+

v

psc/fd0

)
.

(15.3)
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Now let us choose s large enough so that
∣∣∣ av
c/fps

∣∣∣+ ∣∣∣N0fu
ps

∣∣∣ < 1
c
. The right hand side of

(15.3) is then equal to

−12
∑
d0|N0

∑
r∈Z/fZ

∑
0≤h≤c/d0−1
h≡r (mod f)

n(d0, r)

({
ah

c/d0

}
+

av

(c/fd0)ps
− d0fu

ps

)(
h

c/d0
+

v

psc/fd0

)
.

This previous expression can be rewritten as

− 12
∑
d0|N0

∑
r∈Z/fZ

∑
0≤h≤c/d0−1
h≡r (mod f)

n(d0, r)

{
ah

c/d0

}
h

c/d0
+

(15.4)

− 12

ps

∑
d0|N0

∑
r∈Z/fZ

∑
0≤h≤c/d0−1
h≡r (mod f)

n(d0, r)

[(
av

c/fd0
− d0fu

)(
h

c/d0
+

v

psc/fd0

)
+

{
ah

c/d0

}
v

c/fd0

]
.

Now observe that the second triple summation in (15.4) can be bounded by a positive

constant C0 independent of s. Now choose s large enough so that 12C0

ps
< 1

c2
. Since the

expression (15.4) is an integer (this follows from Theorem 13.1) and the first triple

summation of (15.4) has denominator dividing c2 we conclude that the second triple

summation has to be equal to 0. From this it follows that the expresion in (15.4) is

equal to the first triple summation , i.e., −12
∑

d0,r
n(d0, r)D

r (mod f)
1,1 (a, c/d0). This

concludes the proof. □

We make the following definition

Definition 15.1 Consider the measure µ̃j{c1 → c2} on the space X where c1, c2 ∈
Γ0(fN0)(i∞) and j ∈ (Z/fZ)×. Let (u, v) ∈ X then we say that a ball Uu,v,r is stable

with respect to the marked center (u, v) for the measure µ̃j{c1 → c2} if for all s ≥ r

one has

µ̃j{c1 → c2}(Uu,v,s) = µ̃j{c1 → c2}(Uu,v,r).

Remark 15.1 Note by Proposition 15.1 that every point (u, v) ∈ X ∩ Z2 is con-

tained in some stable ball of centre (u, v) for the measure µ̃j{c1 → c2}. Indeed take

the ball Uu,v,s where s is big enough.
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We have the following interesting theorem which a priori seems very surprising taking

into account the compactness of X.

Theorem 15.1 Consider the Z-valued measure µ̃r{c1 → c2} on the space X and

assume that the integer M in Proposition 15.1 is not equal to 0. Then there exists no

cover of X by stable balls with marked centres in X ∩ Z2.

Proof Assume that ⋃
i∈I

Uui,vi,si = X

where I is some indexing set and the Uui,vi,si ’s are stable balls with respect to the

centres (ui, vi) ∈ X ∩ Z2. If Uui,vi,si ∩ Uuj ,vj ,sj ̸= ∅ then either Uui,vi,si ⊆ Uuj ,vj ,sj or

Uuj ,vj ,sj ⊆ Uui,vi,si . We can thus discard the smaller ball and still get a cover of X.
By repeating this we can assume without lost of generality that the balls covering X
are disjoint.

By compactness there exists a finite set J ⊆ I such that⋃
j∈J

Uuj ,vj ,sj = X.

By Proposition 15.1 we have that

µ̃r{c1 → c2}(Uuj ,vj ,sj) =M

for some integer M independent of j. By additivity of the measure on compact open

sets we deduce that

µ̃r{c1 → c2}(X) = |J |M.

On the other hand we have

µ̃r{c1 → c2}(X) = 0,

which gives us a contradiction. □
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16 Explicit formulas of ζ(δ, (A, τ ), 1− k) in terms of

the measures µ̃r{c1 → c2}

In this section we would like to relate the value at s = 0 of linear combinations of

partial zeta functions of K to the measure µ̃r{c1 → c2} evaluated on a certain ball of

X. Roughly speaking we would like to relate the value

ζ(a, pnf∞, 0)

to the value

µ̃r{c1 → c2} ((u+ pnZp)× (v + pnZp)) ,(16.1)

for suitable r, u, v, c1 and c2 which depend on a. Remember by Lemma 8.2 that if a

is an integral ideal of K coprime to pf then

ζ(a−1, pnf, w1, s) = f−2sΨ̂

(
a

fpn
√
D
,w1, s

)
,

and also by equation (7.15) we have

4ζ(a−1, pnf∞, 0) = ζ(a−1, pnf, w1, 0).

So instead of relating the value ζ(a−1, pnf∞, 0) to (16.1) it is enough to relate the

value Ψ̂
(

a
fpn

√
D
, w1, 0

)
to (16.1).

Let us start with some explicit formulas obtained by Siegel where he relates special

values of a zeta function attached to an indefinite binary quadratic form to Bernoulli

polynomials. Let γ =

(
a b

c d

)
∈ SL2(Z) be a hyperbolic matrix with its two real

fixed points τ > τσ where GQ(τ)/Q = {1, σ}. Let Qτ (x, y) = A(x − τy)(x − τσy) =
Ax2 + Bxy + Cy2 ( A > 0 ) be the indefinite primitive quadratic form attached to

τ . Let u, v be two rational numbers not both integers. Assume furthermore that

mu + nv ≡ m′u + n′v(mod Z) for all m,n ∈ Z2 where γ

(
m

n

)
=

(
m′

n′

)
. For

s = 2, 3, . . . define

φγ((u, v), τ, s) :=
∑

⟨γ⟩\(m,n)∈Z2\(0,0)

e2πi(mu+nv)

Qτ (m,n)s
.
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and for s = 1 set

φγ((u, v), τ, 1) := lim
s→1+

∑
⟨γ⟩\(m,n)∈Z2\(0,0)

e2πi(mu+nv)sign(Qτ (m,n))

|Qτ (m,n)|s
.

Note that the limit exists since u and v are not both integers. We also let

Rs(z) :=

∫ z

−d
c

Qτ (w, 1)
s−1dw.

Siegel proved the following theorem:

Theorem 16.1 The quantity

π−2sdisc(Qτ )
1
2φγ((u, v), τ, s)

is a rational number that can be expressed using periodic Bernoulli polynomials. More

precisely for s ≥ 1 we have

sign(a+ d)(s− 1)!2(2π)−2sdisc(Qτ )
s− 1

2φγ((u, v), τ, s)(16.2)

=
2s−1∑
k=0

(−1)kc2s−k−1

k!(2s− k)
R(k)
s (

a

c
)
∑

l(mod c)

B̃k

(
a(u+ l)

c
+ v

)
B̃2s−k

(
u+ l

c

)

where R
(k)
s (z) is the k-th derivative of the rational polynomial Rs(z).

Proof This is the main theorem of [Sie68]. □

We obtain the following corollary:

Corollary 16.1 We have

ζ∗(δj, (A, τ), 0) = 4 · sign(a+ d)
∑
d0,r

n(d0, r)
∑

l(mod c/fd0)

B̃1

(
a
( jr
f
+ l)

c/fd0

)
B̃1

(
( jr
f
+ l)

c/fd0

)
.

(16.3)

where Qτ (x, y) = Ax2 +Bxy + Cy2 and γτ =

(
a b

c d

)
with cτ + d > 1.
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Proof Using the functional equation between Ψ∗ and Ψ̂∗ we get

ζ∗(δ, (A, τ), s)

(16.4)

= −F
∗(1− s)
F ∗(s)

∑
d0,r

n

(
N0

d0
, r

)
ds0

∑
⟨γτ (fd0)⟩\{(0,0)̸=(m,n)∈Λfd0τ

}

sign(Qd0τ∗(m,n))e
2πin/f

|Qd0τ∗(m,n)|1−s

= −F
∗(1− s)
F ∗(s)

∑
d0,r

n(d0, r)

(
N0

d0

)s ∑
⟨γτ (fd0)⟩\{(0,0) ̸=(m,n)∈Λfd0τ

}

sign(Qfd0τ )(m,n)e
2πim/f

|Qfd0τ (m,n)|1−s
.

Now evaluate (16.4) at s = 0. Using the assumption that δ is a good divisor with the

explicit formulas in Theorem 16.1 we deduce (16.3). □

Remark 16.1 If we compare (16.3) with (9.22) we see that the two formulas

coincide since sign(a+ d) = 1 and sign(c) = 1.

Now let λα,β = λ = α + β
√
D be an algebraic integer coprime to f where α, β are

integers to be specialized later on. Consider the zeta function

Ψ

(
λAΛτ

f
√
D
,w1, s

)
,

where Qτ (x, y) = Ax2 + Bxy + Cy2 and τ = −B−
√
D

2A
. Using equation (7.1) we find

that

Ψ

(
λAΛτ

f
√
D
,w1, s

)
= w1(λ

√
D)

∑
⟨γτ ⟩\{(m,n)∈Z2\(0,0)}

e2πi(m( 2Aβ
f

)+n(−Bβ−α
f

))sign(Qτ (m,n))

|Qτ (m,n)|s

(16.5)

Now we want to specialize α and β. Let u be an integer coprime to f and v be any

integer. Choose integers α and β such that

β ≡ (2A)−1u(mod f), α ≡ −B(2A)−1u− v(mod f), α+ β
√
D ≫ 0.(16.6)

Note that (β, f) = 1. In general we cannot guarantee that (α+β
√
D, f) = 1. However

if we assume that all the primes dividing f are inert in K then we get automatically

that (α + β
√
D, f) = 1.
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Proposition 16.1 Let AΛτ be the integral ideal associated to Qτ (x, y) = Ax2 +

Bxy + Cy2 and γτ =

(
a b

c d

)
be as in section 8.2. Let u be integer coprime to

f and v be any integer. Let λα,β := λ be chosen to satisfy (16.6). Assume that the

primes dividing f are inert in K. Then if s ≥ 1 is an odd integer we have

−
sign(a+ d)22sπΓ( s+1

2
)2

Γ(2−s
2
)2Γ(s)2

(16.7)

·
2s−1∑
k=0

(−1)kc2s−k−1

k!(2s− k)
R(k)
s (

a

c
)
∑

l(mod c)

B̃k

(
a(u

f
+ l)

c
+
v

f

)
B̃2s−k

( u
f
+ l

c

)

= Ψ̂

(
λAΛτ

f
√
D
,w1, 1− s

)
.

Proof When s ≥ 1 is odd we deduce form (16.5) that

φ((
u

f
,
v

f
), w1, s) = −Ψ

(
λ
AΛτ

f
√
D
,w1, s

)
.

Now using the functional equation of Ψ (see equation (8.8)) combined with the the-

orem 16.1 we deduce (16.7). □

We would like to relate the special values

Ψ̂

(
λa

fpn
√
D
,w1, 0

)
where a, λ are coprime to fp with the evaluated measures µ̃j{i∞→ an

cn
}(Uun,vn,n) for

certain

j, un, vn, an, cn

depending on a, λ and n. We will make a simplifying assumption. We will assume

that ϵ ̸= 1(mod p) where ⟨ϵ⟩ = OK(f∞)× and ϵ > 1.

Proposition 16.2 Let u and v be fixed integers not both divisible by p. Let a =

AΛτ where Qτ (x, y) = Ax2 + Bxy + Cy2 and τ is reduced. Assume that (a, pf) = 1.

Let λ = α + β
√
D ≫ 0 be an algebraic integer coprime to fp. Let ⟨ϵ⟩ = OK(f∞)×

where ϵ > 1. Assume furthermore that ϵ ̸= 1(mod p). Let γτ =

(
a b

c d

)
be the

169



matrix corresponding to the action of ϵ on the Λτ with respect to the ordered basis

{τ, 1} then

Ψ̂

(
λAΛτ

fpn
√
D
,w1, 0

)
= 4

cn∑
h=1

B̃1

(
an
cn

(
2Aβ

fpn
+ l

)
− Bβ + α

fpn

)
B̃1

(
(2Aβ
fpn

+ l

cn

)
(16.8)

where

(
an bn

cn dn

)
=

(
a b

c d

)pn

. If we choose α and β in such a way that

β ≡ (2A)−1u(mod fpn), αy ≡
(
−B(2A)−1u− v(f + y)

)
(mod fpn), α+ β

√
D ≫ 0

then we have

−3
f∑
y=1

∑
d0|N0,r∈(Z/fZ)×

n(d0, r)Ψ̂

(
λyrAΛd0τ

fpn
√
D

,w1, 0

)
= µ̃u{i∞→

an
cn
}(U v

f
,u
f
,n).(16.9)

where λy = αy + β
√
D.

Proof The proof of (16.8) follows directly from Proposition 16.1. It remains to prove

(16.9). We have

− 3

f∑
y=1

∑
d0|N0,r∈(Z/fZ)×

n(d0, r)Ψ̂

(
λyrAΛd0τ

fpn
√
D

,w1, 0

)

= −12
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

f∑
y=1

cn/d0∑
h=1

B̃1

(
an

cn/d0

(
ru

fpn
+ h

)
− rv(f + y)

fpn

)
B̃1

(
( ru
fpn

+ l

cn/d0

)

= −12
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

cn/d0∑
h=1

B̃1

(
fan
cn/d0

(
ru

fpn
+ h

)
− rv

pn

)
B̃1

(
( ru
fpn

+ h

cn/d0

)

= −12
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

cn/fd0∑
h=1

B̃1

(
an

cn/fd0

(
ru

fpn
+ h

)
− rv

pn

)
B̃1

(
( ru
fpn

+ h

cn/fd0

)

= µ̃u

{
i∞→ an

cn

}
(U v

f
,u
f
,n)

where the third equality follows from the distribution relation of B̃1(x) and the last

equality is a consequence of Proposition 14.1. □
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Remark 16.2 Note the similarity with the formula (14.1) which corresponds to

µ̃1{i∞ → a
c
}(Uu,v,n) for a = a0 and c = c0. The difference with the formula (14.1)

is the variation of the cusp an
cn

as n vary and the dependence of µ̃ with the first

coordinate of the centre of the ball Uu,v,n.

We have the following corollary

Corollary 16.2 With the same notation as Proposition 16.2 we have

−3
r∑

y=1

ζfpn(λy ⋆ δ, (A, τ), 0) = µ̃u

{
i∞→ an

cn

}
(U v

f
,u
f
,n),

where the index pnf emphasizes the fact that the conductor is fpn and not f . In

particular, when n = 0, the zeta function ζf (λy ⋆ δ, (A, τ), 0) is exactly the same as

the one appearing in Definition 9.2.

17 Some evidence for the algebraicity of the u(r, τ )

invariant

In this section we would like to prove a norm formula for our p-adic elements u(r, τ).

But before this we would like to remind the reader some functorial properties of the

reciprocity map and apply it to the number field K(f∞), i.e. the narrow ray class

field of K of conductor f .

17.1 The reciprocity map of Class field theory applied to

K(f∞)

Consider the following Hasse diagram

L′

L

K ′

K
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with L/K and L′/K ′ finite abelian extensions of number fields K and K ′ where

K ⊆ K ′ and L ⊆ L′. Let S and S ′ be the set of real places of K and K ′ respectively.

Let cond(L/K) = f∞T be the conductor of the extension of L/K where f is an integral

ideal of OK and ∞T is a product over all real places of T where T ⊆ S. Similarly

we let cond(L′/K ′) = f′∞T ′ where T ′ ⊆ S ′. Class field theory gives us the following

commutative diagram:

GL′/K′
res

- GL/K

IK′(f′)/JL′/K′

recL′/K′

? NK′/K - IK(f)/JL/K

recL/K

?

where IK(f) is the group of fractional ideals of K which are coprime to f and

JL/K := PK,1(f∞T )NL/K(IL(fOL))

where PK,1(f∞T ) is the group of principal fractional ideals of K that can be generated

by an element λ ∈ K congruent to 1 modulo f such that λσ > 0 for all σ ∈ T . The

vertical arrows of the diagram are isomorphisms given by:

rec−1
L/K : IK(f)→ GL/K

p 7→ Frob(℘/p)

where ℘ is any prime ideal of L above p (p is assumed to be unramified in L/K) and

Frob(℘/p) is the relative Frobenius of ℘ over p. It thus follows from the commutativity

of diagram that the set of prime ideals of K that split completely in L are precisely

the prime ideals inside JL/K . In the special case where K = K ′ we again deduce from

the commutativity of the diagram that JL/K/JL′/K ≃ GL′/L.

Let K = Q(
√
D) be a real quadratic number field with D = disc(K) > 0 and

Gal(K/Q) = {1, σ}. Let f be a positive integer coprime to D. Let p be a prime

number inert in K which is coprime to fD. We denote the two infinite places of K
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by ∞1 and ∞2 and also ∞ =∞1∞2. Consider the Hasse diagram

K(f∞)

K(ζf )

Q(ζf )

K

Q

where K(f∞) ⊆ Q stands for the narrow ray class field of conductor f . By class

field theory K(f∞) corresponds to the maximal abelian extension of K for which

a fractional ideal a of K splits completely in K(f∞) if and only if a = (π) for

some totally positive element π ≡ 1(mod f). Let τ ∈ Gal(Q/Q) then the extension

K(f∞)τ/K is again abelian over K. The ideals of OK which split completely in

K(f∞)τ are the principal ideals (πτ ) ⊆ OK where π ≡ 1(mod f) and π is totally

positive. Since πτ is totally positive and congruent to 1 modulo f we get, by the

maximality of K(f∞) with respect to the latter property on ideals of OK which

split completely in it, that K(f∞)τ ⊆ K(f∞). Since τ was arbitrary it follows that

K(f∞) is normal over Q.

We denote by OK [1p ](f)
× (resp. OK [1p ](f∞)×) the group of units (resp. totally

positive units) of OK [1p ] which are congruent to 1 modulo f . In order to have the

existence of strong p-units in K(f∞) we make the following assumption

Assumption 17.1 We assume that the index

n = [OK [1p ](f)
× : OK [1p ](f∞)×]

is equal to 1 or 2.

Under this assumption one can show that K(f∞) is a totally complex number field.

In the case where the index n = 4, one can prove that K(f∞)Frob(p/℘) = K(f)Frob(p/℘)

is a totally real field (℘ = pOK and p is a prime ideal of K(f∞) above ℘). When the
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class field K(f∞)Frob(p/℘) is totally real, it is easy to see there are no strong p-units

in K(f∞)Frob(p/℘) other than {±1}.

The maximal CM subfield of K(f∞)

Let K = Q(
√
D). For any integer f > 0, let us denote by OK(f)× (resp.

OK(f∞)×) to be the group of units (resp. totally positive units) of OK which are

congruent to 1 modulo f . We have the following commutative diagram

1 - PK,1(f)/PK,1(f∞) - IK(f)/PK,1(f∞) - IK(f)/PK(f) - 1

1 - Gal(K(f∞)/K(f))
?

- Gal(K(f∞)/K)
? res

- Gal(K(f)/K)
?

- 1

with exact rows and where the vertical arrows are isomorphisms given by class field

theory. Using class field theory one can show that K(f∞) and K(f) are, in fact,

Galois extensions over Q (see Section 17.1). Moreover, because the infinite place of

Q is unramified in K and that K(f) has finite conductor fOK , it follows that K(f)

is a totally real Galois extension of Q. From the diagram above, the normality of

K(f∞) over Q and the fact that K(f) is a totally real field, one deduces that K(f∞)

is a totally complex number field if and only if the index n = [PK,1(f) : PK,1(f∞)] =
4

[OK(f)×:OK(f∞)×]
is equal to 2 or 4. Note that if n = 2, then K(f∞) is a totally

complex quadratic extension of the totally real field K(f) and therefore is CM.

We would now like to determine the maximal CM subfield LDCM of K(f∞) in the

case where n = 4. It turns out that in this case [K(f∞) : LDCM ] = 2. Fix once

and for all a complex embedding i : K(f∞) → C and denote again, for simplicity,

i(K(f∞)) ⊆ C by K(f∞) so that K(f∞) can be viewed as a subset of C. Note

that since K(f∞) is a normal extension of Q, the subset K(f∞) of C is, in fact,

independent of the chosen embedding i. From this, it follows that every element

g ∈ GK(f∞)/Q induces a complex embedding g

C C
∪ ∪

K(f∞)
g→ K(f∞).

Definition 17.1 We say that an element c ∈ Gal(K(f∞)/K) is a complex con-

jugation if c ̸= 1 and if there exists an element g ∈ GK(f∞)/Q such that c = g−1τ∞g
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(the composition is understood to be from right to left) where τ∞ is the complex con-

jugation of C. In particular, a complex conjugation is an element of order 2 which

acts trivially on K(f).

Remark 17.1 Note that K(f∞) will be a CM field precisely when K(f∞) is

a totally complex number field such that all its complex conjugations are equal to

τ∞|K(f∞), i.e., for all g ∈ Gal(K(f∞)/K) one has gτ∞ = τ∞g.

Let

recK(f∞)/K : GK(f∞)/K → IK(f)/PK,1(f∞)

be the reciprocity map given by class field theory. We would like now to characterize,

in terms of generalized ideal class groups, the largest CM subfield LDCM which is

contained in K(f∞).

Proposition 17.1 Suppose that [OK(f)× : OK(f∞)×] = 1. Then the largest CM

field LDCM which is contained in K(f∞) corresponds under recK(f∞)/K to

IK(f)/⟨PK,1(f∞), (f − 1)OK⟩.(17.1)

In other words, the prime ideals in K which split completely in LDCM are precisely the

prime ideals in the group ⟨PK,1(f∞), (f − 1)OK⟩.

Note that since [OK(f)× : OK(f∞)×] = 1 we have that (1− f)OK /∈ PK,1(f∞) and

therefore [K(f∞) : LDCM ] = 2.

Proof It is sufficient to show that (17.1) is the largest quotient of IK(f)/PK,1(f∞)

for which all complex conjugations are equal. From the commutative diagram and the

fact that K(f) is totally real we deduce that every complex conjugation of K(f∞)

has to be in the kernel of res : GK(f∞)/K → GK(f)/K and therefore can be represented

by one of the ideal classes: [c], [cσ] or [ccσ], where c = (1+f
√
D)OK and σ corresponds

to the nontrivial automorphism of K. Note that since [OK(f)× : OK(f∞)×] = 1 we

have that [c] and [cσ] are distinct nontrivial elements of order 2 of IK(f)/PK,1(f∞).

We have the following split short exact sequence:

1→ GK(f∞)/K → GK(f∞)/Q → GK/Q → 1.(17.2)
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Let ι ∈ GK(f∞)/Q be a lift of σ, i.e., ι|K = σ|K and ι2 = 1. From class field theory,

the following diagram

GK(f∞)/K

Conj(ι)
- GK(f∞)/K

IK(f)/PK,1(f∞)

recK(f∞)/K

? σ
- IK(f)/PK,1(f∞)

recK(f∞)/K

?

commutes, where the top horizontal arrow is given by Conj(ι)(g) = ι−1gι and the

lower horizontal arrow is given by [a] 7→ [aσ]. For every r ∈ Z>0 prime to f set

gr := rec−1
K(f∞)/K([rOK ]) ∈ GK(f∞)/K .

Let c = rec−1
K(f∞)/K([c]) ∈ GK(f∞)/K . From class field theory one has that τ∞|K(f∞) =

c. Let us compute the complex conjugation on K(f∞) induced by ι, i.e. ι−1cι. From

the commutativity of the diagram above, we deduce that

Conj(ι)(c) = recK(f∞)/K(c
σ) = cg(f−1),(17.3)

where the second equality follows from the fact that ccσ is equivalent to (f − 1)OK
modulo PK,1(f∞) and that c−1 = c. Note that g(f−1) ̸= 1 since [OK(f) : OK(f∞)] =

1 and therefore K(f∞) cannot be a CM field. When one replaces c by cσ, a similar

set of equalities as (17.3) also holds. Finally, note that (ccσ)(ccσ)σ = (1 − f 2D)2OK
is an element of PK,1(f∞). It thus follows that IK(f)/⟨PK,1(f∞), (f − 1)OK⟩ is the
largest quotient of IK(f)/PK,1(f∞) for which all complex conjugations are equal. □

17.2 A ”norm” formula for u(r, τ)

In this section we want to compute a certain norm of u(r, τ) in order to relate it to a

product of normalized Gauss sums. In order to simplify the notation we set

Af∞ := IK(f)/PK,1(f∞) and Gf∞ := Gal(K(f∞)/K).

If (r, τ) ∈ (Z/fZ)× × HOK
p (N0, f) then the basis {τ, 1} is oriented i.e. τ − τσ > 0.

Let ArΛτ be the integral ideal corresponding to (r, τ) then (ArΛτ )
σ = ArΛτσ and
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the basis {τσ, 1} is no more oriented. Nevertheless we can still define u(r, τσ) in the

obvious way. If we denote again by σ the non trivial automorphism of GKp/Qp then

one readily sees that u(r, τ)σ = u(r, τσ).

To any divisor δ =
∑

a∈Af∞
naa ∈ Z[Af∞] and a set of positive integers {da}a∈Af∞

coprime to p we associate the zeta function

ζ(δ, s) :=
∑

a∈Af∞

nad
s
aΨ̂

(
aa

f
√
D
,w1, s

)
(17.4)

=
∑

a∈Af∞

nad
s
af

2sζ(a−1
a , f, w1, s)

where aa ∈ a is an arbitrary chosen integral ideal and w1 = sign◦NK/Q. To any divisor

δ̃ =
∑

d0,r
n(d0, r)[d0, r] ∈ D(N0, f) and element (1, τ) ∈ (Z/fZ)× × HOK

p (N0, f) we

can attach a divisor

δ =
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)[Ω(r/d0, d0τ) ∩ OK ] ∈ Z[Af∞]

where the map Ω is the map appearing in Definition 5.7. Having such a divisor δ

allows us to associate a zeta function (similar to the zeta function appearing in 1) of

Definition 9.2)

ζ(δ, s) =
∑
d0,r

n(d0, r)d
s
0Ψ̂

(
Ω(r/d0, d0τ) ∩ OK√

Df
,w1, s

)
=
∑
d0,r

n(d0, r)d
s
0Ψ̂

(
Ar/d0Λd0τ√

Df
,w1, s

)
=
∑
d0,r

n(d0, r)d
s
0f

2sζ((Ar/d0Λd0τ )
−1, f, w1, s).

where Ω(r/d0, d0τ)∩OK = Ar/d0Λd0τ is an integral ideal of OK and Ar/d0 is a positive

integer such that Ar/d0 ≡ r/d0(mod f). We have suppressed the τ in the notation of

ζ(δ, s) since it already appears in the writing of δ. In a similar way, one can define a

zeta function ζ∗(δ, s) (similar to the zeta function appearing in 2) of Definition 9.2)

ζ∗(δ, s) :=
∑
d0,r

n(d0, r)

(
N0

d0

)s
Ψ̂∗
(
Ω(r/d0, d0τ) ∩ OK√

Df
,w1, s

)
.(17.5)

For the definitions of Ψ̂ and Ψ̂∗ see Definition 8.2.
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Remark 17.2 In general the zeta functions ζ∗(δ, s) and ζ(δ, s) are different. Later

on, it will be crucial to be able to compare one to each other. This is the content of

Proposition 17.4.

In section 9 we have constructed a p-adic zeta function ζ∗p (δ, s) which interpolates

special values of ζ∗(δ, s) at negative integers congruent to 0 modulo p − 1. We have

proved also a p-adic Kronecker limit formula relating special values of ζ∗p (a ⋆ δ, s) to

our p-adic invariant u(a) ∈ K×
p . More precisely we have proved that

(1) 3ζ∗(a ⋆ δ, 0) = vp(u(a))

(2) 3(ζ∗p )
′(a ⋆ δ, 0) = − logpNKp/Qp(u(a))

for any a ∈ Af∞. Having in mind the theory of CM for imaginary quadratic number

fields we have formulated the following conjecture

Conjecture 17.1 Let a ∈ Af∞ be an ideal class of the narrow ray class group of

conductor f . Then the element u(a) is a strong p-unit in L := K(f∞)⟨Fr℘⟩ ⊆ Kp,

i.e. for all places ν ∤ p of K(f∞) (including the infinite one) we have |u(a)|ν = 1.

Furthermore if we let

rec−1 : IK(f)/JL/K → GL/K

be the inverse of the reciprocity map given by class field theory then

u(a)rec
−1(a′) = u(aa′).

Remark 17.3 The field L = K(f∞)⟨Fr℘⟩ is the largest subfield of K(f∞) for

which ℘ = pOK splits completely.

By construction u(c) lives naturally in K×
p so we can write it as

u(c) = p3ζ
∗(a⋆δ,0)ϵ(c)

where ϵ(c) ∈ O×
Kp

. If conjecture 17.1 is true then the polynomial

f(x) :=
∏

b∈IK(f)/JL/K

(x− u(b))(17.6)

should have coefficients in OK [1p ].
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Remark 17.4 From conjecture 5.1, since u(a) is a strong p-unit, we have that

u(a)τ∞ = u(a)−1 where τ∞ corresponds to the complex conjugation in GL/K . It thus

follow that if α is a root of f(x) then α−1 is also a root of f τ∞(x) = f(x). From this we

deduce that f(x) = xdeg(f)f( 1
x
), i.e. f(x) is a palindrome polynomial with coefficients

in OK [1p ]. Similarly g(x) = f(x)fσ(x) ∈ Z[1
p
][x] is a palindrome polynomial with

coefficients in Z[1
p
].

Let us fix a prime p in L = K(f∞)⟨Fr℘⟩ above ℘. Conjecture 17.1 tells us that it is

possible to take an embedding L ↪→ Kp such that

u(c)OL =
∏

b∈IK(f)/JL/K

(
prec

−1(c−1b)
)3ζ∗(b⋆δ,0)

where we think of u(c) as a root of f(x). We should point out that up to a root of

unity in L the strong p-unit u(c) is completely determined by the set of integers

{3ζ∗(b ⋆ δ, 0)}b∈IK(f)/JL/K
,

since two such units would differ by an element of norm 1 for all places of L, therefore

a root of unity in L.

Constructing a subgroup of p-units of maximal rank in K(f∞) is a very difficult

problem since we don’t even know how to construct explicitly the field K(f∞). How-

ever, much is known about the strong p-units of the subfield K(ζf ) ⊆ K(f∞) which

is nothing else than a subfield of the cyclotomic field Q(ζf , ζD). For the cyclotomic

field Q(ζN), with N coprime to p, the construction of a subgroup of the group of

strong p-units of maximal rank is provided by normalized Gauss sums. Let r be the

smallest integer such that pr ≡ 1(mod N) and set q = pr. Let

ωq : F×
q → µq−1

be the Teichmüller character. Let also ζp be a primitive p-th root of unity. We define

as usual an additive character of Fq as

ψq : Fq → µp

a 7→ ζ
TrFq/Fp (a)
p .
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A Gauss sum with respect to the character ωjq is defined as

τ(ωjq) :=
∑
a∈Fq

ωjq(a)ψq(a) ∈ Q(ζp, ζq−1).

Because the Frobenius automorphism of Fq, x 7→ xp, is bijective and that ψq(x
p) =

ψq(x) we deduce that

τ(ωpjq ) = τ(ωjq).(17.7)

A normalized Gauss sum is an expression of the form
τ(ωj

q)

τ(ω
q−1
2

q )

. We set

g
( c
N

)
:=

τ(ω
c q−1

N
q )

τ(ω
q−1
2

q )
∈ Q(ζN , ζp)

where c is any integer. From (17.7) we deduce that g(pc
N
) = g( c

N
). Normalized Gauss

sums are strong p-units and one can compute explicitly their factorization in the

number field Q(ζp, ζq−1). An example of a subgroup of strong p-units of maximal

rank in Q(ζN) is provided by

U := ⟨

{
g

(
j

N

)2N
}
j∈Z/NZ/{±1}

⟩ ⊆ Q(ζN)
×.(17.8)

Note the presence of the exponent 2N . Since g
(
pc
N

)2N
= g

(
c
N

)2N ∈ Q(ζN) we deduce

that

g
( c
N

)2N
∈ Q(ζN)

Frp ⊆ Qur
p .

In particular in the case where −1 ∈ ⟨p⟩ ≤ (Z/NZ)× we have that Q(ζN)
Frp is totally

real and therefore g
(
c
N

)2N
= ±1. This can be proven in purely elemantary way. Let

us prove it without appealing to the notion of strong p-units since the computation

is instructive. Let s be such that ps ≡ −1(mod N). Then since g
(
c
N

)
= g

(
psc
N

)
we

get that

g
( c
N

)
= g

(
−c
N

)
.

On the other hand a direct computation shows that

g
( c
N

)
= g

(
−c
N

)
.
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Combining both we conclude that g
(
c
N

)
is a real number with absolute value 1 so it

is equal to {±1}.

From now on let us assume that −1 /∈ ⟨p⟩ ≤ (Z/NZ)×. In this case one can show

that the Z-rank of U is ϕ(N)
2r

. This is proved essentially by showing that the divisors

of Gauss sums give rise to the universal odd distribution of degree 0, see Lemma

2.3 of chapter 17 of [Lan94a]. Using Proposition 1.1 and the fact that −1 ̸∈ ⟨p⟩ ≤
(Z/NZ)× we deduce that the Z-rank of the group of strong p-units of Q(ζN) is equal

to ϕ(N)
2r

. From this we conclude that U has maximal rank. It follows that one can find
ϕ(N)
2r

elements inside the set (Z/NZ)/{±1} that give rise to Z-linearly independent

normalized Gauss sums (inside the multiplicative group Q(ζN)
×). Note that in order

to get a subgroup of maximal rank one really needs to go over all j ∈ Z/NZ/{±1} and
not just over j ∈ (Z/NZ)×/{±1}. In fact one can give an example of an integer N

(divisible by three distinct primes) such that the group generated by the normalized

Gauss sums arising from the indices j ∈ (Z/NZ)×/{±1} has not a maximal rank.

For a basis of universal odd distribution of degree 0 see [Kuc92].

Even if we don’t know the algebraicity of u(c) the Shimura reciprocity law for-

mulated in conjecture 17.1 allows us to define a pseudo norm of u(c). Note that the

p-adic element u(c) ∈ K×
p depends only on the ideal class c ∈ Af∞ as the notation

indicates.

Definition 17.2 Let M and M ′ be number fields such that

K ⊆M ⊆M ′ ⊆ K(f∞).

The reciprocity isomorphism gives us canonical isomorphisms

rec−1
M ′/K : IK(f)/JM ′/K → Gal(M ′/K)

and

rec−1
M/K : IK(f)/JM/K → Gal(M/K).

Therefore recM ′/K induces a canonical isomorphism between JM/K/JM ′/K and Gal(M ′/M).

We define

NM ′/M(u(c)) :=
∏

b∈JM/K/JM′/K

u(bc).
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If we have K ⊆ M ⊆ M ′ ⊆ M ′′ ⊆ K(f∞) on can verify that this pseudo norm

satisfies the usual transitivity property namely

NM ′/M ◦NM ′′/M ′(u(c)) = NM ′′/M(u(c)).

From this we deduce that if u(c) is expected to lie in M ′ i.e. if it is constant on all

c ∈ JM ′/K/JM ′′/K then

NM ′′/M(u(c)) =
(
NM ′/Mu(c)

)[M ′′:M ′]
.

Suppose that M̃ ⊆ K(f∞) is an abelian extension of Q contained in M such that

M̃ ·K = M and M̃ ∩K = Q. Let Gal(K/Q) = {1, σ}. Then there exists a unique

embedding σ̃ : M → C such that σ̃|K = σ|K and σ|M̃ = IdM . Since u(c) ∈ K×
p we

have a natural action of Gal(K/Q) ≃ Gal(Kp/Qp) = {1, σ} on u(c). This allows us

to define

NM ′/M̃(u(c)) := NKp/Qp ◦NM ′/M(u(c)).

For the rest of the paper we set

L := K(f∞)Fr℘ ⊆ Qur
p ,

M̃ := Q(ζf )
Frp ⊆ L,

and

M := K · M̃.

Note that L ∩ K(ζf ) = K · Q(ζf )
⟨Fr2p⟩ ⊇ M since Fr℘(ζf ) = Fr2p(ζf ) = ζp

2

f where

℘ = pOK . Note also that

JL/K = ⟨PK,1(f∞), (p)⟩,

and

JM/K = NK(f∞)/M(K(f∞)×) · PK,1(f∞).

We want to prove the following theorem which is the main result of this section:
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Theorem 17.1 Let p, f,N0 be chosen as usual and let δ ∈ D(N0, f)
⟨p⟩ be a good

divisor. Assume that all the primes q|f are inert in K and that −1 /∈ ⟨p⟩ ≤ (Z/fZ)×.
Then one has

NL/M̃(u(r, τ)) = S(mod µF ),(17.9)

where S is a product of normalized Gauss sums in F := M̃ ·Q(ζp) ⊆ Qur
p (ζp).

Corollary 17.1 The quantity NL/M̃(u(r, τ)) lies in K×
p ∩ F = M̃ = Q(ζf )

Frp ⊆
Qur
p . Note that because of our assumption we have that M̃ is a CM field.

There are 4 steps in proving the ”norm formula” of Theorem 17.2.

(1) Calculate (ζ∗p )
′(c ⋆ δ, 0) (where ζ∗p (δ, s) is the p-adic zeta function appearing in

Definition 10.1) and relate it to the p-adic invariant u(c). This is the content

of the theorem 10.1.

(2) For the second step one considers a slightly different p-adic zeta function denoted

by ζp,0(δ, s) (see the proof of Proposition 17.2 for the definition). This step

consists in expressing

TrK(f∞)/Mζp,0(c ⋆ δ, s)

as a linear combination of p-adic L-functions that behave well under the base

change from GM/K to GM̃/Q. More precisely if we let χ̃ ∈ ĜM̃/Q then the base

change translates as a factorization of L-functions of the form

L(s, χ̃ ◦NK/Q) = L(s, χ̃)L(s, χ̃

(
D

·

)
).(17.10)

where χ̃ ◦ NK/Q is a character of GM/K . We can interpolate special values of

(17.10) p-adically and we obtain

Lp(s, χ̃ωp ◦NK/Q) = Lp(s, χ̃ωp)Lp(s, χ̃ωp

(
D

·

)
).

The appearance of the Teichmuller character raised to the power 1 is an artifact

of p-adic interpolation. Note that only odd characters χ̃’s of Gal(M̃/Q) will

contribute to the p-adic interpolation since we are only interested by the values

of L(χ̃, 1−m) for odd integers m ≥ 1.

183



(3) Compute L′
p(0, χ̃ωp) for odd characters of GM̃/Q (note that Lp(0, χ̃ωp) = 0 since

χ̃(p) = 1) and relate it to normalized Gauss sums. This is accomplished by

combining a limit formula for Lp(s, χ̃ωp) that was proved by Ferrero-Greenberg

([FG78]) with the Gross-Koblitz formula ([GK79]) relating the p-adic gamma

function Γp(s) to Gauss sums.

(4) Relate ζ∗p (δ, s) to ζp,0(δ, s) and ζ
∗(δ, 0) to ζ(δ, 0).

The steps 2 and 3 are proved in the next proposition:

Proposition 17.2 Let δ =
∑

a∈Af∞
na[a] ∈ Z[Af∞] and {da}a∈Af∞ be a set of

integers coprime to p. Set

ζ(δ, s) :=
∑

a∈Af∞

nad
s
aΨ̂

(
aa

f
√
D
,w1, s

)
.

where aa ∈ a is chosen to be an integral ideal. Then for every fixed congruence class

i modulo p − 1 there exists a p-adic zeta function denoted by ζp,i(δ, s) (s ∈ Zp) such

that for all n ≤ 0, n ≡ i(mod p− 1)

(1) (TrL/Mζp,i)(δ, n) = (1 − p−2n)TrL/Mζ(δ, n) where TrL/M is taken under the

natural action of Gal(L/M) on δ under the reciprocity map. Note that the

action is well defined since p ⋆ δ = δ.

(2) In the case where i = 0 let

δ̃ =
∑
d0,r

n(d0, r)[d0, r] ∈ D(N0, f)
⟨p⟩

be a good divisor for the data p, f,N0 and let

δ =
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)[Ar/d0Λd0τ ] ∈ Z[Af∞](17.11)

where (1, τ) ∈ (Z/fZ)××HOK
p (N0, f) with τ reduced. Suppose that −1 /∈ ⟨p⟩ ≤

(Z/fZ)× then

3(TrL/Mζp,0)
′(δ, 0) = −24 logp S,(17.12)
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where S is a product of normalized Gauss sums in M̃ ·Q(ζp) ⊆ Qp. Moreover we have

6fTrL/Mζ(δ, 0) = 12vp(S
2f ).(17.13)

Note that S2f ∈ M̃ ⊆ Qur
p so it makes sense to take its valuation at p.

Proof of Proposition 17.2 Let δ =
∑

a na[a] ∈ Z[Af∞]. Recall that

ζ(δ, s) =
∑

a∈Af∞

nad
s
aΨ̂

(
aa

f
√
D
,w1, s

)
.

Since Ψ̂ is essentially a partial zeta function attached to K (see Lemma 8.2) then

applying the main theorem of [DR80] to every term of ζ(δ, s) we get that for a fixed

i (mod p− 1)s and a fixed b ∈ Af∞ that the values

(1− p−2n)ζ(b ⋆ δ, n)(17.14)

vary p-adically continuously when n ranges over integers n ≤ 0 and n ≡ i(mod p).

By density this gives us a p-adic zeta function

ζp,i(δ, s) : Zp → Qp

which interpolate the values of (17.14) on this fixed congruence class modulo p − 1.

Let

(1) TrL/Mζ(δ, s) =
∑

b∈JM/K/JL/K
ζ(b ⋆ δ, s)

(2) TrL/Mζp,i(δ, s) =
∑

b∈JM/K/JL/K
ζp,i(b ⋆ δ, s)

By the definition of TrL/Mζp,i(δ, s) the values

(1− p−2n)TrL/Mζ(δ, n)

coincide with TrL/Mζp,i(δ, n) for integers n ≤ 0 and n ≡ i(mod p − 1). Since the

values in (17.14) vary p-adically continuously when n ≤ 0 and n ≡ i(mod p− 1) this

implies that TrL/Mζ(δ, s) varies p-adically continuously on this subset. This proves

the first part of the theorem.
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It remains to prove the trace formula (equation (17.12)) and the valuation formula

(equation (17.13)) for the p-adic zeta function ζp,0(δ, s). Since ζp,0(δ, 0) = 0 we have
d
ds
(dsaζp,0(δ, s))|s=0 = ζ ′p,0(δ, 0). Also we have (dsaζ(δ, s))|s=0 = ζ(δ, 0). Therefore

without lost of generality we can assume that all the da’s are equal to 1. We have

that

Ψ̂

(
ArΛτ

f
√
D
,w1, n

)
= f 2nζ((ArΛτ )

−1, f, w1, n)

= 4f 2nζ((ArΛτ )
−1, f∞, n)

for integers n ≤ 0 and n ≡ 0(mod 2). The second equality comes from equation (7.13)

proved in section 7. From this we deduce that

TrL/Mζ(δ, n) = 4f 2n
∑
d0,r

n(d0, r)
∑

a∈JM/K/JL/M

ζ((Ar/d0Λd0τ )
−1 · a, f∞, n)

for integers n ≤ 0 and n ≡ 0(mod 2) and a ∈ a. We let

σ : IK(f)/JM/K → GM/K

[a]→ σa

be the isomorphism induced by class field theory where σa is the Frobenius associated

to the ideal class of a. We have

TrL/M(ζ(δ, n)) = 4f 2n
∑
d0,r

n(d0, r)
∑

a∈JM/K/JL/K

ζ((Ar/d0Λd0τ )
−1 · a,K(f∞)/K, n)

= 4f 2n
∑
d0,r

n(d0, r)ζ(σ
−1
I(d0,r)

, K ·Q(ζf )
⟨Frp⟩/K, n),(17.15)

where

I(d0, r) := Ar/d0Λd0τ = Ω(r/d0, d0τ) ∩ OK .

We have a natural isomorphism between Gal(K(ζf )/K) and Gal(Q(ζf )/Q) induced

by the restriction. At the level of the ideals class groups the restriction map corre-

sponds to the norm NK/Q. Under this natural identification we have{
χ ∈ ĜM/K

}
=
{
χ ∈ ̂IK(f)/PK,1(f∞) : χ|JM/K

= 1
}

(17.16)

=
{
χ̃ ◦NK/Q : χ̃ ∈ ̂IQ(f)/PQ,1(f∞), χ̃(p) = 1

}
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If we restrict to odd characters of Gal(M/K) then we have{
χ ∈ ̂IK(f)/PK,1(f∞) : χ|JM/K

= 1, χ∞ = w1

}
(17.17)

=
{
χ̃ ◦NK/Q : χ̃ ∈ ̂IQ(f)/PQ,1(f∞), χ̃f (−1) = −1, χ̃(p) = 1

}
.

We can write any character χ of ̂IK(f)/PK,1(f∞) as χfχ∞ where χf is the finite

part of χ and χ∞ is its infinite part (see the end of subsection 7.1). We say that χ

is even if χ∞ = w0 and odd if χ∞ = w1 = sign ◦ NK/Q. A similar thing holds for

characters χ̃ ∈ ̂IQ(f)/PQ,1(f∞). One verifies easily that χ̃∞ = 1 if χ̃f is is an even

character of (Z/fZ)× and χ̃∞ = sign if χ̃f is odd. It is easy to see that characters

χ ∈ IK(f)/PK,1(f∞) s.t. χ|JM/K
= 1 and χ∞ = w1 are induced by the norm of an

odd character of (Z/fZ)× ≃ IQ(f)/PQ,1(f∞).

Let σ ∈ Gal(M/K) then the partial zeta function ζ(M/K, σ, s) = ζ(σ, s) can be

written as

ζ(σ, s) =
1

|GM/K |
∑

χ∈ĜM/K

χ(σ)L(s, χ)(17.18)

Substituting this in (17.15) we obtain

TrL/K(ζ(δ, n)) =
4f 2n

|GM/K |
∑
d0,r

n(d0, r)
∑

χ∈ ̂IK(f)/PK,1(f∞)
χ|JM/K

=1

χ(σ−1
I(d0,r)

)L(n, χ)

=
4f 2n

|GM/K |
∑
d0,r

n(d0, r)
∑

χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃ ◦NK/Q(I(d0, r)
−1)L(n, χ̃ ◦NK/Q)

=
4f 2n

|GM/K |
∑
d0,r

n(d0, r)
∑

χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃ ◦NK/Q(I(d0, r)
−1)L(n, χ̃)L(n, χ̃

(
D

∗

)
)

where the second equality uses the identification given by (17.16). We want to inter-

polate p-adically those special values. For every integer m ≥ 1 and m ≡ 1(mod 2) we

can rewrite the right hand side of the last equality as

=
4f 2(1−m)

|GM/K |
∑

χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃ ◦NK/Q(I(d0, r))L(1−m, χ̃)L(1−m, χ̃
(
D

∗

)
)(17.19)
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since for χ̃ an even character L(1 − m, χ̃) = 0. We have the following well known

proposition

Proposition 17.3 Let χ be a Dirichlet character then there exists a p-adic L-

function Lp(s, χωp) such that

Lp(1− n, χωp) = −
(
1−

(χω1−n
p )(p)

p1−n

)
Bn,χω1−n

p

n
.

for all integers n ≥ 1 and n ≡ 1(mod p− 1).

Proof see Theorem 5.11 in [Was87]. □

From the previous proposition we deduce in the case where χ ∈ ̂(Z/fZ)× and

χ(p) = 1 that for n ≡ 1(mod p− 1)

Lp(1− n, χωp) = −
(
1− 1

p1−n

)
Bn,χ

n
, Lp(1− n, χ

(
D

∗

)
ωp) = −

(
1 +

1

p1−n

) Bn,χ(D
∗ )

n
.

The second equality follows from the fact that
(
D
p

)
= −1. From this we deduce that

Lp(1−n, χωp) = (1−1/p1−n)L(1−n, χ) and Lp(1−n, χ
(
D
∗

)
ωp) = (1+1/p1−n)L(1−

n, χ
(
D
∗

)
) for integers n ≥ 1 and n ≡ 1(mod p − 1). Substituting in (17.19) and

recalling the definition of (TrL/Mζp)(δ, s) we get

(TrL/Mζp)(δ, 1−m) =

4f 2(1−m)

|GM/K |
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃ ◦NK/Q(I(d0, r))Lp(1−m, χ̃ωp)Lp(1−m, χ̃
(
D

∗

)
ωp),

for m ≥ 1 and m ≡ 1(mod p− 1). By density of the set {n ≥ 1 : n ≡ 1(mod p− 1)}
in Zp we obtain

(TrHζp)(δ, s) =

4⟨f⟩2s

|GM/K |
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃ ◦NK/Q(I(d0, r))Lp(s, χ̃ωp)Lp(s, χ̃

(
D

∗

)
ωp)

for all s ∈ Zp. Let us define an auxiliary p-adic L-function that will play an important

role later on.
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Definition 17.3 We define the Archimedean zeta function Θ(s) and its p-adic

counterpart Θp(s) as

Θ(s) :=

4f 2s

|GM/K |
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃ ◦NK/Q(I(d0, r))L(s, χ̃)L(0, χ̃

(
D

∗

)
).

and

Θp(s) :=

4⟨f⟩2s

|GM/K |
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃ ◦NK/Q(I(d0, r))Lp(s, χ̃ωp)L(0, χ̃

(
D

∗

)
).

Note that L(0, χ̃
(
D
∗

)
) = −B1,χ̃(D

∗ )
and therefore 2L(0, χ̃

(
D
∗

)
) = Lp(0, χ̃

(
D
∗

)
ωp).

Moreover when k ≥ 1 and k ≡ 1 (mod p− 1) then(
1− 1

p1−k

)
Θ(1− k) = Θp(1− k).

Now let us take the derivative of (TrL/Mζp)(δ, s) at s = 0. Applying the chain rule

and using the observation that Lp(0, χωp) = 0 we get

(TrL/Mζp)
′(δ, 0) =

(17.20)

4

|GM/K |
∑

d0|N0,r∈(Z/fZ)×
n(d0, r)

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃ ◦NK/Q(I(d0, r))L
′
p(0, χ̃ωp)Lp(0, χ̃

(
D

∗

)
ωp).

From this we deduce that

(TrL/Mζp)
′(δ, 0) = 2Θ′

p(0).(17.21)

A straight forward calculation also shows that

(TrL/Mζ)(δ, 0) = Θ(0).(17.22)
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Note the dicrepancy of a factor 2 of the two previous formulas.

Now we would like to write the zeta functions Θ and Θp(s) in terms of p-adic

partial zeta functions attached to Q. Using the definition of Θp(s) we see that in

order to do this it is enough to relate Lp(s, χ̃ωp) to p-adic partial zeta functions of Q.

The function L(s, χ̃) can be rewritten in terms of partial zeta functions of Q as

L(s, χ̃) =
∑

a∈(Z/fZ)×
χ̃(a)ζ(a, f∞, s)(17.23)

Note that every partial zeta function ζ(b, pf∞, s) (where (b, p) = 1) is p-adically

continuous when s is restricted to the set of integers n ≤ 0 and n ≡ 0(mod p − 1).

Therefore the values∑
b(mod pf),(b,p)=1
b(mod f)∈a⟨p⟩

ζ(b, pf∞, s) = (1− 1/ps)
r∑
i=1

ζ(pia, f∞, s)(17.24)

are p-adically continuous when s is restricted to the set of integers n ≤ 0 and n ≡
0(mod p−1). Remember that r was defined to be the order of p modulo f . We define

ζp(a, f∞, s)(17.25)

to be the p-adic zeta function which interpolates p-adically (17.24) on the set of

integers {n ≤ 0 : n ≡ 0(mod p − 1)}. It was crucial here to take the sum of the

right hand side of (17.24) over all congruence classes of the powers of p modulo f

in order to be able to factor out the Euler factor at p. Note that by construction

ζp(a, f∞, 0) = 0.

Remark 17.5 The reader should be careful to not confuse the different zeta

functions introduced so far. When a ∈ Z and (a, f) = 1, the notations ζ(a, f∞, s)
and ζp(a, f∞, s) correspond to partial zeta functions attached to Q. The partial zeta

functions introduced earlier which were involving a divisor δ ∈ Z[Af∞] were attached

to K. Namely:

(1) The Archimedean ones: ζ(δ, s) defined by the equation (17.4) and ζ∗(δ, s) de-

fined by equation (17.5).
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(2) The p-adic ones: ζ∗p (δ, s) which interpolates special values of ζ∗(δ, s) and ζp,0(δ, s)

which interpolates special values of ζ(δ, s).

For a character χ̃ which is trivial on ⟨p⟩ ≤ (Z/fZ)× we can rewrite (17.23) as

L(s, χ) =
r∑
i=1

∑
a∈(Z/fZ)×/⟨p⟩

χ̃(pia)ζ(pia, f∞, s)

=
∑

a∈(Z/fZ)×/⟨p⟩

χ̃(a)
r∑
i=1

ζ(pia, f∞, s).(17.26)

From the latter equality and the density of the set of integers {n ≤ 0 : n ≡ 0(mod p−
1)} in Zp we deduce that

Lp(s, χ̃ωp) =
∑

a∈(Z/fZ)×/⟨p⟩

χ̃(a)ζp(a, f∞, s),(17.27)

for all s ∈ Zp. We will need the following lemma

Lemma 17.1 Assume that −1 /∈ ⟨p⟩ ≤ (Z/fZ)×. The zeta functions Θ(s) and

Θp(s) can be rewritten as

Θ(s) = 4f 2s
∑

a∈(Z/fZ)×/⟨p⟩

na

r∑
i=1

ζ(pia, f∞, s)(17.28)

and

Θp(s) = 4⟨f⟩2s
∑

a∈(Z/fZ)×/⟨p⟩

naζp(a, f∞, s)(17.29)

where the na’s are elements in 1
2
Z given by the following formula

na :=
1

|GM/K |
∑
d0|N0

r∈(Z/fZ)×

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃(a)NK/Q(I(d0, r))

(
L(0, χ̃

(
D

∗

)
)

)
∈ 1

2
Z.(17.30)

Moreover we have nap = na and n−a = −na.

Proof The fact that the na’s are equal to the expression (17.30) follows directly from

the definition of Θ(s), Θp(s) and of equations (17.26) and (17.27). Also the fact that
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nap = na and n−a = −na are straight forward. It is also easy to see that that the

na’s are invariant under Gal(Q/Q) therefore they lie in Q. The character χ̃
(
D
∗

)
is a

character modulo Df . We have

L(0, χ̃

(
D

∗

)
) = −B1,χ̃(D

∗ )

=
1

Df

∑
1≤a≤Df
(a,Df)=1

χ̃(a)

(
D

a

)
a

therefore fD|GM/K |na ∈ Z. It remains to show that 2na ∈ Z. We can rewrite na as

1

Df |GM/K |
∑
d0|N0

r∈(Z/fZ)×

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

∑
1≤a≤Df
(a,Df)=1

n(d0, r)χ̃ ◦NK/Q(I(d0, r))χ̃(a)

(
D

a

)
a

Let Qτ (x, y) = Ax2 + Bxy + Cy2 then we have N(Λd0τ ) =
1

A/d0
. Also since Ar/d0 ≡

r/d0(mod f) we have N(Ar/d0Λd0τ ) = A2
r/d0

d0
A
≡
(
r
d0

)2
d0A

−1(mod f). We can thus

rewrite the previous expression as

1

Df |GM/K |
∑
d0|N0

r∈(Z/fZ)×

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

∑
1≤a≤Df
(a,Df)=1

n(d0, r)χ̃(ar
2d−1

0 A−1)

(
D

a

)
a

which again can be rewritten as

1

Df |GM/K |
∑
d0|N0

r∈(Z/fZ)×

∑
1≤a≤Df
(a,Df)=1

n(d0, r)

(
D

a

)
a

∑
χ̃∈ ̂(Z/fZ)×
χ̃(p)=1

χ̃(−1)=−1

χ̃(ar2d−1
0 A−1).(17.31)

LetG = (Z/fZ)×/⟨p(mod f)⟩. By assumption we have−1 /∈ ⟨p (mod f)⟩ ≤ (Z/fZ)×.
Therefore there exists a character Ψ of G such that Ψ(−1) = −1, i.e. Ψ is odd. Let

us denote by Ĝeven and Ĝodd the set of even and odd characters of G respectively.

Note that Ĝodd = ΨĜeven. An easy computation shows that for every a ∈ (Z/fZ)×

∑
χ∈Ĝodd

χ(a) =


|GM/K |

2
if a ∈ ⟨p(mod f)⟩

− |GM/K |
2

if a ∈ −⟨p(mod f)⟩
0 otherwise
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We can thus rewrite (17.31) as

1

2Df

∑
d0|N0

r∈(Z/fZ)×
1≤a≤Df
(a,Df)=1

ar2d−1
0 A−1∈±⟨p(mod f)⟩

n(d0, r)

(
D

a

)
aϵ(ar2d−1

0 A−1)(17.32)

where ϵ(a) = 1 if a(mod f) ∈ ⟨p(mod f)⟩ and ϵ(a) = −1 if a(mod f) ∈ −⟨p(mod f)⟩.
Every element 0 ≤ a ≤ Df − 1 can be written as (a1, a2) where a1 ≡ a(mod D) and

a2 ≡ a(mod f). Every term a = (a1, a2) in the sum (17.32) can be paired with the

term a′ = (−a1, a2). Since
(
D
a

)
=
(
D
a′

)
(the quadratic character

(
D
∗

)
is associated to

a real quadratic field and ϵ(a) = ϵ(a′)) we see that the sum in (17.32) is congruent

to 0 modulo D. Now using the fact that δ is a good divisor we have for a fixed

r ∈ (Z/fZ)× that
∑

d0|N0
n(d0, r)d0 = 0. Let us fix an element b ∈ ±⟨p(mod f)⟩ and

an element r ∈ (Z/fZ)×. Summing over all the elements {d0bA
r2
}d0|N0 we obtain∑

d0|N0

n(d0, r)

(
D
d0bA
r2

)
d0bA

r2
ϵ(b) ≡ 0(mod f).

For the latter congruence we have used the fact that all the primes dividing N0 are

split in Q(
√
D) and also that δ is a good divisor. From this we deduce that (17.32)

lies in 1
2
Z. This completes the proof of the lemma. □

We can now state the key ingredient that allowed us to relate the first the deriva-

tive at s = 0 of TrL/Mζp,0(δ, s) with normalized Gauss sums.

Theorem 17.2 Let a ∈ (Z/fZ)× and let ζp(a, f∞, s) be the p-adic zeta function

introduced in (17.27). Then

ζ ′p(a, f∞, 0) = − logp g

(
a

f

)
where g

(
a
f

)
=

τ(w
a
q−1
f

q )

τ(ω
q−1
2

q )

∈ Q(ζf , ζp), wq : F×
q → µq−1 ⊆ Qp is the Teichmüller

character and q = pr ≡ 1(mod f) where r = ordf (p). Note that g
(
a
f

)2f
∈ Q(ζf )

Frp.

We have

vp

(
g

(
a

f

)2f
)

= 2f
r∑
i=1

ζ(pia, f∞, 0) = 2f
r∑
i=1

(
(̃pia)

f
− 1

2

)
,
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where x̃ is chosen to be the unique integer between 1 and f−1 such that x̃ ≡ x(mod f).

Proof Combine the results of [FG78] with [GK79] plus standard results about fac-

torization of Gauss sums. □

Using (17.29) we deduce that

Θ′
p(s) = 4

∑
a∈(Z/fZ)×/⟨p⟩

naζ
′
p(a, f∞, 0)

= 4
∑

{
1≤a≤f/2
(a,f)=1

}
/⟨p⟩

2naζ
′
p(a, f∞, 0)(17.33)

where for the second equality we have used the fact that n−a = −na, g
(

−a
f

)
=

±g
(
a
f

)−1

and that −1 /∈ ⟨p⟩. Now using Theorem 17.2 we can rewrite the right hand

side of (17.33) as

−4
∑

{
1≤a≤f/2
(a,f)=1

}
/⟨p⟩

(2na) logp g

(
a

f

)
.(17.34)

Now from Lemma 17.1 we get that 2na ∈ Z. Set

S =
∏

{
1≤a≤f/2
(a,f)=1

}
/⟨p⟩

g

(
a

f

)2na

.

We thus have by definition that

Θ′
p(s) = −4 logp S.

Now using (17.21) and the last equality we deduce that

(TrL/Mζp)
′(δ, 0) = −8 logp S.

This proves (17.12). It remains to show the valuation formula (17.13). Using Theorem
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17.2 with the definition of S we get

12vp(S
2f ) = 12

∑
{
1≤a≤f/2
(a,f)=1

}
/⟨p⟩

(2na)2f
r∑
i=1

ζ(pia, f∞, 0)

= 6f · 4
∑

a∈(Z/fZ)×/⟨p⟩

na

r∑
i=1

ζ(pia, f∞, 0)

= 6fΘ(0)

= 6f(TrL/Mζ)(δ, 0),

where the second last equality uses (17.28) and the last one uses (17.22). This shows

equation (17.13) and therefore concludes the proof of Proposition 17.2. □

In order to finish the proof of Theorem 17.1 we need to relate ζ(δ, 0) to ζ∗(δ, 0)

and ζ∗p (δ, s) to ζp,0(δ, s). The next proposition takes care of this.

Proposition 17.4 Let δ̃ =
∑

d0,r
n(d0, r)[d0, r] ∈ D(N0, f)

⟨p⟩ be a good divisor.

Let (1, τ) ∈ (Z/fZ)××HOK
p (N0, f) with τ reduced and let δ =

∑
d0,r

n(d0, r)[ArΛd0τ ] ∈
Z[Af∞]. Let δ∗ =

∑
d0,r

n(d0, r)[ArΛN0
d0
τ
] ∈ Z[Af∞]. Assume furthermore that all

primes dividing f are inert in K then

ζ∗(δ, 0) =

f−1∑
u=0

ζ(λu ⋆ δ
∗, 0),

and

ζ∗p (δ, s) =

f−1∑
u=0

ζp,0(λu ⋆ δ
∗, s).

where λu is an algebraic integers of K chosen so the λu ≡ ( A
N0
u + τσ)(mod f), λu is

coprime to p and totally positive.
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Proof Using Proposition 9.4 gives us

ζ∗(δ, s) =
∑
d0,r

n(d0, r)d
s
0Ψ̂

∗(
ArΛτ√
Df

,w1, s)

=

f−1∑
u=0

∑
d0,r

n(d0, r)d
s
0Ψ̂(λu

ArΛN0
d0
τ

f
√
D

,w1, s)

=

f−1∑
u=0

ζ(λu ⋆ δ
∗, s)(17.35)

Using Corollary 10.1 we deduce

(1− p−2n)

f−1∑
u=0

ζ(λu ⋆ δ
∗, , n)

(17.35)
= (1− p−2n)ζ∗(δ, n)

10.1
= ζ∗p (δ, (1, τ), n)

:= ζ∗p (δ, n).(17.36)

for every n ≤ 0 and n ≡ 0(mod p− 1) . By density of the set of integers {n ≤ 0 : n ≡
0(mod p− 1)} in Zp we get

ζ∗p (δ, s) =

f−1∑
u=0

ζp,0(λu ⋆ δ
∗, s).

□

We can now prove Theorem 17.1. Using the latter proposition with equations

(17.12) and (17.13) of Proposition 17.2 we get that

6fTrL/M(ζ∗p )
′(δ, 0) = − logp(S

′)2f(17.37)

and that

12fTrL/Mζ
∗(δ, 0) = vp((S

′)2f )(17.38)

where S ′ is a product of normalized Gauss sums inside Q(ζf )
Frp · Q(ζp). Note that

(S ′)2f ⊆ Qur
p so it makes sense to take the p-adic valuation. On the other hand in

section 10 we have proved the existence of an element u ∈ K×
p for which

6fTrL/M(ζ∗p )
′(δ, 0) = −2f logpNL/M ◦NKp/Qp(u)

= −2f logpNL/M̃(u),(17.39)
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and

6fTrL/M(ζ∗)(δ, 0) = 2fvp(NL/M(u)).

Now using the observation that vp(u
σ) = vp(u) where Gal(Kp/Qp) = {1, σ} we get

12fTrL/M(ζ∗)(δ, 0) = 2fvp(NL/M̃(u)).(17.40)

Comparing (17.37) with (17.39) we obtain

logp(S
′)2f = 2f logpNL/M̃(u).

Comparing (17.38) with (17.40) we obtain

vp((S
′)2f ) = 2fvp(NL/M̃(u)).

From this we conclude that

S ′ = NL/M̃(u) (mod µF ).

This concludes the proof of Theorem 17.1. □

We should expect a refinement of Theorem 17.1 of the following form

Conjecture 17.2 The element

NL/M(u(c))

is a product of normalized Gauss sums in M ·Q(ζp).

18 Numerical examples

Let {g1, . . . , gr} be a finite set of generators of Γ0(N). Any element g ∈ G can be

written as a reduced word g = w1w2 . . . wn where wi ∈ {g1, g−1
1 , . . . , gr, g

−1
r } and

wi ̸= x−1
i+1 for all 1 ≤ i ≤ n− 1. For any integer k ≥ 1 we let Wk =

∏k
i=1wi. A direct

computation reveals that

[∞]− [g(∞)] =
n∑
i=1

Wn−i ([∞]− [wn−i+1(∞)]) .(18.1)

Let M = Div0(Γ0(N){∞}), endowed with its natural left Γ0(N)-action. Then the

next propostion is essential for the explicit computation of u(r, τ).
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Proposition 18.1 The moduleM is generated by the elements {[∞]− [gi∞]}ri=1

over the ring Z[Γ0(N)].

Proof This follows directly from (18.1). Note that if wi = g−1
j then

(
[∞]− [g−1

j (∞)]
)
=

−g−1
j ([∞]− [gj(∞)]). □

Conjecture 5.1 asserts the existence of strong p-units in abelian extensions of real

quadratic number fields. In order to make sure that such units exist one needs to

impose a number of conditions on the real quadratic field K. To fix the ideas, let us

assume that f = 3, N0 = 4 and that

δ = 2[1, 1]− 3[2, 1] + 1[4, 1] ∈ D(4, 3).

It thus follows that the modular unit attached to the data (f,N0, δ) is

βδ1(τ) = g( 1
3
,0)(3 · τ)2·12g( 1

3
,0)(3 · 2τ)−3·12g( 1

3
,0)(3 · 4τ)1·12.

LetK = Q(
√
D) be a real quadratic field whereD = disc(K) and let f be an arbitrary

positive integer. Assume that OK(f)× = OK(f∞)× then we have the following Hasse

diagram:

K(f∞)

Kring
f∞ (ζf )

(Z/2Z)s

Kring
f∞ K(ζf )

H+
K

K

Pic+(OK)(Z
/f
Z)
×

P
ic +

(Z
+
fO

K )
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where Kring
f∞ (respectively H+

K) stand for the narrow ring class field of conductor f

(respectively the narrow Hilbert class field). Here s is some integer that can be

computed explicitly.

In order to facilitate the existence of non trivial strong p-units in K(3∞) attached

to the previous modular unit one requires that

(1) (D, 3) = 1 (3 should be unramified in K),

(2) D ≡ 1 (mod 8) (2 should split in K),

(3)
(
D
p

)
= −1 (p should be inert in Q(

√
D)),

(4) The index n = [OK [1p ](3)
× : OK [1p ](3∞)×] should be equal to 1 or 2. The group

OK [1p ](3)
× (resp. OK [1p ](3∞)×) stands for the group of units (resp. totally

positive units) of OK [1p ] which are congruent to 1 modulo 3.

Remark 18.1 In the case where the index n = [OK [1p ](f)
× : OK [1p ](f∞)×] is

equal to 4, one can prove that K(f∞)Frob(p/℘) = K(f)Frob(p/℘) is a totally real

field (℘ = pOK and p is a prime ideal of K(f∞) above ℘). When the class field

K(f∞)Frob(p/℘) is totally real, it is easy to see there are no strong p-units inK(f∞)Frob(p/℘)

other than {±1}.

A discriminant D > 0 satisfying these four conditions will be called admissible. A

congruence modulo 3 shows that there exists no units ϵ ∈ OK(3)× such that N(ϵ) =

−1. Therefore, the fourth condition is always satisfied and can thus be dropped.

Using class field theory, one deduces that

K(3∞) ⊇ K(ζ3) = K(
√
−3),(18.2)

where ζ3 = e2πi/3. From (18.2), it follows that K(3∞) = K(
√
−3) when the narrow

ray class group K of conductor 3 has order 2.

Conjecture 5.1 predicts that the strong p-units arising from our construction lie

in K(3∞)⟨Frob(p/℘)⟩. Since we would like our strong p-units to be primitive elements
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of K(3∞) over K, we will impose the additional condition that Frob(p/℘) = 1. This

is equivalent by class field theory to the congruence p ≡ 1 (mod 3).

Let us fix an embedding K ⊆ R. We define IK(3) to be the group of fractional

ideals of K coprime to 3 and we let PK,1(3∞) to be the group of principal fractional

ideals of K which can be generated by a totally positive element congruent to 1

modulo 3. We also define PK,1(3) to be the group of principal fractional ideals of K

which can be generated by an element congruent to 1 modulo 3. Let n = [OK(3)× :

OK(3∞)×]. Because f = 3, we always have that n = 1 or 2. A calculation shows

that the quotient PK,1(3)/PK,1(3∞) ≃ (Z/2Z)3−n. When n = 1 the quotient group

PK,1(3)/PK,1(3∞) ≃ (Z/2Z)2 can be generated by the ideal classes (1 + 3
√
D)OK

and (1 − 3
√
D)OK . When n = 2 there exists a unit ϵ ∈ OK(3)× such that ϵ < 0

and ϵσ < 0 and therefore the ideal (1 − 3
√
D)OK = ϵ(1 − 3

√
D)OK is equivalent to

(1 + 3
√
D)OK modulo PK,1(3∞).

For every admissible D the narrow class group of K = Q(
√
D) of conductor 3

is given by IK(3)/PK,1(3∞). Let J := ⟨2, ω⟩ be a prime ideal of K above 2, where

ω = 1+
√
D

2
. For every ideal class C ∈ IK(3)/PK,1(3∞) we pick an ideal aC ∈ C.

Since the quotient aC/(aCJ
2) is isomorphic to Z/4Z we can always find elements

ω1, ω2 ∈ OK , such that

aC = Zω1 + Zω2 aCJ
2 = Zω1 + Z4ω2 and ω1 > 0.(18.3)

Moreover, we claim that we can choose ω1 in such a way that

ω1 ≡ integer (mod 3).(18.4)

Let us prove this. If ω1 ≡ integer (mod 3) then we are done. Let us suppose that

ω1 ̸≡ integer (mod 3). In this case one can assume without lost of generality that

ω2 = a + bω where a, b ∈ Z and b ̸≡ 0 (mod 3), otherwise replace ω2 by ω2 + ω1.

Now since 4 is coprime to 3 one can find an integer k such that ω1 − 4kω2 ≡ integer

(mod 3). Then the new basis {ω̃1, ω̃2} where ω̃1 = ±(ω1 − 4kω2) (where the sign is

chosen appropriately) and ω̃2 = ω2 satisfies the required property.

Now assume that ω1, ω2 satisfy (18.3) and (18.4). Then if we set τ = ω2

ω1
we readily

see that rΛτ is equivalent to aC modulo PK,1(3), where Λτ = Z+ τZ. Note that rΛτ
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is equivalent to aC modulo PK,1(3∞) precisely when NK/Q(ω1) > 0. We set

s = sign(NK/Q(ω1)) ∈ {±1}.(18.5)

We require two more conditions on the choice of τ , namely that |τ − i|p = 1 for

0 ≤ i ≤ p− 1 (i.e., τ is reduced) and also that τ − τσ > 0 (τ is oriented) where σ is

the nontrivial automorphism of K. Let ϵ > 1 be such that OK(3∞)× = ϵZ. Let γτ be

the matrix corresponding to the action of ϵ on Λτ with respect to the ordered basis

{τ, 1}:

γτ

(
τ

1

)
= ϵ

(
τ

1

)
.(18.6)

If we write γτ =

(
a b

c d

)
then one can verify that c ≡ 0 (mod 12) and d ≡ 1

(mod 3). For this ideal class C we associate the following p-adic invariant

u(C) := u(r, τ)s =

(
pψr{∞→γτ∞} ×

∫
X
(x− τy)dµ̃r{∞ → γτ∞}(x, y)

)s

∈ K×
p .(18.7)

If our conjecture is true then we expect the polynomial

PD(x) :=
∏

C∈IK(3)/PK,1(3∞)

(x− u(C)) ∈ Kp[x],

to have coefficients in OK [1p ]. Let c∞ be a complex conjugation of K(f∞)/K (a

complex conjugation of K(f∞) is not necessarily unique, see Definition 17.1) then

Conjecture 5.1 predicts that u(r, τ)c∞ = u(r, τ)−1. Because of this we expect the

polynomial PD(x) to be a palindromic polynomial. Because of the presence of the

12-th power in the definition of βδ(τ), it turns out that very often our units u(C) are

powers of smaller units. Because of this reason, for every admissible D, we define

a certain integer nD|12. The integer nD is chosen to be the largest positive integer

dividing 12 for which

2P̃D(x) ∈
{
f(x) ∈ Z[1

p
][
√
D][x] : f(x) =

∑
i

ai + bi
√
D

pni
xi,

(18.8)

ai, bi ∈ Z, (ai, bi, p) = 1 and |ai|, |bi| < p2M/3
}

modulo pMOKp ,
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where

P̃D(x) :=
∏

C∈IK(f)/PK,1(f∞)

(x− u(C)1/nD) ∈ Kp[x].

The factor 2 which multiplies P̃D(x) in (18.8) comes from the fact thatOK = Z[1+
√
D

2
].

We will compute the p-adic invariant u(C) = u(r, τ) in three steps. The comple-

tion Kp is the unique quadratic unramified extension of Qp. Let logp : K×
p → OKp

denote the branch of the p-adic logarithm which vanishes on p. Let ζ be a primitive

(p2 − 1)-th root of unity in K×
p and let logζ denote the discrete logarithm with base

ζ:

logζ : K
×
p → Z/(p2 − 1)Z,

where x

pordp(x)ζ
logζ(x)

∈ 1 + pOKp for all x ∈ K×
p . For odd p we have a decomposition

K×
p ≃ Z× Z/(p2 − 1)Z× pOKp

given by x 7→ (ordp(x), logζ(x), logp(x)).

Using the assumption that τ is reduced we see that the computation of u(r, τ)

boils down to the computation of the following three quantities:

ordp(u(r, τ)) = ψr(∞→ γτ∞),

logζ u(r, τ) =

∫
X
logζ(x− τy)dµ̃r{∞ → γτ∞}(x, y),

logp u(r, τ) =

∫
X
logp(x− τy)dµ̃r{∞ → γτ∞}(x, y).

18.1 Computation of ordp(u(r, τ))

From now on assume that the prime p ≡ 1 (mod 3) is fixed. Recall that f = 3 and

N0 = 4. The group Γ0(fN0) = Γ0(12) can be generated by the following matrices

g1 =

(
1 1

0 1

)
, g2 =

(
5 −1
36 −7

)
, g3 =

(
5 −4
24 −19

)
, g4 =

(
7 −5
24 −17

)
, g5 =

(
5 −3
12 −7

)
.

202



Let j ∈ (Z/fZ)×/⟨p⟩ ≃ (Z/3Z)× and γ ∈ Γ0(fN0). We define the period

πj(γ) := ψj{∞ → γ∞} = 1

2πi

∫ γ∞

∞
F̃2(j, z)dz ∈ Z.

A computation shows that πj(γ) satisfies the following cocycle condition

πj(γ1γ2) = πj(γ1) + πγ−1
1 ⋆j(γ2),(18.9)

for all γ1, γ2 ∈ Γ0(fN0). A direct computation shows thatD
j (mod f)
1,1 (a, c) = D

−j (mod f)
1,1 (a, c).

(This is true for any f). Therefore from the explicit formula given in Proposition 5.4

for πj(γ), we deduce that πj(γ) = π−j(γ) for any γ ∈ Γ0(fN0). Now using the

previous observation in (18.9), with f = 3, we deduce that

πj(γ1γ2) = πj(γ1) + πj(γ2).(18.10)

Let γ =

(
a b

c d

)
∈ Γ0(fN0). Then in general if the height of γ∞ = a

c
is large, the

direct computation of the period πj(γ) via the explicit formula given in Proposition

5.4 tends to be long since the summation of the corresponding Dedekind sum depends

linearly on c. Instead we compute once and for all the four periods

{π1(gi)}5i=2.

Note that trivially one has π1(g1) = 0. Now using the command “FindWord”in

Magma, one can obtain an expression of the form γ = w1w2 . . . wn where the wj’s are

elements in the set {g±1
j }5j=1. From (18.10) it follows that

π1(γ) =
n∑
i=1

π1(wi).(18.11)

Note that π1(g
−1
i ) = −π1(gi). We have thus succeded to compute the period π1(γ)

purely in terms of the periods {π1(gi)}5i=2. In particular this method gives us a quick

way of computing π1(γτ ) where γτ is the matrix appearing in (18.6).

18.2 Computation of logζ u(r, τ)

For m = [c1] − [c2] ∈ M = Div0(Γ0(fN0){∞}), let µ̃r[m] := µ̃r{c1 → c2}. Since an

arbitrary m ∈M can be written as a sum of elements of the form [c1]− [c2] we may
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define µ̃r[m] by linearity. If τ ∈ Hp and γ ∈ Γ0(fN0) then a formal computation

shows that ∫
X
logζ(x− τy)dµ̃r[γm](x, y) =

∫
X
logζ

(
x− yγ−1τ

)
dµ̃γ−1⋆r[m](x, y).(18.12)

The last equality uses the fact that the total measure of µ̃γ−1⋆r[m] is zero and that for

all compact open set U ∈ X one has that µ̃r[m](U) = µ̃γ−1⋆r[γ
−1m](γ−1U). Now let

γ ∈ Γ0(fN0) and let γ = w1w2 . . . wn where wi ∈ {g±1
j }5j=1. From (18.1) we deduce

that

[∞]− [γ∞] =
n∑
i=1

Wn−i ([∞]− [wn−i+1(∞)]) ,

where Wk =
∏k

j=1wj. If wn−i+1 = gj for some j then we deduce from (18.12) that∫
X
logζ(x− τy)dµ̃r[Wn−i([∞]− [wn−i+1])](x, y)

=

∫
X
logζ

(
x− yW−1

n−iτ
)
dµ̃W−1

n−i⋆r
{∞ → gj∞}(x, y).

If wn−i+1 = g−1
j for some j then we obtain in a similar way that∫
X
logζ(x− τy)dµ̃r[Wn−i([∞]− [wn−i+1])](x, y)

=

∫
X
logζ

(
x− yW−1

n−iτ
)
dµ̃W−1

n−i⋆r
{∞ → g−1

j ∞}(x, y)

= −
∫
X
logζ

(
x− y(Wn−igj)

−1τ
)
dµ̃(Wn−igj)−1⋆r{∞ → gj∞}(x, y).

We thus see that in order to compute∫
X
logζ(x− τy)dµ̃r{∞ → γ∞}(x, y)

it is sufficient to compute∫
X
logζ(x− τ ′y)dµ̃r′{∞ → gj∞}(x, y),(18.13)

for certain τ ′ ∈ H, r′ ∈ (Z/3Z)× and j ∈ {2, 3, 4, 5} which depend on the word

representing γ. To compute (18.13) it is enough to take a cover of X in which x and
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y are determined modulo p. Therefore, it is enough to compute

∑
0≤u,v≤p−1
(u,v) ̸=(0,0)

logζ(u− τ ′v)µ̃r′{∞ → gj∞}((u+ pZp)× (v + pZp)) ∈ Z/(p2 − 1)Z.
(18.14)

This can be efficiently computed using the explicit formulas for the µ̃r′{∞ → gj∞}-
measure of the balls (u+ pZp)× (v + pZp) given in Proposition 14.1.

18.3 Computation of logp u(r, τ)

By arguments analogous to those of section 18.2 and replacing logζ by logp we see

that in order to compute∫
X
logp(x− τy)dµ̃r{∞ → γ∞}(x, y),

it is sufficient to compute∫
X
logp(x− τ ′y)dµ̃r′{∞ → gj∞}(x, y)(18.15)

for certain τ ′ ∈ Hp, r
′ ∈ (Z/3Z)× and j ∈ {2, 3, 4, 5} which depend on the word

representing γ. In order to compute (18.15) we will use the same method which was

developped in [Das07].

The integral (18.15) can be rewritten as follows:∫
X
logp (x− yτ ′) dµ̃r′{∞ → gj∞}(x, y)

=

∫
Zp×Z×

p

logp (x− yτ ′) dµ̃r′{∞ → gj∞}(x, y) +
∫
Z×
p ×pZp

logp (x− yτ ′) dµ̃r′{∞ → gj∞}(x, y)

=

∫
Zp×Z×

p

logp(y)dµ̃r′{∞ → gj∞}(x, y) +
∫
Z×
p ×pZp

logp(x)dµ̃r′{∞ → gj∞}(x, y)

+

∫
Zp×Z×

p

logp

(
x

y
− τ ′

)
dµ̃r′{∞ → gj∞}(x, y) +

∫
Z×
p ×pZp

logp

(
1− τ ′ y

x

)
dµ̃r′{∞ → gj∞}(x, y).

(18.16)

Suppose we want to calculate (18.16) to an accuracy ofM p-adic digits. First observe

that the first two terms of (18.16) are independent of τ ′. To evaluate the first term,
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one finds a polynomial f(y) ∈ Q[y] such that |f(y)− logp(y)|p < 1
pM+1 for all y ∈ Z×

p .

To construct f(y) consider the polynomial

gi(y) =

p−1∏
j=1
j ̸=i

(y − j)M .

Let hi(y) denote the power series expansion of logp(y)/gi(y) on the residue disc i+pZp,
truncated atM+[logM ] terms, where [logM ] denotes the integer part ofM . In order

to compute this truncated power series one can compute the Taylor series expansions

around y0 = 0 of logp(y+ i) = logp i+logp(1+
y
i
) and 1

gi(y+i)
up to order M +[logM ],

multiply them and finally apply the change of variables y 7→ y − i. Letting

f(y) =

p−1∑
i=1

gi(y)hi(y),(18.17)

we obtain the required polynomial which has degree (p−1)M+[logM ]. The first term

of (18.16) may be evaluated by replacing logp y by f(y). Then if yn is a monomial of

f(y) we can use Propositon 11.6 which gives an explicit formula for the integral of yn

on Zp × Z×
p against the measure µr′{∞ → gj∞}.

To compute the second term of (18.16) up to an accuracy of M p-adic digits it is

enough to compute ∫
Z×
p ×pZp

f(x)dµ̃r′{∞ → gj∞}(x, y).(18.18)

Taking a monomial xn of f(x), we see that in order to compute (18.18) it is sufficient

to compute the integral∫
Z×
p ×pZp

xndµ̃r′{∞ → gj∞}(x, y) =
∫
X
xndµ̃r′{∞ → gj∞}(x, y)−

∫
pZp×Z×

p

xndµ̃r′{∞ → gj∞}(x, y).

Applying Propositions 11.5 and 11.6 to the right hand side of this equality we deduce
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that

∫
Z×
p ×pZp

xndµ̃r′{∞ → gj∞}(x, y) =

(18.19)

n∑
l=0

(
n

l

)(a
c

)n−l
(−1)l

·
∑

d0|N0,r′∈Z/fZ

n(d0, r
′)d−l0

(
pnD

jr′ (mod f)
n−l+1,l+1 (a, c/d0)− pn−lDjr′ (mod f)

n−l+1,l+1 (pa, c/d0)
)
.

This completes the evaluation for the second term of (18.16).

The third term of (18.16) can be evaluated in the following way. Since π∗ũr′ = µr′ ,

we have∫
Zp×Z×

p

logp

(
x

y
− τ ′

)
dµ̃r′{∞ → gj∞}(x, y) =

∫
Zp

logp (t− τ ′) dµr′{∞ → gj∞}(t)

We have∫
Zp

logp (t− τ ′) dµr′{∞ → gj∞}(t) =
p−1∑
i=0

∫
i+pZp

logp(t− i+ (i− τ))dµr′{∞ → gj∞}

=

p−1∑
i=0

[
logp(τ

′ − i)µr′(i+ pZp) +
∫
i+pZp

logp

(
1 +

t− i
τ ′ − i

)
dµr′(t)

]
.(18.20)

The integrand in (18.20) can be written as a power series in each residue disc i+pZp.
Therefore, in order to calculate the integral modulo pM it is enough to calculate the

moments∫
i+pZp

(t− i)ndµr′{∞ → gj∞} = pn
∫
Zp

undµr′{∞ →
e

epm
}(u) (mod pM)(18.21)

for n = 0, . . . ,M − 1 where Pi =

(
p i

0 1

)
and P−1

i gj∞ = b
epm

with (e, p) = 1.( The

equality (18.21) uses the invariance of µr′ under Pi ∈ Γ̃.) If we pull back (18.21) to
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X we get∫
Zp

undµr′{∞ →
b

epm
} =

∫
Zp×Z×

p

xny−ndµr′{∞ → w}(x, y)

= lim
j→∞

gj=(p−1)pj

∫
Zp×Z×

p

xnyg−ndµr′{∞ →
b

epm
}(x, y)

= − lim
j→∞

12

fn

n∑
l=0

(
n

l

)
(
a

c
)n−l(−1)l

∑
d0|N0,r∈(Z/fZ)×

n(d0, r)d
−l
0 D

jr′ (mod f)
gj−l+1,l+1 (b, epm/d0).

(18.22)

Let us fix a value r′ ∈ (Z/fZ)× and let us assume that m ≥ 1. The expression (18.22)

can be written in terms of the single-variable measures appearing in Definition 13.1:

lim
j→∞

∑
d0|N0∈(Z/fZ)×

n(d0, r
′)d−l0 D

jr′ (mod f)
gj−l+1,l+1 (b, epm/d0) =

epm∑
h=1

B̃l+1(
hb
epm

)

l + 1
lim
j→∞
Fgj−l+1(h+ epmZ)

=

epm∑
h=1

(h,p)=1

B̃l+1(
hb
epm

)

l + 1

∫
h+epmZ

x−lp dF1(x).

The second equality comes from the observation that, when p|h,

lim
j→∞
Fgj−l+1(h+ epmZ) = lim

j→∞
pgj−l+1Fgj−l+1(h/p+ epm−1Z) = 0,(18.23)

where the middle equality of (18.23) follows from (13.3). Note that when (h, p) = 1,

the function x 7→ x−lp is continuous on the ball h + epmZ and therefore the integral∫
h+epmZ

x−lp dF1(x) makes sense. In the case where m ≥ 1 and (h, p) = 1, one can

compute
∫
h+epmZ

x−lp dF1(x) by expanding the function x−lp in a neighboorhood of

h+ pZp. We consider the Taylor series expansion

x−lp = h−l
(
1 +

(
xp − h
h

))−l

= h−l
M∑
j=0

(
xp − h
h

)j
+

(
xp − h
h

)M+1

H(xp),

(18.24)

where x 7→ H(xp) is some continuous function on h+ epmZ. From (18.24) we deduce

that ∫
h+epmZ

x−lp dF1(x) ≡ h−l
∫
h+epmZ

M∑
j=0

(
xp − h
h

)j
dF1(x) (mod pM).(18.25)
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Now expanding the finite sum
∑M

j=0

(
xp−h
h

)j
as a polynomial in xp and using Propo-

sition 13.1 together with (13.2), we obtain an approximation to
∫
h+epmZ

x−lp dF1(x) up

to a precision of M p-adic digits.

In the case where m = 0 one can assume without lost of generality that (h, p) = 1.

(Otherwise replace h by h+e and observe that (h+e, p) = 1 and h+eZ = (h+e)+eZ).

We define ∫
h+eZ

x−lp dF1(x) :=
∑

1≤h′≤pe
(h′,p)=1

h′≡h (mod e)

∫
h′+epZ

x−lp dF1(x).

Note that one cannot integrate directly x−lp against F1 on the compact open set

h + eZ since the function x−lp (for l ≥ 1) is not continuous on h + eZ. Using the

definition above and (18.25) one obtains an approximation to
∫
h+eZ

x−lp dF1(x) to M

p-adic digits. This concludes the explicit calculation of the third term of (18.16).

The fourth term of (18.16) can be evaluated in the following way. First note that∫
Z×
p ×pZp

logp

(
1− τ ′ y

x

)
dµ̃r′{∞ → gj∞}(x, y) =

∫
P1(Qp)\Zp

logp

(
1− τ ′

t

)
dµr′{∞ → gj∞}(t).

Now using the Taylor series expansion

− logp

(
1− τ ′

t

)
=

∞∑
j=1

τ ′n

tn
,(18.26)

which is valid for any t ∈ P1(Qp)\Zp, we see that in order to compute (18.26) to an

accuracy of M p-adic digits it is suffient to compute the moments∫
P1(Qp)\Zp

t−ndµr′{∞ → gj∞}(t),(18.27)

for 0 ≤ n ≤ M , to a precision of M p-adic digits. Let gj∞ =
aj
cj
. The invariance of
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µr′{∞ → aj
cj
} under the matrix γ =

(
1 0

fN0 1

)
implies that

∫
P1(Qp)\Zp

t−ndµr′

{
∞→ aj

cj

}
(t)

=

∫
1

fN0
+pZp

(
u

−fN0u+ 1

)−n

dµγ−1⋆r′

{
− 1

fN0

→ aj
−fN0aj + cj

}
(u)

= −
∫

1
fN0

+pZp

(
u

−fN0u+ 1

)−n

dµγ−1⋆r′

{
∞→ − 1

fN0

}
(u)(18.28)

+

∫
1

fN0
+pZp

(
u

−fN0u+ 1

)−n

dµγ−1⋆r′

{
∞→ aj

−fN0aj + cj

}
(u).

Let j be the positive integer less than p which is congruent to 1
fN0

modulo p. The

function
(

u
−fN0u+1

)−n
can be expanded as a power series in u− j on the residue disc

j + pZp. This reduces the computation of (18.28) to that of integrals of the form∫
j+pZp

(u− j)ndµr′{∞ → w}(u),(18.29)

for 0 ≤ n ≤ M , r ∈ (Z/fZ)× and w = − 1
fN0

or
aj

−fN0aj+cj
. Note that (18.29) is an

expression with the same shape as the left hand side of (18.21). This concludes the

explicit computation of the fourth term of (18.16).

19 The Algorithm

We have thus reduced the computation of

u(r, τ) = pψj{∞→γτ∞} ×
∫
X
(x− τy)dµ̃r{∞ → γτ∞}(x, y),

up to an accuracy of M p-adic digits, to the computation of the following quantities:

Part one of the program (independent of D):

(1) We compute exactly the set of Bernoulli numbers Bn for 0 ≤ n ≤ (p − 1)M +

[logM ] and store these in a file. Using this data and the explicit formulas (4.11)
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for Bn(x), allows us to construct Bernoulli polynomials more efficiently since

all the Bn are only computed once.

(2) For j ∈ {2, 3, 4, 5} and i ∈ {0, 1, . . . , p − 1} we compute µ1{∞ → gj∞}(Zp)

and µ1{∞ → Migj∞}(Zp), where Mi :=

(
1 −i
0 p

)
. Here we use the explicit

formula of Proposition 5.4.

(3) For r ∈ (Z/3Z)×, j ∈ {2, 3, 4, 5} and 0 ≤ u, v ≤ p − 1 such that (u, v) ̸= (0, 0)

we compute µ̃r{∞ → gj∞}((u + pZp)× (v + pZp)) using the explicit formulas

of Proposition 14.1.

(4) For r ∈ (Z/3Z)×, j ∈ {2, 3, 4, 5} we compute
∫
Zp×Z×

p
f(y)dµr{∞ → gj∞} where

f(y) is the polynomial in y appearing in (18.17). Here we use the explicit

formulas of Proposition 11.6.

(5) For r ∈ (Z/3Z)×, j ∈ {2, 3, 4, 5} we compute
∫
pZp×Z×

p
f(x)dµr{∞ → gj∞} using

(18.19).

(6) Finally, for 0 ≤ i ≤ p− 1, 0 ≤ n ≤M , r ∈ (Z/3Z)× and

w ∈
{
g2∞, g3∞, g4∞, g5∞, γ−1g2∞, γ−1g3∞, γ−1g4∞, γ−1g5∞,−

1

12

}
,

where γ =

(
1 0

12 1

)
, we compute

∫
i+pZp

(t− i)ndµr{∞ → w}(t) using (18.21).

Note that the quantities appearing in (1), (2), (3), (4), (5) and (6) do not depend on

D and τ . Therefore one only needs to compute them once. The computation of the

quantities (4), (5) and (6) are the ones which contribute the most to the running time

of the algorithm. We store all these quantities in various files.

Part 2 of the program (depends on D):

Let D be an admissible discriminant and let K = Q(
√
D). We now want to explain

how to compute the polynomials P̃D(x). Let c = (1+f
√
D)OK . Assume that one has

a complete set of pairs {(ri, τi)}hi=1 such that the ideals {riΛτi}hi=1 form a complete set

of representatives {Ci}hi=1 of IK(3)/⟨PK,1(3∞), c⟩, where h = #IK(3)/⟨PK,1(3∞), c⟩
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and 2h = #IK(3)/PK,1(3∞). Assume, moreover, that the τi are chosen in such a way

that Oτi = O4τi = OK and that τi − τσi > 0 where Gal(K/Q) = {1, σ}. For every

i one computes u(ri, τi) up to a precision of M p-adic digits as explained in sections

18.1, 18.2 and 18.3, using the outputs produced by part 1 of the program. Then one

defines

P̃D(x) =
h∏
i=1

(
x− u(ri, τi)

si
nD

) h∏
i=1

(
x− u(ri, τi)

− si
nD

)
,(19.1)

where si is equal to 1 if riΛτi is equivalent to Ci modulo PK,1(3∞) and −1 otherwise.

The integer nD is chosen as explained in (18.8). The determination of nD is done

empirically and we do not know how to predict it.

The average running time for the computation of the p-adic invariant u(ri, τi)

seems to be difficult to analyse. This is due to the lack of control on the length of the

reduced word (with respect to the alphabet {g±1
j }5j=1) which represents the matrix

γτi . Very often, we observed that large entries for the matrix γτi lead to a big length

of the reduced word representing γτi . Moreover, the larger the height of the generator

ϵ > 1 of O(3∞)×, the larger the entries of γτi . For these two reasons, it seems to be

difficult to give a good running time approximation for the computation of u(ri, τi). A

better understanding ofM as a Z[Γ0(fN0)]-module could lead to a better algorithm

for the computation of u(ri, τi).
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For p = 7 and δ = 2[1, 1]− 3[2, 1] + 1[4, 1]
D IK(3)/PK,1(3∞) nD valuations P̃D(x)

17 Z/2Z 12 ±2 x2 − 71
49
x+ 1

41 Z/2Z 12 ±2 x2 − 71
49
x+ 1

73 (Z/2Z)2 12 ±2,±2 (x2 − 71
49
x+ 1)2

89 Z/2Z 12 ±2 x2 − 71
49
x+ 1

97 (Z/2Z)2 12 ±2,±2 (x2 − 71
49
x+ 1)2

145 Z/2Z× Z/8Z 3 ±0,±0, ±4,±4,
±4, ±4, ±8,±8 x16 + 1

78
(−232650

√
D − 21142198)x15

1
716

(−63553176225
√
D + 345833578130241)x14

1
720

(2873907075070350
√
D − 1633501333699078382)x13

+ 1
2·724 (−122040271091639213775

√
D + 13994939454565494390367)x12

+ 1
728

(245879796465956207634750
√
D − 24438525925640084934308094)x11

+ 1
732

(−1111134115782593132787676350
√
D + 79341283297565905615496513974)x10

+ 1
732

(1257312832261114545316699200
√
D − 91571248476833194701244416496)x9

+ 1
2·732 (−3047800972612593555659676375

√
D + 197591625237545799679273846779)x8

+ 1
732

(1257312832261114545316699200
√
D − 91571248476833194701244416496)x7

+ 1
732

(−1111134115782593132787676350
√
D + 79341283297565905615496513974)x6

1
728

(245879796465956207634750
√
D − 24438525925640084934308094)x5

1
2·724 (−122040271091639213775

√
D + 13994939454565494390367)x4

1
720

(2873907075070350
√
D − 1633501333699078382)x3

1
716

(−63553176225
√
D + 345833578130241)x2

1
78
(−232650

√
D − 21142198)x+ 1

185 (Z/2Z)2 12 ±2,±2 (x2 − 71
49
x+ 1)2

209 (Z/2Z)2 12 ±2,±2 (x2 − 71
49
x+ 1)2

241 (Z/2Z)2 12 ±2,±2 (x2 − 71
49
x+ 1)2

257 Z/6Z 6 ±4± 4,±12 x6 + 1
2·712 (−3861384345

√
D + 2642736525)x5

+ 1
2·715 (−131838694065

√
D + 38755163079075)x4

+ 1
2·720 (−42697160860228875

√
D + 52795271447651171)x3

+ 1
2·715 (−131838694065

√
D + 38755163079075)x2

+ 1
2·712 (−3861384345

√
D + 2642736525)x+ 1

265 Z/2Z× Z/4Z 12 ±1,±1,±1,±1 (x2 + 13/7x+ 1)4

313 (Z/2Z)2 12 ±4,±4 (x2 − 239/2401x+ 1)2

353 Z/2Z 12 ±6 x2 + 153502/117649x+ 1

377 Z/2Z× Z/8Z 6 ±0,±0,±0,±4,
±4,±4,±4,±8 x16 + 1

78
(−1760385

√
D − 7054747)x15

+ 1
2·712 (9559963245

√
D + 464126557983)x14

+ 1
716

(−53041186688295
√
D − 537520756632797)x13

+ 1
2·720 (192563525818981905

√
D + 6876802449703149427)x12

1
724

(−485482000049992075875
√
D − 4797177871518763359825)x11

+ 1
724

(243544398204099135360
√
D + 9678515302483741595848)x10

+ 1
724

(−503348326156969555320
√
D − 4848335400921890746456)x9

+ 1
2·724 (510228736297262050635

√
D + 19739177187465235837509)x8

+ 1
724

(−503348326156969555320
√
D − 4848335400921890746456)x7

+ 1
724

(243544398204099135360
√
D + 9678515302483741595848)x6

+ 1
724

(−485482000049992075875
√
D − 4797177871518763359825)x5

+ 1
2·720 (192563525818981905

√
D + 6876802449703149427)x4

+ 1
716

(−53041186688295
√
D − 537520756632797)x3

+ 1
2·712 (9559963245

√
D + 464126557983)x2

+ 1
78
(−1760385

√
D − 7054747)x+ 1
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D IK(3)/PK,1(3∞) nD valuations P̃D(x)

409 (Z/2Z)2 12 ±2,±2 (x2 − 71
49
x+ 1)2

433 (Z/2Z)2 12 ±2,±2 (x2 − 239/2401x+ 1)2

481 (Z/2Z)3 6 ±4,±4,±4,±4 (x2 − 4034/2401x+ 1)2

·(x2 + 4034/2401x+ 1)2

521 Z/2Z 12 ±6 x2 + 153502/117649x+ 1

545 Z/2Z× Z/8Z 6 ±4,±4,±4,±4
±8,±0,±0,±0 x16 + 1

78
(−821748

√
D − 883036)x15

1
712

(−662987514
√
D + 64572360210)x14

1
716

(−4804666374063
√
D + 168656428624495)x13

1
720

(−29687922599132553
√
D + 148379250278264885)x12

1
724

(−24730779023499008949
√
D + 1669025701762044317685)x11

1
2·724 (−101267373093542176521

√
D + 2291647792063133649065)x10

1
724

(−67135410173257826013
√
D + 656526802434111941885)x9

1
2·724 (−37079433752321502423

√
D + 3398662046679747603795)x8

1
724

(−67135410173257826013
√
D + 656526802434111941885)x7

1
2·724 (−101267373093542176521

√
D + 2291647792063133649065)x6

1
724

(−24730779023499008949
√
D + 1669025701762044317685)x5

1
720

(−29687922599132553
√
D + 148379250278264885)x4

1
716

(−4804666374063
√
D + 168656428624495)x3

1
712

(−662987514
√
D + 64572360210)x2

1
78
(−821748

√
D − 883036)x+ 1

577 Z/2Z× Z/14Z 3 ±0,±0,±0,±0
±0,±0,±4,±4
±4,±4,±8,±8
±16,±16 x28 + 1

716
(3072931836030

√
D − 224019365010010)x27

1
732

(−807445277082293675830760385
√
D + 25250643264175060209505146459)x26

1
740

(16314295497466134477098480406623145
√
D − 365561307455028402276987851148978069)x25

?x24+?x23+?x22+?x21+?x20+?x19

+?x18+?x17+?x16+?x15+?x14

?x13+?x12+?x11+?x10+?x9

?x8+?x7+?x6+?x5+?x4

1
740

(16314295497466134477098480406623145
√
D − 365561307455028402276987851148978069)x3

1
732

(−807445277082293675830760385
√
D + 25250643264175060209505146459)x2

1
716

(3072931836030
√
D − 224019365010010)x+ 1

593 Z/2Z 12 ±10 x2 + 445987849/710x+ 1

601 Z/2Z× Z/2Z 12 ±4,±4 (x2 − 239/2401x+ 1)2

649 Z/2Z× Z/2Z 12 ±4,±4 (x2 − 239/2401x+ 1)2

689 Z/2Z× Z/8Z 6 ±0,±0,±4,±4
±4,±4,±8,±8 x16 + 1

78
(−618426

√
D − 8713894)x15

+ 1
716

(4604823397503
√
D + 147886093075761)x14

+ 1
720

(−19183045951916226
√
D − 407733319394678270)x13

+ 1
2·724 (109659951891903026817

√
D + 3910704142483041468031)x12

+ 1
728

(−232255596895017081309810
√
D − 4964477528251534939685550)x11

+ 1
732

(525040474109379546835038690
√
D + 15576771537970282875572123638)x10

+ 1
732

(−706099228761774606524643168
√
D − 15544824675030134872021527376)x9

+ 1
2·732 (1267062950436096308320774809

√
D + 43008002951423525795071287675)x8

+ 1
732

(−706099228761774606524643168
√
D − 15544824675030134872021527376)x7

+ 1
732

(525040474109379546835038690
√
D + 15576771537970282875572123638)x6

+ 1
728

(−232255596895017081309810
√
D − 4964477528251534939685550)x5

+ 1
2·724 (109659951891903026817

√
D + 3910704142483041468031)x4

1
720

(−19183045951916226
√
D − 407733319394678270)x3

1
716

(4604823397503
√
D + 147886093075761)x2

1
78
(−618426

√
D − 8713894)x+ 1
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D IK(3)/PK,1(3∞) nD valuations P̃D(x)

713 Z/2Z× Z/8Z 12 can’t find good representatives

745 Z/2Z× Z/4Z 12 can’t find good representatives

761 Z/6Z 6 ±4,±12,±20 x6 + 1
2·720 (−326067672535605

√
D − 159275255786742675)x5

1
2·732 (8032023240607066367832165

√
D − 742791729857944519743344331)x4

1
2·736 (−12154109980551447665799417375

√
D + 4510987549804784189418087515459)x3

1
2·732 (8032023240607066367832165

√
D − 742791729857944519743344331)x2

1
2·720 (−326067672535605

√
D − 159275255786742675)x+ 1

769 Z/2Z× Z/2Z 12 ±4,±4 (x2 − 239/2401x+ 1)2

817 Z/2Z× Z/2Z× Z/10Z 12 can’t find good representatives

857 Z/2Z 6 ±28 x2 + 591717446468983676495806/728x+ 1

881 Z/2Z 12

913 Z/2Z× Z/2Z 12 ±8,±8 (x2 − 4743554/78x+ 1)2

929 Z/2Z 12
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For p = 13 and δ = 2[1, 1]− 3[2, 1] + 1[4, 1]

D IK(3)/PK,1(3∞) nD valuations P̃D(x)

41 Z/2Z 12 ±2 x2 − 337/169x+ 1

73 (Z/2Z)2 12 ±2,±2 (x2 + 337/169x+ 1)2

89 Z/2Z 12 ±2 x2 + 337/169x+ 1

97 (Z/2Z)2 12 ±2,±2 x4 + 674/169x3 + 170691/28561x2 + 674/169x+ 1 =

(x2 + 337/169x+ 1)2

137 Z/2Z 12 ±6 x2 + 9397582/4826809x+ 1

145 Z/2Z× Z/8Z 3 ±0,±0,±1,±1 x16 + 1
138

(25064550
√
D + 1456407962)x15

±1,±1,±2,±2 1
1316

(−9909170774179425
√
D + 367233567480055041)x14

1
1320

(35640369711526913550
√
D − 45167895449503053818222)x13

?x12+?x11+?x10+?x9+?x8+?x7+?x6+?x5+?x4

1
1320

(35640369711526913550
√
D − 45167895449503053818222)x3

1
1316

(−9909170774179425
√
D + 367233567480055041)x2

1
138

(25064550
√
D + 1456407962)x+ 1

161 (Z/2Z)2 12 ±2,±2 (x2 + 337/169x+ 1)2

193 (Z/2Z)2 12 ±4,±4 (x2 − 56447/28561x+ 1)2

241 (Z/2Z)2

265 Z/2Z× Z/4Z
281 Z/2Z
305 Z/2Z× Z/4Z
353 Z/2Z
385 (Z/2Z)3

401 Z/10Z 6 ±4,±4,±4 x10 + 1
2·1312 (7954953835725

√
D − 13563872824361)x9

±4,±6 1
1316

(−4235895970542018
√
D + 4333681004006130303)x8

1
2·1320 (16411128241572257983407

√
D + 27954073324685459115657)x7

?x6+?x5+?x4+?x3

1
1316

(−4235895970542018
√
D + 4333681004006130303)x2

1
2·1312 (7954953835725

√
D − 13563872824361)x+ 1

409 (Z/2Z)2

449 Z/2Z
457 (Z/2Z)2

505 Z/2Z× Z/8Z
553 (Z/2Z)3

577 Z/2Z× Z/14Z
593 Z/2Z

20 Discussion and future directions

In this thesis we have proposed a conjectural construction of elements lying in totally

complex ray class fields of a real quadratic number fields K. Our construction is very

much in the spirit of the theory of complex multiplication available for imaginary
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quadratic number fields. We have been able to provide some theoretical evidence for

the algebraicity of the local elements u(r, τ) ∈ K×
p (see Theorem 17.1). Despite the

latter result, it seems that for the moment the proof of the algebraicity of u(r, τ) is

out of reach. Since our units can be related with the first derivative at s = 0 of a

p-adic zeta function interpolating classical values of partial zeta functions attached

to K we see that the strong p-units that we have constructed are nothing else than

Gross-Stark p-units that were predicted by the p-adic Gross-Stark conjectures (see

[Gro81]). Therefore we are not constructing new units. But instead of proposing only

a formula for the logarithm of its norm, we propose a formula for the unit itself, which

can be seen as a refinement. The main feature of the approach used in [DD06] and

in this thesis resides probably in the fact that we can compute those units p-adically

in polynomial time using modular symbols coming from Eisenstein series. With a

certain amount of work, the method could be implemented using the mathematical

software Magma and allowed ourself to test the truth of conjecture 5.1.

The relative situationK/Q withK real quadratic admits an obvious generalization

namely the case L′/L, where L and L′ are totally real number fields and L′ is quadratic

over L. In this case if the degree of L′ over Q is 2n then the group of units of L has

rank n − 1 and the one of L′ has rank 2n − 1. Therefore the units in L′ which are

not coming from L form a lattice of rank n in O×
L′ . In this special situation one can

replace the one variable Eisenstein series attached to Q by the n-variable Eisenstein

series of parallel weight k attached to L namely

Ek(
b

fd
, a, z) = N(

b

fd
)k

∑
OL(f∞)×\{(0,0) ̸=(α,β)∈ ba

df
× b

fd
}

e2πiTr(β)

N(αz + β)k
(20.1)

where N(αz + β) =
∏n

i=1(α
(i)zi + β(i)), a, b, f are integral ideals of L such that

(f, b) = 1, d is the different ideal of the number field L and OL(f∞)× are the totally

positive units of L congruent to 1 modulo f. The constant term of the q-expansion

of (20.1) is a partial zeta function associated to L(f∞)/L where L(f∞) corresponds

to the narrow ray class field of conductor f of L. The special values of these partial

zeta functions were studied in section 7 of the present thesis. A unit ϵ ∈ O×
L′ acts

naturally on the OL-lattice OL + τOL ⊆ L′ where τ ∈ L′\L and therefore gives rise

to a matrix in SL2(OL) having τ as a fixed point. Let ℘ be a prime ideal of L which
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is inert in L′. As in the one variable case one can probably construct a family of Z-
valued measures on P1(L℘) where L℘ denotes the completion of L at ℘. This family of

Z-valued measures can probably be indexed by pairs (c1, c2) ∈ (Γ(i∞))n × (Γ(i∞))n

where Γ would be a suitable congruence subgroup of SL2(O℘). For a pair (c1, c2) one

could define first a measure µ{c1 → c2} on the distinguished compact open ball OL℘

by the rule

µ{c1 → c2}(OL℘) =

∫ c21

c11

∫ c22

c12

· · ·
∫ c2n

c1n

Ek,℘(
b

fd
, a, z)dz1 · · · dzn

where c1 = (c1i), c2 = (c2i) and Ek,℘(
b
fd
, a, z) is the ℘-stabilization of Ek(

b
fd
, a, z). Using

the almost transitive action of Γ on balls of P1(OL℘) and extending µ{c1 → c2} to all

balls of P1(OL℘), by forcing a Γ-invariance, one obtains a family of measures indexed

by pairs (c1, c2) ∈ (Γ(i∞))n × (Γ(i∞))n which are Γ-invariant by construction. As

in the one variable case one can probably use this family of measures to construct

a (n+1)-cocycle κ in Zn+1(Γ, L℘
×). We should expect this n + 1-cocycle to split.

One strategy to show the splitting of κ would be to try to lift the family of measures

introduced previously to the larger space X := (OL℘ × OL℘)\(℘OL℘ × ℘OL℘). Most

computations that we have done in this thesis can probably be carried over to this

setting. The only thing which is missing is an analogue of the Gross-Koblitz formula.

Therefore proving an analogue of Theorem 17.1 might be out of reach.

For the next discussion we have in mind the recent construction obtained by

Dasgupta in [Das08]. Let K be a totally real number field and L a CM abelian

extension of K. Let S be a set of places of K containing all the Archimedean places

and all the finite primes which ramify in L/K. Consider the group ring Q[GL/K ]. Let

σ ∈ Gal(L/K) then we define

ζS(L/K, σ, s) = ζS(σ, s) =
∑

(a,S)=1
σa=σ

1

N(a)s
, Re(s) > 1.

For every negative integer k ≤ 0 define the Stickelberger element

ΘL/K,S(k) =
∑

σ∈GL/K

ζ(L/K, σ, k)σ−1 ∈ Q[GL/K ].

Let A(L/K) be the annihilator of the Z[GL/K ]-module µL of roots of unity of L. In

[Coa77], Coates shows how the main theorem of [DR80] implies the following result
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Theorem 20.1 Assume the main theorem proved in [DR80]. Let k ≤ 0 be a

negative integer then if α ∈ A(L/K) then αΘL/K,S(k) ∈ Z[GL/K ].

We are now ready to state Brumer’s conjecture, which is an attempt to generalize the

classical theorem of Stickelberger.

Conjecture 20.1 Let CL,S be the S-ideal class group of L. Then one has an

inclusion of Z[GL/K ]-ideals

A(L/K)ΘL/K,S(0) ⊆ AnnZ[GL/K ](CL,S).

Moreover when α = wΘL/K,S(0), where w = #µL, we have for all ideal a of L

aα = (a)

for some a ∈ (L)−.

Note that the generator a is uniquely determined up to a root of unity in L. When S

is large enough the first part of the conjecture was proved by Wiles as a consequence

of the main conjecture for totally real number fields, see [Wil90].

Let us assume that the data (L/K, S) satisfies the following assumptions

(1) S = {p} ∪ T where T consists exactly of the infinite places of K and finite

primes which ramify in L/K

(2) The prime p is inert in K and and pOK = p splits completely in L.

(3) L is a CM field corresponding to the narrow ray class field of conductor f of K

where f is some ideal of K coprime to p.

Let Ln = Kfpn be the ray class field of conductor fpn over K. For every n ≥ 0 we have

a group ring element ΘLn/K,S(0) ∈ Q[GLn/K ]. For every integer 0 ≤ m ≤ n we let

resnm be the natural restriction maps resnm : Q[GLn/K ]→ Q[GLm/K ]. The elements

ΘLn/K,S(0) satisfy the distribution relations

resnm(ΘLn/K,S(0)) = ΘLm/K,S(0).
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Let wn = #µLn . Note that for n large enough one has wn+1 = pwn. Let pn be a

prime ideal of Ln above p chosen in such a way that pn+1|pn. Note that this tower

of primes depends only on the initial choice p0 in L0 = Kf since after the first step

all the extensions are totally ramified at p0. Using the Brumer-Stark conjecture for

every n there exists a unique strong p-unit un ∈ (Ln)
− (up to a root of unity) defined

by the relation

p
wnΘLn/K,S(0)
n = (un).

For every 0 ≤ m ≤ n, those strong p-units are related by the norm in the following

way

NLn/Lm(un) = (um)
wn/wm .

When n ≥ 1 and σ ∈ Gal(Ln/K) the p-adic zeta function ζp,S(Ln/K, σ, s) has no

zero at s = 0 since all the primes q of Ln above a prime of S are ramified in Ln/K.

Therefore we fall outside our initial setting where the order of vanishing of the p-adic

L-function at s = 0 was equal to 1. However when n = 0, the order of vanishing

of ζp,S(L0/K, σ, s) at s = 0 is equal to 1, and therefore one has a conjectural p-adic

formula for the element u0 viewed as an element of (L0)p0 . From this point of view,

it seems to be a very natural question to look for a similar formula for the element

un viewed as an element of (Ln)pn . Even though we fall outside our original setting,

where the order of vanishing of the partial zeta function at s = 0 was assumed to be

1, a formula similar to what Dasgupta is proposing in [Das08] might exist. It would

be quite interesting to provide such a conjectural p-adic formula for the strong p-units

un.

A Partial modular symbols are finitely generated

over the group ring

A modular symbol taking value in an abelian group A is a function

m : P1(Q)× P1(Q) −→ A
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denoted by the suggestive notation m(x, y) := m{x→ y} such that

(1) m{x→ y} = −m{y → x} for all x, y ∈ P1(Q),

(2) m{x→ y}+m{y → z} = m{x→ z}, for all x, y, z ∈ P1(Q).

We have a natural action of GL2(Q) on modular symbols given by

(γm){x→ y} := {γ−1x→ γ−1y}

for all γ ∈ GL2(Q). One can define a universal Z-module X s.t. for any modular

symbol m : P1(Q) × P1(Q) → A we have the following commutative diagram where

m̃ is a group homomorphism. When A = C one can show that X ≃ Div0(P1(Q)) as

a Z-module. For any γ ∈ GL2(Q) and a modular symbol m we define

(γ ⋆ m){c1 → c2} = m{γ−1c1 → γ−1c2}.

In practice one is interested to Γ-invariant modular symbols for some subgroup Γ ≤
GL2(Q). Very often Γ is discrete but not always.

Definition A.1 A partial modular m with respect to a subgroup Γ ⊆ GL2(Q)

which takes value in an abelian group A is a map

m : S × S → A

for a certain subset S ⊆ P1(Q) which is Γ-invariant and for all x, y, z ∈ S we require

(1) m{x→ y} = −m{y → x}

(2) m{x→ y}+m{y → z} = m{x→ z}

Let us prove now prove a very useful theorem.

Theorem A.1 Let x ∈ P1(Q) and Γ be a finitely generated subgroup of GL2(Q)

then the Γ-module Div0(Γx) is finitely generated. The number of generators of Div0(Γx)

can be taken to be less than or equal to the number of generators of Γ.
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Proof Let G = ⟨g1, . . . , gn⟩. I claim that {[x] − [gix]}ni=1 is a generating set as a

Γ-module of Div0(Γx). Let Fn = ⟨x1, . . . , xn⟩ be the free group of n elements. We

have a natural onto group homomorphism f : Fn → G where f(xi) = gi. For an

element w ∈ Fn that is reduced we have a well defined notion of length. We define

Sk := {w ∈ Fn : length(w) = k}. Since ∪kSk = Fn we have ∪kf(Sk) = G. We do a

proof by induction.

Let M = Z[Γ]({[x] − [gix]}ni=1). We need to show that M = Div0(Γx). Assume

that for all g ∈ f(Sk) and k ≤ m− 1 we have [x]− [gx] ∈M then we claim that

If g′ ∈ f(Sm) then [x]− [g′x] ∈M.

Let us prove it. Since g ∈ f(Sm) there exists a word w ∈ Fn of length m such

that f(w) = g. So there exists a xi s.t xiw
′ = w where w′ is a word of length

m − 1. By induction we have [x] − [f(w′)x] ∈ M . Finally note that [x] − [gx] =

gi([x]− [f(w′)x]) + ([x]− [gix]) ∈M . Since the induction hypothesis is true for k = 1

it is true for any k by the inductive step. □

Corollary A.1 Assume that P1(Q)/Γ is finite and and Γ finitely generated then

Div0(P1(Q)) is a finitely generated Γ-module.

Proof Let G = ⟨g1, . . . , gn⟩ and P1(Q) = ∪mi=1Γxi. Then we claim that

M := Z[Γ]({[xj]− [gixj]}i,j ∪ {[x1]− [xj]}j=2...n)

is equal to Div0(P1(Q)). Let yi ∈ Γxi and yj ∈ Γxj. By the previous theorem

we have [xi] − [yi] ∈ M and [xj] − [yj] ∈ M . Also [xi] − [xj] ∈ M . Therefore

[yi]− [yj] = ([xj]− [yj]) + ([yi]− [xi]) + ([xi]− [xj]) ∈M . □

So more generally for any finitely generated subgroup Γ ≤ GL2(Q) and a subset of

cusps S = ∪ki=1Γxi (having finitely many Γ-orbits) we find that Div0(S) is a finitely

generated Γ-module.

Corollary A.2 Since Γ0(N) is finitely generated we have that Div0(Γ0(N)(i∞))

is a finitely generated Z[Γ0(N)]-module.
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So this gives us a theoretical way of computing a partial modular symbol knowing

only the values on a set of generators for Div0(S) over Γ. Let us work out an explicit

example. Consider the modular group Γ0(N) =< g1, . . . , gr >. For any element

g ∈ G there exists a reduced word x1x2 . . . xn = g where xi ∈ {g1, g−1
1 , . . . , gr, g

−1
r }

and xi ̸= x−1
i+1 for all 1 ≤ i ≤ n − 1. For any integer k ≥ 1 we let Xk =

∏k
i=1 xi. A

direct computation reveals that

[i∞]− [g(i∞)] =
n∑
i=1

Xn−i ([i∞]− [xn−i+1(i∞)]) .

Note that if xi = g−1
j then

(
[i∞]− [g−1

j (i∞)]
)
= −g−1

j ([i∞]− [gj(i∞)]).
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