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Abstract

The goal of this note is to gather in one place some basic results on lattices
and orders in number fields. Most of these results can be found in the literature
but in a rather scattered way, and sometimes, such results are formulated in more
general setups which may obscure the simpler aspects of lattices and orders in number
fields. Some proofs are provided but for the more technical ones a reference is usually
provided.
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1 Introduction

In [5], the author made a detailed investigation of a special type of GL2-real analytic
Eisenstein series for which some basic results on lattices and orders in number fields, not
so easily found in the literature, were required. The present paper can be viewed as a
slightly updated version of Section 4 of [5] which goal, back then, was to gather in one
place some of the needed results used in loc. cit. Our goal in this note is modest and
we simply wish to provide a basic reference on lattices and orders in number fields that
covers the required needs in [5] and also of our forthcoming papers [6] and [7]. It seemed
to us better to publish this note as a separate entity so that it can, at least provisionally,
provide a concise reference for the number theorists who wish to learn more about some
of the theoretical intricacies involved when one replaces the maximal order of a number
field by a non-maximal order. In fact, as a testimony, when the author wrote [3] and [4]
he had a misconception about the two notions of O-properness and O-invertibility for a
general order (see Section 3.7). In particular, this paper takes the opportunity to clarify
the relationships between these two notions.

Let us give some quick overview of the literature on the topic considered in this note.
A good reference for orders in imaginary quadratic field with interesting number theory
applications is [9]. For general orders of number fields, a short introduction can be found
§12 of Chapter 1 of [20], and a much more detailed presentation is given in [22]. The
author found also very useful some unpublished documents from Keith Conrad, available
on his personal website, as for example [8]. In the coming work [7], we give an introduction
to what we call signature lattice zeta functions. It is possible to rephrase and extend the
Stark conjectures (see [12],[13],[14] and [15]) for this special class of zeta functions and
we expect that such an appropriate reformulation will involve a ray class field theory for
general orders of number fields. Very recently, the nice preprint [16] has appeared on arxiv
where the two authors work out a comprehensive ray class field theory for a general order
of a number field. No doubt that their paper will fill a significant gap in the literature and
is likely to become a standard reference for the class field theory of orders. Incidentally,
the introduction of [16] provides a thorough review of the literature on orders of number
fields to which we refer the reader. On the topic of class field theory, previous to the paper
[16], we are aware of [18] which gave a presentation of a ring class field theory for a general
order.
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2 Signature of a number field and embeddings

We let c∞ : C → C denote the complex conjugation. Usually for an element a ∈ C we
denote its complex conjugate c∞(a) by a.

Let K be an number field of degree g over Q. We say that K has signature (r1, r2) if
K has r1 real embeddings and 2r2 complex embeddings. If K has signature (r1, r2) then
g = r1 + 2r2. Let Σ := Hom(K,C) be a complete set of embeddings of K into C. The
group Gal(C/R) = ⟨c∞⟩ acts on the left of Σ. If τ ∈ Σ then τ means c∞ ◦ τ . We choose to
write Σ as the union of:

(i) its set of real embeddings:

Σr = {τ1 = ρ1, τ2 = ρ2, . . . , τr1 = ρr1}(2.1)

(ii) its set of complex embeddings labeled as

Σc := {τr1+1 := σ1, τr1+2 = σ2, . . . , τr1+r2 = σr2 ,(2.2)

τr1+r2+1 = σ1, . . . , τr1+2r2 = σr2}

So this provides a partition Σ = Σr

⊔
Σc. The set Σr can be viewed as the Gal(C/R) fix

point set of Σ.

As usual, for x ∈ K one defines its trace and its norm

TrK/Q(x) =
∑
i

τi(x) ∈ Q and NK/Q(x) =
∏
i

τi(x) ∈ Q.(2.3)

If A is a ring we let A× denote its group of invertible elements under the multiplication.
We let OK be the ring of integers of K. Recall that if x ∈ OK then x ∈ O×

K if and only if
NK/Q(x) ∈ {±1}.

A subring O ⊆ K is called an order of K if [OK : O] < ∞. Since OK/O is an integral
extension it follows that O× = O×

K ∩ O. For some basic results on the behavior of chains
of prime ideals in an integral extension of rings see for example Theorem 26 on p. 694 of
[10]. Note that the results in Section 3.11 provide more precise results on chain of prime
ideals in the specific setting of the integral extension OK/O.

For the rest of the paper K is a number field signature (r1, r2) and of degree g = r1+2r2.
Also, unless otherwise specified, O will be an order in OK .

3 Lattices and orders in number fields

By a lattice L ⊆ K we mean a free Z-module of rank g. For two lattices L1,L2 ⊆ K, we
define their product as

L1L2 =

{
n∑

i=1

ℓ1,iℓ2,i : ℓ1,i ∈ L1, ℓ2,i ∈ L2, n ∈ Z≥1

}
.
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One may verify that L1L2 is again a lattice. Moreover, the product operation on lattices
is associative. We denote the set of lattices in K by LattK . It is an abelian semigroup for
the multiplication of lattices. Note that LattK admits no identity when [K : Q] > 1.

Recall that

TrK/Q( , ) : K ×K → Q
(x, y) 7→ TrK/Q(xy)

provides a non-degenerate symmetric bilinear pairing such that its restriction to OK ×OK

is Z-valued.

Definition 3.1. Let L ⊆ K be a lattice and let (x1, . . . , xg) be an ordered Z-basis of L.
The discriminant of L is defined as

disc(L) := det(Tr(xixj)) ∈ Z.(3.1)

Note that disc(L) does not depend on the choice of the ordered Z-basis of L and it is
non-vanishing (since K/Q is separable). Here are some basic properties on the discriminant
(see for example Chapter 4 of [19]):

(1) disc(L) = (det(τi(xj)))
2.

(2) If L ⊆ M is a sublattice then disc(L) = [M : L]2 · disc(M).

(3) dK := disc(OK) ∈ Z is called the discriminant of K. We have dK ≡ 0, 1 (mod 4) and
sign(dK) = (−1)r2 .

3.1 O-properness

Let L ⊆ K be a lattice. We define

OL := {λ ∈ K : λL ⊆ L},

and call OL the multiplier ring of L (or the endomorphism ring of L). One may check that
OL is an order of K.

Definition 3.2. If O is an order of K, such that O = OL, then we say that L is O-proper.

Remark 3.3. The property of “O-properness” is used in [17] in the setting of lattices of
imaginary quadratic fields and we have chosen here to use this terminology in the more
general setting of lattices in number fields.

So, by definition, for any lattice L, we always have that L is OL-proper and moreover,
OL is the only order O of K for which L is O-proper. For an arbitrary lattice L ⊆ K we
may view L as a finitely generated OL-module. Since

{ϵ ∈ OL : ϵL = L} = O×
L ,

we may identify the group of units of OL with the group of automorphisms of L when L is
viewed as an OL-module.
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Definition 3.4. Given an order O ⊆ K and two O-ideals a, b ⊆ O we say that a and b
are coprime if a+ b = O. Recall that LattK denotes the set of all lattices in K. Given an
order O ⊆ K, we let LattO the subset of elements in LattK which are also O-modules. In
particular, if O ⊆ O′ is an inclusion of orders then LattO′ ⊆ LattO. An element L ∈ LattO
is called a fractional O-ideal. Note that LattO is an abelian monoid with an identity given
by O. A lattice a is said to be an O-integral lattice if a ∈ LattO and a ⊆ O.

Remark 3.5. It will be proved in Proposition 3.41 that the cancellation property holds
true in the semigroup (LattK , ·).

3.2 The multiplicative inverse operation

Definition 3.6. Let L be a lattice of K. We define the multiplicative inverse of L to be

L−1 := {λ ∈ K : λL ⊆ OL}.(3.2)

Note that, by definition, L−1 is always an OL-module and that LL−1 ⊆ OL. Since L−1

is an OL-module, it follows that that OL ⊆ OL−1 . From the previous inclusion, it follows
that L ⊆ (L−1)−1. As Example 3.7 below shows, the three preceding inclusions could be
strict in general. The example below is inspired from an email exchange with Keith Conrad
in the year 2014, who kindly pointed out to me Exercise 18 on page 94 of [2] (cf. with
Example 2.4 of [16]).

Example 3.7. Let θ ∈ Q be such that θ3 = 2 and consider the cubic field K := Q(θ). We
have that OK = Z[θ]. Let R := Z+2θZ+2θ2Z. One may verify that R is an order of index
four in OK . Consider the lattice M := 4Z + θZ + θ2Z ⊆ K. Then direct computations
(which we leave to the reader) show that

(i) OM = R,

(ii) M2 = 2Z+ 2θZ+ θ2Z,

(iii) OM2 = OK ,

(iv) M−1 = 2Z+ 2θZ+ θ2Z = 2OK + θ2OK ,

(v) OM−1 = OK and (M−1)−1 = 1
2
(2OK + θOK) =

1
2
(2Z+ θZ+ θ2Z) ⫌ M,

(vi) MM−1 ⊆ 2OK ⫋ R.

Example 3.7 is instructive since it shows that if L1,L2 ∈ LattK are O-proper, then
L1L2 is not necessarily O-proper (take L1 = L2 = M where M is as above). Moreover,
the lattice M above is such that OM ̸= OM−1 and M ⫋ (M−1)−1. In particular, the
application [−1] : LattK → LattK , given by L 7→ L−1 is not necessarily involutive.
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Remark 3.8. Let L1,L2 ∈ LattK and assume that O := OL1 = OL2 . Then one readily
sees from the definitions that the multiplicative inverse operation behaves in a contravariant
way:

L1 ⊆ L2 ⇒ L−1
2 ⊆ L−1

1 .(3.3)

However, without the strong assumption O = OL1 = OL2 , the implication (3.3) is false in
general.

3.3 O-invertibility

Let L ∈ LattO. By definition of OL we have that O ⊆ OL.

Definition 3.9. We say that L is O-invertible, if there exists an O-module L′ ∈ LattO
such that LL′ = O. We denote the set of O-invertible lattices in K by InvO. It is a
submonoid of LattO.

Let L ∈ LattO and assume that it is O-invertible. Since OL · LL′ ⊆ LL′ = O and
1 ∈ LL′ = O, this implies that OL ⊆ O and therefore O = OL. Thus, if L is an O-
invertible module, it is automatically O-proper. The converse is not true in general as will
be explained in this section further down below. Now let L ∈ LattO and assume that there
exists L′ ∈ LattO such that LL′ = O. Then we claim that such a lattice L′ ∈ LattO is
necessarily unique. Indeed, let L′′ ∈ LattO be such that LL′′ = O. Then multiplying the
previous equality by L′ we find that (L′′ =) OL′′ = L′O (= L′) so that L′′ = L′. It follows
from this that InvO is a subgroup of the monoid LattO. Moreover, if L,L′ ∈ LattO and
LL′ = O, we claim that necessarily L′ must be equal to L−1. Indeed, we have proved earlier
that O = OL, and from the definition of L−1 we see that L′ ⊆ L−1 which in particular
implies that O = LL′ ⊆ LL−1 ⊆ OL = O and thus LL−1 = O. Finally, by the uniqueness
of the inverse for L proved earlier we deduce that L−1 = L′.

Remark 3.10. In [16], the terminology of “potential invertibility” for a given lattice L is
used in the following sense: a lattice L ∈ LattK is said to be potentially invertible if L is
OL-invertible.

From the above discussion we obtain:

Proposition 3.11. Let L ∈ LattK. Then

LL−1 = OL ⇐⇒ 1 ∈ LL−1 ⇐⇒ L is OL-invertible.

Moreover, if L is OL-invertible, one has that (L−1)−1 = L and that OL = OL−1.

Let us provide an example of a lattice L which is OL-proper but not OL-invertible.
Looking at Example 3.7, we see that OM = R and MM−1 ⫋ R = OM. In particular, the
OM-proper lattice M is not OM-invertible. For a further discussion on the discrepancy
between the O-invertibility and O-properness, see Section 3.7.

If the lattice L = O ⊆ K is an order, then one may easily check that OO = O and that
O−1 = O. It is worthwhile to remind the reader of the following set of equivalences for
O-invertibility which will be used later on in the proof of Corollary 3.35.
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Theorem 3.12. Let O ⊆ OK be an order and let L ∈ LattK. Then the following statements
are equivalent:

(1) L is O-invertible.

(2) L is a projective O-module.

(3) L is a locally free O-module, i.e., for each nonzero prime ideal p ⊆ O, one has that
Lp is a free Op-module (necessarily of rank 1).

Proof For a proof of these equivalences the author may consult for example Section
11.2 of [21]. See also Corollary 6.2 of [8] □

Let O ⊆ OK be an order and let M be a torsion free finitely generated O-module. Then
M ↪→ M ⊗O K ≃ Kr for some integer r which is called the rank of M . If M has rank one
it follows from the previous injection that M is isomorphic, as an O-module, to an ideal
a of O. So it makes sense to ask the following: Given two nonzero ideals a, b ⊆ O when
are these isomorphic as O-modules ? Obviously, if there exists a λ ∈ K× such that λa = b
then a and b will be isomorphic as O-modules. It turns out that the converse is also true
namely that if a, b ⊆ O are two nonzero ideals which are isomorphic as O-modules, then
necessarily there exists a λ ∈ K× such that λa = b, see for example [23].

Remark 3.13. The latter converse statement can be seen directly in the special case when
at least one of the two ideals, say a, isO-invertible. Indeed, let φ : a → b be an isomorphism
of O-modules. Choose λ ∈ O\{0} such that λa−1 ⊆ O. By O-flatness it follows that φ
induces an isomorphism of O-modules φ̃ : λa−1a = λO → λa−1b. In particular, λa−1b is
O-cyclic and thus λa−1b = µO for some µ ∈ K× so that λ

µ
a = b.

Let a, b ∈ LattO. We shall write a ∼O b whenever there exists λ ∈ K× such that
λa = b. Note that the relation ∼O preserves the O-invertibility. In general, the set

Isom1(O) := {isomorphism classes of torsion free O-modules of rank 1}

≃ LattO / ∼O,(3.4)

is only a monoid which can be shown to be finite by using classical results of the geometry
of numbers. If we restrict the set LattO to InvO in (3.4) then one gets a group which is
usually called the Picard group and which is often denoted by Pic(O). In the special case
when O = OK is the maximal order, the positive integer

hK := #Pic(OK)

is called the class number of K.

Let us also mention one further result related to the notion of invertibility which we
have extracted directly from [16] (see Proposition 2.22 of loc. cit.):

Proposition 3.14. (Dade, Taussky, Zassenhaus) Fix an order O. Given a ∈ LattO there
exists a positive integer Na ≥ 1 such that

an is Oan-invertible ⇐⇒ n ≥ Na.(3.5)

Furthermore, Na is bounded uniformly by Na ≤ g − 1.
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For a more thorough discussion about the notion of invertibility we refer to [16].

3.4 The conductor of an order and the invertibility of prime ide-
als

Definition 3.15. The conductor of an order O ⊆ K is defined as

cond(O) := cO := {x ∈ K : xOK ⊆ O}.

One may check that cO is the largest integral OK-ideal which is included in O. In
particular, cO is an integral O-ideal. The next proposition gives a complete characterization
of the invertible prime ideals of O.

Theorem 3.16. A nonzero prime ideal p ⊆ O is O-invertible if and only if p is relatively
prime to cO, i.e., p+ cO = O.

Proof See for example Theorem 6.1 of [8]. □

Remark 3.17. Note that the “only if direction” in Theorem 3.16 is no longer true if p is
not prime. For example, assume that cO ⫋ OK and let c > 1 be the smallest integer inside
cO. Then the O-ideal cO is invertible (since it is principal) but it is not coprime to cO.

Definition 3.18. A nonzero prime ideal p ⊆ O is said to regular if p ∤ cO. Otherwise it is
said to be irregular.

Example 3.19. Let us describe explicitly what the non-regular prime ideals look like for
orders in the simplest nontrivial case, namely for orders in a quadratic field K = Q(

√
D).

Here we assume that D is its discriminant (positive or negative) and to fix the idea let us
assume also that D ≡ 2, 3 (mod 4) so that Z +

√
DZ = OK (the same argument works

if D ≡ 1 (mod 4)). For f ∈ Z>0, let Of := Z + fOK be the unique order of conductor
f contained in OK . For each prime ℓ|f , let Pℓ := ℓZ + f

√
DZ. It is an Of -prime ideal

above ℓZ. It can be directly checked that Pℓ is not Of -invertible (which is consistent with
Theorem 3.16). Moreover, one has that Pℓ ⫌ ℓOf ⫌ P 2

ℓ which shows that ℓOf is a Pℓ-
primary ideal which is not a power of Pℓ; compare with Proposition 3.39. We claim that
Pℓ is the only prime ideal of Of above ℓZ. So let us check that this is indeed the case. Let
Q be a prime ideal of Of which is above ℓZ. Since Q ∩ Z = ℓZ it follows that Q ⊇ ℓOf .
However, ℓOf is never prime (since for example

√
D ·(f

√
D) ∈ ℓOf while

√
D, f

√
D /∈ ℓOf )

it follows that Q ⫌ ℓOf . Since [Of : ℓOf ] = ℓ2 we must necessarily have [Of : Q] = ℓ.

There are ℓ + 1 index ℓ subgroups in Of which are given by Lk := Z(f
√
D + k) + ℓZ for

0 ≤ k ≤ ℓ − 1 and M := Zℓf
√
D + Z. The case Q = M is impossible since 1 ∈ M . The

case L0 = Q does occur since L0 = Pℓ. Finally the case Lk = Q, for some 1 ≤ k ≤ ℓ − 1,
is impossible since Lk is not closed under the multiplication by f

√
D. Indeed, we have

f
√
D · (f

√
D + k) − k(f

√
D + k) = f 2D − k2 ∈ Z; but if Lk were closed under the

multiplication by f
√
D this would mean that f 2D− k2 ∈ ℓZ which is absurd since ℓ|f and

ℓ ∤ k.
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3.5 Fractional O-ideals

Let O ⊆ OK be an order. Recall that a fractional O-ideal is a lattice a ⊆ K which is an
O-module. To learn more about fractional ideals in the setting of orders we refer to [16]
which also provides a good review of the literature on the subject.

We wish now to record some basic facts on OK-lattices which are not necessarily true
when one replaces OK by a general order O ⊆ OK , so that the reader should be cautious
before applying any of the facts below in the setting of a general order.

Proposition 3.20. Let O = OK be a maximal order. Then the following hold true

(1) Let a, b ⊆ O be two nonzero ideals. Then there exists an ideal c ⊆ O, relatively prime
to both a and b, such that ca = λO is a principal ideal.

(2) Each fractional O-ideal a is O-invertible. In particular, if a ⊆ O is a nonzero ideal
then a is O-invertible.

(3) Let a ⊆ O be a nonzero ideal. Then the quotient ring O/a is a principal ring (i.e.
each ideal is principal).

(4) Let a ⊆ O be a nonzero ideal and let a ∈ a\{0}. Then there exists b ∈ a such that
aO + bO = a.

(5) Let a, b, c ⊆ K be three fractional O-ideal. Then there exists a ∈ a−1c and b ∈ b−1c
such that aa+ bb = c.

(6) Let a1, a2, . . . , an ⊆ K be fractional O-ideals and set b = a1a2 · · · an. Then
⊕n

k=1 ak
is isomorphic as an O-module to On−1 ⊕ b.

Proof The proofs of most of these facts can be found in Section 16.3 of [10] (if a
statement is not directly proved in the text then it is to be found in the exercises at the
end of the same section). □

It is not too difficult to find counter-examples to each statement above when the order
O is no longer assumed to be maximal so that we leave this task to the interested reader.

3.5.1 On the two generator problem for the ideals of an order

It follows from (4) of Proposition 3.20 that each ideal of OK can be generated by two
elements. One may wonder if such a result still holds true for ideals in a general order.

Definition 3.21. Following the terminology of [11], we say that a ring R satisfies the
property IG2 if every ideal in R can be generated by two elements.

One has the following surprising and remarkably precise result

Theorem 3.22. (Theorem 3.6 of [11]) An order O is an IG2 ring if and only if disc(O)
is fourth-power-free over Z.
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Example 3.23. (Example 3.8 of [11]) Consider the order O = Z[2 3
√
5] ⊆ K = Q( 3

√
5). Let

a := Z[ 3
√
5] and view it as a fractional O-ideal. Then a is not 2-generated. Note that

disc(O) = 26 · 3 · 52.

3.6 The dual operation

We would like now to recall some classical results about dual lattices with respect to the
trace pairing. Recall that

TrK/Q( , ) : K ×K → Q
is a non-degenerate symmetric bilinear pairing.

Definition 3.24. For a lattice L ⊆ K, we define the dual lattice of L by

L∗ := {x ∈ K : TrK/Q(xℓ) ∈ Z for all ℓ ∈ L}.(3.6)

Note that the ∗ operation is contravariant on the partially ordered set of lattices LattK ,
i.e., if L1 ⊆ L2, then L∗

1 ⊇ L∗
2. Using the notion of the dual Z-basis of a given Z-basis of

L, one easily proves that L∗ is again a lattice and that L∗∗ = L. It follows that the map
L 7→ L∗ is an involution on the set LattK .

Proposition 3.25. (i) For L ∈ LattK and λ ∈ K× we have (λL)∗ = λ−1 · L∗.

(ii) For any L ∈ LattK we always have OL = OL∗. In particular, if L ∈ LattO then L is
O-proper if and only if L∗ is O-proper.

Proof (i) We have the equivalences:

x ∈ (λL)∗ ⇐⇒ Tr(xλL) ⊆ Z ⇐⇒ xλ ∈ L∗ ⇐⇒ x ∈ λ−1 · L∗.(3.7)

(ii) From the definition of L∗ we see that OL ·L∗ ⊆ L∗ and therefore OL ⊆ OL∗ ; conversely,
substituting L by L∗ in the previous inclusion, and using the identity L∗∗ = L, we deduce
that OL∗ ⊆ OL. □

3.6.1 Dual of an order and the different ideal

Let O ⊆ OK be an order. By definition, we have

O∗ = {x ∈ K : TrK/Q(xy) ∈ Z for all y ∈ O}.(3.8)

It follows from (3.8) that O∗ is the largest O-module in LattO such that for all x ∈ O∗,
TrK/Q(x) ∈ Z. In particular we get

Proposition 3.26. Let O be an order then O ⊆ O∗, O∗ ∈ LattO and O ⊆ End(O∗).

When O = OK is the maximal order, every fractional ideal of K is OK-invertible. In
particular, it makes sense to define

dK := ((OK)
∗)−1 .

The OK-fractional ideal dK is called the different ideal of K. Note that for any order
O ⊆ OK , we always have d−1

K = (OK)
∗ ⊆ O∗.
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3.7 Relationship between L−1 and L∗

We would like now to describe some relationships between the lattices L−1 and L∗.

Let L ∈ LattK . Then M := LL∗ is an OL-module such that for all x ∈ M, TrK/Q(x) ∈
Z. It thus follows that

LL∗ ⊆ (OL)
∗.(3.9)

In fact, it will be shown in Proposition 3.30 that the inclusion (3.9) is always an equality.

For every y ∈ L and x ∈ L−1(OL)
∗ we have xy ∈ LL−1(OL)

∗ ⊆ (OL)
∗ so that

TrK/Q(xy) ∈ Z. It thus follows from the definition of L∗ that

L−1(OL)
∗ ⊆ L∗.(3.10)

Combining (3.9) and (3.10) we obtain

Proposition 3.27. For L ∈ InvO we have L∗ = L−1(OL)
∗.

Remark 3.28. Let us point out one subtle point regarding the dual operation. In general,
if L is O-invertible, it does not necessarily follow that L∗ is O-invertible. For example,
assume that L is O-invertible, so that O = OL, but that O∗ is not O-invertible. We then
claim that in this case, L∗ is never O-invertible. Indeed, since L is O-invertible we have
from Proposition 3.27 that

L∗ = L−1(OL)
∗.(3.11)

Now by way of contradiction, assume furthermore that L∗ is O-invertible. In that case it
would follow from (3.11) that O∗ = L−1L∗ and therefore O∗ would be O-invertible. But
this contradicts our initial assumption that O∗ was not O-invertible.

3.7.1 A criterion for an equivalence between O-properness and O-invertibility

When we wrote the papers [3] and [4], we wrongly thought thatO-properness was equivalent
to O-invertibility. Fortunately, this does not affect any of the results of the aforementioned
papers, since this fictive equivalence was only mentioned but never used in any of the
proofs. However, even though these two notions are not equivalent in general, there is a
criterion (may be not so well-known to the algebraic number theorists), which says exactly
when they agree on the set LattO.

Theorem 3.29. The following two statements are equivalent:

(i) L is O-proper ⇐⇒ L is O-invertible.

(ii) The Z-dual O∗ of O, with respect to the trace pairing, is O-invertible.
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Proof See Theorem 4.1 of [8]. □

Let us draw one straightforward consequence from the above theorem. Let L ∈ LattK
be an arbitrary lattice and set O := OL; so that by definition of O, L is O-proper. Then in
the fortunate outcome that O∗ is O-invertible it follows directly from Theorem 3.29 that
L is O-invertible. It can be shown that condition (ii) in Theorem 3.29 is always satisfied,
if the order O is monogenic, i.e., if O = Z[µ] for some µ ∈ O, see Corollary 4.3 of [8].
Therefore, when O is monogenic, the notions of O-invertibility and O-properness agree.
In particular, O-properness and O-invertibility are equivalent when K is a quadratic field,
since any order of a given quadratic field is monogenic.

In the course of the proof of Theorem 4.1 of [8], the following is proved:

Proposition 3.30. Let L ∈ LattK then LL∗ = (OL)
∗.

Proof We have already proved in (3.9) that LL∗ ⊆ (OL)
∗. For completeness, let us in-

clude the proof given in [8] for the reverse inclusion. Let x ∈ (LL∗)∗. Then TrK/Q(xLL∗) =
TrK/Q((xL∗)L) ⊆ Z so that xL∗ ⊆ L∗ by definition of L∗. Dualizing the previous inclusion
we obtain 1

x
L ⊇ L, i.e. that xL ⊆ L and thus x ∈ OL. This proves that (LL∗)∗ ⊆ OL and

by dualizing once more we finally get that (OL)
∗ ⊆ LL∗. □

3.8 Index and covolume

Let L1,L2 ⊆ K be two lattices. We define the rational index

[L1 : L2]

as the absolute value of the determinant of any g-by-g matrix with rational entries which
takes a Z-basis of L1 to a Z-basis of L2. So we always have [L1 : L2] ∈ Q>0. The
rational index satisfies the transitivity formula [L1 : L2][L2 : L3] = [L1 : L3] for all lattices
L1,L2,L3 ∈ LattK . We also define the absolute norm of L as

N(L) := [OK : L] ∈ Q>0.

Let ⟨, ⟩ be a choice of a real inner product on W := Rg so that (W, ⟨, ⟩) becomes a real
euclidean space of dimension g. Let {w1, . . . , wn} be linearly independent vectors. The
⟨, ⟩-volume of the “unit box” B = {

∑
i tiwi : 0 ≤ ti ≤ 1} is defined as

vol⟨,⟩(B) = | det(⟨wi, wj⟩)i,j|1/2.(3.12)

The rule B 7→ vol⟨,⟩(B) gives rise to a (Borel) measure on W which we still denote by vol⟨,⟩.

Let L ⊆ W be a lattice of maximal rank and {w1, . . . , wn} be a Z-basis of L. Let B be
the unit box generated by the wi’s. The ⟨, ⟩-covolume of L is defined as

cov⟨,⟩(L) := vol⟨,⟩(B).(3.13)
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We choose to embed K in V := Rr1 × Cr2 in the following way

ι : K → Rr1 × Cr2(3.14)

λ 7→ ι(λ) := (τj(λ))
r1+r2
j=1

where the embeddings τj’s are the embeddings of K as defined as in Section 2. Let V :=
Rr1×Cr2 , it is an R-algebra. We shall denote a typical element v ∈ V as v = (v1, . . . , vr1+r2).

Definition 3.31. Let v, w ∈ V .

(1) The Minkowski metric on V (the standard euclidean metric) is defined as

⟨v, w⟩M :=

r1∑
i=1

viwi +

r1+r2∑
i=r1+1

viwi.

(2) The canonical metric of type (r1, r2) on V (≃ Rr1+2r2) is defined as

⟨v, w⟩c :=
r1∑
i=1

xiyi + 2

r1+r2∑
i=r1+1

viwi.

We let volM := vol⟨,⟩M and volc := vol⟨,⟩c be the respective volume measure on V .

Proposition 3.32. Let X ⊆ V be a measurable set. Then volc(X) = 2r2 volM(X). More-
over, if L ∈ LattK then

covc(ι(L)) =
√
|dK | · [OK : L].(3.15)

Proof See p. 30-31 of [20]. □

Definition 3.33. For L ∈ LattK we define

cov(L) :=
√

|dK | · [OK : L] =
√

| disc(L)|,(3.16)

So by definition, cov(L) corresponds to the covolume of ι(L) with respect to the canon-
ical metric on V . The covolume of ι(L) with respect to the Minkowski metric is instead
equal to 2−r2

√
|dK | · [OK : L].

Lemma 3.34. We have cov(L) cov(L∗) = 1.

Proof This is a general result for (not necessarily symmetric) non-degenerate bilinear
forms. Let (V, b) be real vector space of dimension g equipped with a non-degenerate (not
necessarily symmetric) bilinear form b. Let L ⊆ V be a lattice. Define L∗ := {v∗ ∈ V :
B(L, v∗) ⊆ Z}. Let B = (e1, . . . , eg)

g
i=1 be an ordered Z-basis of L. Given a v ∈ V we let

[v]B ∈ Rg denote the column vector representing v in the basis B. Let B := (b(ei, ej))i,j ∈
Mg(R) so that the matrix B is just the matrix representation of the R-bilinear form b( , )
with respect to the ordered basis B. Mimicking the definition of the discriminant in (3.1)
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we let dL := | det(B)| be the absolute value discriminant of L. It does not depend on the
choice of the ordered basis B since already det(B) is independent of B; and it is useful
to think of

√
dL as the “covolume of L” with respect to b. Let B∗ := (e∗1, . . . , e

∗
g) be the

dual basis of B with respect to b, so that for all 1 ≤ i, j ≤ g, b(ei, e
∗
j) = δij. It follows

from the definition of L∗ that L∗ = Ze∗1 + . . . + Ze∗g (in particular L∗ is a lattice). Note
that in general (B∗)∗ is not necessarily equal to B since b( , ) was not assumed to be
symmetric. Now let T = (tij) ∈ Mg(R) be such that

∑g
j=1 tijej = e∗i for 1 ≤ j ≤ g. Note

that T = ([e∗1]B, . . . , [e
∗
g]B) (the square matrix obtained by stacking together the column

vectors [e∗i ]B). Since b(ei, e
∗
j) = δij it follows from the definition of B that BT

(a)
= Ig.

Similarly, if we let B∗ := (b(e∗i , e
∗
j))i,j ∈ Mg(R), then again since b(ei, e

∗
j) = δij, it follows

that (T−1)tB∗ (b)
= Ig. Multiplying together (a) and (b) we find Ig = BT (T−1)tB∗ and taking

the determinant we finally obtain dL · dL∗ = 1. □

Corollary 3.35. For all lattices L ∈ LattK, one has [OK : L] · [OK ,L∗] = N(L) ·N(L∗) =
1

|dK | . For every

3.9 Bounds for the index [b : ab] in a general order

Let

I(O) := {a ⊆ O : a is a nonzero O-ideal}.(3.17)

In other words, I(O) is the (abelian) monoid of integral O-ideals. If a, b ∈ I(O) and a ̸= O
then it follows from Nakayama’s lemma that

ab ⫋ b.(3.18)

In particular I(O) is always a torsion free abelian monoid in the sense that if a ∈ I(O) and
an = O for some n ∈ Z≥1 then necessarily a = O. Given an a ∈ I(O) let us define

na := min{n ∈ Z>0 : n ∈ a} ∈ a.(3.19)

Let a, b ∈ I(O) and set n := nb. From the inclusions a ⊇ ab ⊇ na we deduce the following
upper bound for the index [a : ab]:

[a : ab]
∣∣∣ng.(3.20)

In particular, if p ∈ I(O) is a prime ideal above pZ then necessarily we have

[O : p]
∣∣∣pg.(3.21)

When either a or b is O-invertible one can say more.

Proposition 3.36. Let O ⊆ OK be an order and let a, b ∈ LattO.
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(i) If a is O-invertible then a/ab ≃ O/b (where ≃ is a non-canonical isomorphism of
Z-modules).

(ii) If either a or b is O-invertible then [O : a] · [O : b] = [O : ab].

Proof We have [O : ab] = [O : a][a : ab] and therefore (ii) follows from (i). It remains to
show (i) namely that there exists an abelian group isomorphism (non-canonical!) between
the two finite Z-modules a/ab and O/b if a is O-invertible. Let p ∈ Z≥2 be a prime
and set Sp := O\(p1 ∪ p2 ∪ . . . ∪ pe), where pi’s are the distinct prime ideals of O above
pZ. The set Sp is multiplicatively closed and the localized ring Op := S−1

p O is a semi-
local ring. Since a is O-invertible, it follows that ap := S−1

p a is a principal Op-module.
Therefore, there exists πp ∈ Op, such that ap = πpOp. Since Op is a flat O-module, we have
ap/apbp ≃ (a/ab)p and Op/bp ≃ (O/b)p. Now consider the map φp : Op/bp → ap/apbp,
given by x+bp 7→ xπp+apbp. It follows that φp is anOp-module isomorphism. In particular,
we have

(p-primary subgroup of a/ab) ≃ (a/ab)p ≃ (p-primary subgroup of O/b )≃ (O/b)p

Finally, since p was arbitrary, it follows that a/ab, as a finite Z-module, is isomorphic to
O/b. □

Remark 3.37. Working a bit more carefully, one can show that the above map φ is actually
a map of O-modules (see Proposition B.2 of [16]).

3.10 Primary factorization in orders

The primary decomposition theorem for Noetherian rings, when specialized to one dimen-
sional Noetherian domains gives the following:

Theorem 3.38. Let A be a Noetherian domain of dimension 1. Then every nonzero ideal
a in A can be uniquely written, up to ordering, as

a = q1 . . . qr(3.22)

where qi are primary ideals and where the associated prime ideals pi = rad(qi) are distinct.

Proof The existence of such a factorization is a direct consequence of the primary
decomposition theorem but the unicity is more subtle and uses the fact that the isolated
primary components of a are uniquely determined by a (see Corollary 4.11 of [1]). For a
complete proof of Theorem 3.38 see for example Proposition 9.1 of [1]. □

Theorem 3.38 applies in particular to orders. For an order A of K and a nonzero prime
ideal p we let Ap be the localization of A at p (we have used here the letter A in order not
to confuse Ap with the notation Op which already has a meaning, namely it corresponds
to the ring of multipliers of p. More generally, if M is an A-module we let Mp denote the
localization of M at p.
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Proposition 3.39. A nonzero prime ideal p ⊆ A is regular if and only if each integral
p-primary ideal of A is a power of p.

Proof Assume that p is regular. We first show that a p-primary ideal b is necessarily
a power of p. We know from Theorem 3.16 that p is A-invertible. In particular, the
localization pp is a free Ap-module of rank one. On the one hand we have bp = pnp for a
unique n ∈ Z≥1. On the other hand, if q ⊆ A is a nonzero prime ideal coprime to p, we
must also have that bq = Aq (since rad(b) = p is coprime to q). Since the ideals b and pn

have the same localizations at all nonzero prime ideals of A, it follows that b = pn. Now let
us assume that all the p-primary ideals of A are powers of p. Then the local ring Ap admits
a discrete valuation and therefore the localization pp is free of rank 1 over Ap. Moreover, if
q ̸= p is prime, the localization pq = Aq is again free of rank one over Aq. Thus, applying
Theorem 3.12 we find that p is A-invertible and using once more Theorem 3.16 we see that
p must be coprime to cA and thus p is regular. □

It is easy to deduce some upper bound for the number of primary factors which appear in
the primary decomposition of ℓO where ℓ ∈ Z is a prime number. Let us give such upper an
bound which is relevant for bounding the size of the fibers of the map Spec(O) → Spec(Z).

Proposition 3.40. Let ℓ ∈ Z be a prime number and let ℓO = q1 · · · qr be the primary
factorization of ℓO where pi = rad(qi) are the distinct prime ideals supported on ℓO. Then
r ≤ g.

Proof It follows from (3.18) that we have the following chain of proper inclusions

O ⫌ I1 ⫌ I2 ⫌ · · · ⊇ Ir = ℓO(3.23)

where Ik = q1 · · · qk for 1 ≤ k ≤ r. From (3.18), we know on one hand that ℓfk
∣∣∣[Ik : Ik+1] for

some fk ≥ 1 whenever 1 ≤ k ≤ r − 1. On the other hand, we also know that [O : ℓO] = ℓg

and therefore we must have r ≤ g. □

Let us give one more interesting consequence of Theorem 3.38.

Proposition 3.41. Let us view LattK as a semigroup under the product operation on
lattices. Let a, b, c ∈ LattK be such that ab = ac. Then b = c. In other words, the
cancellation property holds true in the semigroup (LattK , ·).

Proof Consider the order O := Oa ∩ Ob ∩ Oc so that a, b and c can be viewed as
fractional O-modules i.e. a, b, c ∈ LattO. Multiplying by suitable scalars in O, we may as
well assume that a, b, c ⊆ O while keeping the equality ab = ac. In particular, this means
that a, b, c can be assumed to be nonzero integral O-ideals. Finally since ab = ac it follows
from the unique factorization of a, b, c and ab = ac as a product of primary ideals that one
must have b = c. □
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3.11 The contraction and extension maps for the integral exten-
sion O ⊆ OK

Using the notation of [16], given an order O ⊆ K and an O-ideal m ⊆ O, we let

Im(O) := {a ⊆ O : a is an O-ideal and a+m = O}.(3.24)

So Im(O) is the (abelian) monoid of integral O-ideals which are coprime to m. When m = O
we have Im(O) = I(O).

The ring homomorphism O ⊆ OK gives rise to the usual extension and contraction
maps

ext : I(O) → I(OK)

a 7→ ext(a) = ea := aOK

and

con : I(OK) → I(O)

a 7→ con(a) = ca := a ∩ O

It straightforward to see that the extension map is always a monoid homomorphism but
in general the contraction map may fail to be a monoid morphism (see [16]). However, we
have the following:

Proposition 3.42. Let f := cO be the conductor of O. Then the maps ext : If(O) → If(OK)
and con : If(OK) → If(O) are monoid bijections which are inverse to one another.

Proof This is a special case of Lemma 3.7 of [16] which deals with an arbitrary exten-
sion of orders O ⊆ O′ and where f = fO′(O) is the relative conductor ideal. The above
proposition follows directly from theirs by taking O′ = OK . □

Remark 3.43. Proposition 3.42 is not so surprising in light of the following. By definition
f = cO is the largest OK-ideal contained in O. In particular, if hK denotes the class number
of K then fhK = λOK for some λ ∈ OK which is supported only on the prime ideals of OK

which divide f. Since λOK ⊆ O it follows readily that OK [
1
λ
] = O[ 1

λ
].

Remark 3.44. In the special case of quadratic fields, Proposition 3.42 corresponds to
Theorem 4 of [17].

3.12 Quadratic fields

For this last section we illustrate some of the notions presented in this note in the special
case where K is a quadratic field of discriminant dK . We let σ : K → K be the non-
trivial involution of K. It is well-known that OK = Z + ωZ where ω = dK+

√
dK

2
and

(OK)
∗ = 1√

dK
OK = d−1

K (the inverse of the different ideal). For each positive integer f ∈ Z≥1

there is a unique order of conductor fZ which we denote by Of := Z + fOK = Z + fωZ.
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Viewing Of as a lattice of K we see that cov(Of ) = f
√

|dK | and that NOf = f . A direct
calculation (using a dual basis under the trace pairing) reveals that (Of )

∗ = 1
f
√
dK

Of (the

dual lattice of Of ). Also, since Of = Z[fω] is monogenic, it follows that Of -properness is
equivalent to Of -invertibility.

Given τ ∈ K\Q there exists a unique (primitive) integral polynomial

pτ (x) := Aτ (x− τ)(x− τσ) = Aτx
2 +Bτx+ Cτ where Aτ , Bτ , Cτ ∈ Z, Aτ > 0 and gcd(Aτ , Bτ , Cτ ) = 1.

When m ∈ Z≥1 and τ ∈ K\Q it follows from the definitions that

(Amτ , Bmτ , Cmτ ) =

(
Aτ

em
,
mBτ

em
,
m2Cτ

em

)
where em = gcd(Aτ ,mBτ ,m

2Cτ ).

In particular, when (Aτ ,m) = 1 we find the simple relation

(Amτ , Bmτ , Cmτ ) = (Aτ ,mBτ ,m
2Cτ ).(3.25)

For τ ∈ K\Q we let Dτ := B2
τ − 4AτCτ be the discriminant of pτ (x). Without loss of

generality we may assume that τ = −Bτ+
√
Dτ

2Aτ
and τσ = −Bτ−

√
Dτ

2Aτ
. Since Q(τ) = K one

must have sign(Dτ ) = sign(dK) and Dτ = f 2
τ dK for a unique positive integer fτ ∈ Z>0. In

particular, if m ∈ Z≥1 is such that gcd(Aτ ,m) = 1 it follows from (3.25) that

Dmτ = (mfτ )
2dK .(3.26)

For τ ∈ K\Q we let Λτ := Z + τZ be the normalized lattice associated to the quadratic
irrationality τ . Note that AτΛτ ⊆ OK and therefore the rational index N(AτΛτ ) = [OK :
AτΛτ ] is in fact a positive integer which we shall soon determine. By definition we have

cov(Λτ ) =
√

|(τ − τσ)2| =
√
|Dτ |
Aτ

and therefore using the fact that cov(Λτ ) = NΛτ ·
√

|dK | (see (3.15)) we find that

[OK : Λτ ] = NΛτ =
1

Aτ

√
Dτ

dK
=

fτ
Aτ

,(3.27)

which is equivalent to

[OK : AτΛτ ] = Aτfτ .(3.28)

For a general lattice L = Zω1 + Zω2 ∈ LattK , setting τ := ω2

ω1
, it follows from (3.27) that

NL = |N(ω1)| ·
fτ
Aτ

∈ Q>0.(3.29)

Theorem 3.45. Let τ ∈ K\Q with primitive polynomial pτ (x) = Aτx
2 + Bτx + Cτ and

Dτ = B2
τ − 4AτCτ = f 2

τ dK. Set L := Λτ and O := Z+ (Dτ+
√
Dτ

2
)Z. Then
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(a) LLσ = 1
Aτ

O.

(b) End(L) = OL = O.

(c) OL = Ofτ .

Proof (a) is Theorem 2 on p. 90 of [17] while (b) is Theorem 1 on p. 90 of [17]. Note
Lang proves first his Theorem 2 and then uses it to prove his Theorem 1. Finally the proof
of (c) follows directly from

OL = O = Z+

(
Dτ +

√
Dτ

2

)
Z = Z+

(
f 2
τ dK + fτ

√
dK

2

)
Z = Z+

(
fτdK + fτ

√
dK

2

)
Z = Ofτ ,

(3.30)

where for the fourth equality we have used the fact that f2
τ dK
2

≡ fτdK
2

(mod Z). □

Proposition 3.46. Let L ∈ LattK with OL = Of . Then

(i) L∗ = (NL
√
dK)

−1 · Lσ.

(ii) L−1 = f
√
dK · L∗ = f

NLL
σ.

In particular, if L = Λτ is normalized so that f = fτ , we find that

(a) L∗ = 1
fτ

√
dK

(AτLσ)

(b) L−1 = AτLσ.

Here fτ and Aτ are defined as in Theorem 3.45.

Remark 3.47. Note that the quantities cov(L) = NL
√

|dK | and NL
√
dK are distinct

when dK < 0. In fact, in this case if we choose
√
dK := i

√
|dK | then − iNL

√
dK = cov(L).

Proof From the homogeneity of the equations and the fact that OλL = OL (for λ ∈ K×)
it is enough to prove (i) and (ii) when L = Λτ . So let L = Λτ so that f = fτ . On the one
hand, it follows from Proposition 3.30 and (c) of Theorem 3.45 that

L · L∗ = (OL)
∗ = (Ofτ )

∗ =
1

fτ
√
dK

Ofτ .(3.31)

On the other hand, it follows from (3.27) and Theorem 3.45 that

L · Lσ

NL ·
√
dK

=
1

fτ
√
dK

Ofτ .(3.32)

Now comparing (3.31) and (3.32) and using the cancellation property (see Proposition 3.41)
we find that L∗ = Lσ

NL·
√
dK

.

For the proof of (ii), since L is Ofτ proper it is Ofτ -invertible. Now if we multiply each
side of (3.32) by fτ

√
dK we find that L−1 = fτ

NLL
σ = AτLσ where the last equality follows

from (3.27). □
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Remark 3.48. Note that the cancellation property used when comparing (3.31) and (3.32)
follows also more basically from the cancellation property within the group InvOfτ

which
can be applied since L,Ofτ ∈ InvOfτ

.

For additional results on orders and lattices of quadratic fields which complement well
the above discussion we refer to Chapter 8 of [17].
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